
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004 3015

Extractor Codes
Amnon Ta-Shma and David Zuckerman, Member, IEEE

Abstract—We study error-correcting codes for highly noisy
channels. For example, every received signal in the channel
may originate from some half of the symbols in the alphabet.
Our main conceptual contribution is an equivalence between
error-correcting codes for such channels and extractors. Our
main technical contribution is a new explicit error-correcting
code based on Trevisan’s extractor that can handle such channels,
and even noisier ones. Our new code has polynomial-time en-
coding and polynomial-time soft-decision decoding. We note that
Reed–Solomon codes cannot handle such channels, and our study
exposes some limitations on list decoding of Reed–Solomon codes.
Another advantage of our equivalence is that when the Johnson
bound is restated in terms of extractors, it becomes the well-known
Leftover Hash Lemma. This yields a new proof of the Johnson
bound which applies to large alphabets and soft decoding.

Our explicit codes are useful in several applications. First, they
yield algorithms to extract many hardcore bits using few auxiliary
random bits. Second, they are the key tool in a recent scheme to
compactly store a set of elements in a way that membership in
the set can be determined by looking at only one bit of the rep-
resentation. Finally, they are the basis for the recent construction
of high-noise, almost-optimal rate list-decodable codes over large
alphabets [1].

Index Terms—Extractor codes, extractors, hardcore bits,
Johnson bound, list decoding, Reed–Solomon codes, soft-decision
decoding.

I. INTRODUCTION

CONSIDER a channel over a large alphabet such that
upon sending , the receiver is only able

to determine sets , , such that . Can
we find codes for which the number of codewords
such that for all , , is small? What if we require
for only 51% of ?

This scenario has been raised before in the context of list de-
coding. If we allow more than half the distance errors, then
guaranteed unambiguous decoding is impossible. List decoding
tries to rectify this situation. We give up on guaranteed unam-
biguous decoding and instead we require that the number of
codewords with modest agreement with the received word is

Manuscript received May 7, 2001; revised August 4, 2004. This work was
supported in part by a David and Lucille Packard Fellowship for Science and
Engineering, the National Science Foundation under Grant CCR-9912428, NSF
NYI Grant CCR-9457799, and an Alfred P. Sloan Research Fellowship. Part of
this work was performed while A. Ta-Shma was at the University of California
at Berkeley. A preliminary version of this paper appeared in Proceedings of the
33rd ACM Symposium on Theory of Computing, 2001, pp. 193–199.

A. Ta-Shma is with the Computer Science Department, Tel-Aviv University,
Ramat-Aviv, Tel–Aviv 69978, Israel (e-mail: amnon@post.tau.ac.il).

D. Zuckerman is with Radcliffe Institute for Advanced Study, Harvard
University, Cambridge, MA 02138 USA, on leave from the Computer Sci-
ence Department, University of Texas, Austin, TX 78712 USA (e-mail:
diz@cs.utexas.edu).

Communicated by R. Koetter, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2004.838377

small (and in the algorithmic version we output all these code-
words). Thus, an adversary choosing errors may force am-
biguous decoding, but will never be able to make this ambiguity
large. A useful view of this is that the number of codewords in
any large ball is small.

Although list decoding was defined independently by Elias
[2] and Wozencraft [3] in the 1950s, no nontrivial list decoding
algorithm was known until the late 1980s. Since then, there have
been several [4]–[7]. For an excellent survey paper and for the
history of the list decoding problem, we refer the reader to [8],
and Section 3.3 therein in particular.

As it turns out, the list decoding algorithms above deal also
with the case where for each the receiver has a small set of
possible explanations of the th symbol. In fact, Guruswami and
Indyk [9] subsequently called the natural generalization of this
property “list-recoverable,” and showed how to use this property
of Reed–Solomon codes to build better list-decodable codes. A
natural question is then, can one find such a code for the case
where the sets are large?

We first show that when the sets are large, Reed–Solomon
codes could have exponentially many codewords such that for
all , . Thus, Reed–Solomon codes are not a good choice
for such a scenario. In contrast, we exhibit codes with only
polynomially many codewords having 51% of the ,
even when the errors are picked adversarially. This property also
holds in the soft-decision model. We give explicit codes that
have polynomial-time encoding and list decoding, and nonex-
plicit codes with better parameters.

Our codes are based upon a combinatorial object from the
study of pseudorandomness called an extractor. An extractor is
a procedure that extracts randomness from a defective random
source, using a small additional number of truly random
bits. Extractors were first defined and constructed in [10],
and have since been improved by several authors. Extractors
have been used to construct various types of pseudorandom
generators ([10]–[12]), and have had important applications in
seemingly unrelated areas, including expander graph and su-
perconcentrator constructions [13], time–space tradeoffs [14],
and unapproximability [15], [16]. See [17]–[19] for surveys of
extractors.

This paper gives yet another unexpected application of ex-
tractors. We show an equivalence between extractors and codes
which decode in highly noisy channels in the adversarial model.
This equivalence implies bounds on the parameters such codes
must have. For instance, the rate of such codes must be smaller
than , and there is a word with at least close code-
words.

This equivalence also sheds light on the Johnson bound [20].
Restated in terms of extractors, the Johnson bound becomes the

0018-9448/04$20.00 © 2004 IEEE

3016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

well-known Leftover Hash Lemma. This yields a new proof of
the bound which applies to large alphabets and soft decoding.

Our explicit codes are based on Trevisan’s explicit extractor
[21]. We show that it has polynomial-time encoding, polyno-
mial-time list decoding, and is capable of handling the above
noisy channel even in the adversarial model. Thus, we build
an explicit code that has better soft-decision list decoding than
Reed–Solomon, and can tolerate much more noise.

These explicit codes can be used to extract hardcore bits, a
very useful tool in cryptography and the earliest application of
list decoding in computer science [4]. We are able to extract
many hardcore bits using few auxiliary random bits.

II. TOP DOWN OVERVIEW

A. Soft-Decision Decoding

In reality, channel noise is almost always a continuous phe-
nomenon. Thus, on receiving a signal the detector may decide
that the transmitted symbol was with probability , with
probability , and with probability . A hard-decision
detector may transform the signal to the symbol . Soft-de-
cision decoding tries to use these probabilities.

Early attempts at soft-decision decoding start with Forney’s
generalized minimum-distance (GMD) decoding [22]. Recent
soft-decoding algorithms include [23] for Reed–Solomon codes
and [24] for Chinese Remainder codes. Some of these papers
(e.g., [24]) study a soft-decision detector that outputs a single
symbol along with a confidence level, thus using only some of
the information the channel contains. We now formally define
soft decoding.

When we receive a symbol from a noisy channel, we can infer
a probability distribution over all possible symbols in the al-
phabet . We deal with time-varying channels; seeing
a symbol at time induces a weight function

, where corresponds to the probability
that the th transmitted symbol is given that the th received
symbol is .

In fact, we can also deal with noisy channels where seeing the
whole sequence induces a product weight
function , where corresponds
to the probability that the th transmitted symbol is when re-
ceiving . Notice also, that the weight function may
be arbitrary, and in particular does not have to sum up to . As
we work with bounded accuracy we assume is always a
multiple of . For normalization, we define the relative weight
of as

Notice that is a real number between zero and one.
We call the elements of points. We view a word

as the set of points . The agree-
ment between a word and a weight function is
the sum of the weights of the points corresponding to , i.e.,

. The case where takes on only Boolean
values is of special interest, as then corresponds to sets. For
sets , ,

where is the indicator weight function if
and otherwise. When the sizes of the are this amounts to
the usual notion of agreement between two vectors.

Now, let be a family of codes, where is
a code of length over alphabet ,

. We use unconventional letters for describing the
alphabet and the code length so as to avoid , , and
which are standard for both extractors and coding theory. We say
the family has efficient encoding if there is a polynomial-time
algorithm that given and computes the th codeword of
in time . When it is clear from the context we say
that has efficient encoding.

The list decoding problem comes in two flavors, combinato-
rial and algorithmic. In both we are given an arbitrary weight
function , which is the essence of the adversarial model. The
combinatorial version is to bound the number of codewords that
have large agreement with , while the algorithmic version is to
actually find all these codewords. Note that the expected agree-
ment of a random word from with is ; by large
agreement we mean noticeably larger than this, as is captured in
the definition of that followis.

Definition II.1: We say a code has com-
binatorial soft decoding if for every weight function

the set

has size at most . We say a family of codes has
combinatorial soft decoding if for all ,

has soft decoding. If for
some polynomial we simply say has combinatorial soft
decoding.

In the algorithmic version we want efficient decoding. That is,
we have a noisy channel, and we see which induces
a weight function . We give the decoding
algorithm black-box access to , and we want to recover the
original codeword.

Definition II.2: We say a family has efficient soft de-
coding if there exists an algorithm that given black-box access
to the weight function outputs all the codewords in in
time polynomial in .1

We say a family has efficient probabilistic soft de-
coding, if the decoding algorithm is probabilistic, and for every
weight function , with probability at least over
its internal random coins, outputs all the codewords in
in time polynomial in .

We also define to be the set of codewords
that have full agreement with , i.e.,

1Notice that we can represent a weight function w : [T] � [M] ! [0; 1]
with MT numbers, each a multiple of , and hence with poly(T;M) bits.
Thus, we could have replaced the above definition with one that says that
given a description of w the algorithm outputs all codewords in A (w) in
time poly T;M; . However, in many settings the black-box version is more
natural.

TA-SHMA AND ZUCKERMAN: EXTRACTOR CODES 3017

B. Strong Extractors

As mentioned earlier, an extractor is a procedure to extract
randomness from a defective random source, using a small ad-
ditional number of truly random bits. In order to define extrac-
tors, we first give some standard definitions.

Definition II.3: A probability distribution on is a func-
tion such that . For an integer

, is the uniform distribution on . We overload no-
tation and for a set , denotes the uniform distribution on

. The variation (statistical) distance between two probability
distributions and on , denoted , is

We say is -close to if . A distribution on
a set is -uniform if it is -close to .

We model a defective random source as one that has sufficient
min-entropy, a notion that is more useful to us than entropy.

Definition II.4: The min-entropy of a distribution is
.

In other words, has min-entropy if for all , .
We now define extractors, using slightly different parameters
than usual (typically the below is replaced by).

Definition II.5: A function is a strong
-extractor if for every distribution on such that for

all , , the distribution obtained
by picking from , uniformly from and evaluating

is -uniform. Here, denotes concatenation. (is an
extractor if is -uniform.)

In other words, for any test , the
probability that is roughly the same whether
and are chosen uniformly, or is chosen uniformly and

for chosen with sufficient min-entropy. Note that there
is no constraint on the efficiency of the test; in fact, the test can
be randomized, as a randomized test can be viewed as randomly
picking one of several deterministic tests.

A natural interpretation for this is that

is a strong extractor, if it takes an arbitrary dis-
tribution over with at least min-entropy (this
corresponds to of cardinality at least), uses inde-
pendent truly random bits, and distills from output bits that
are close to uniform (this corresponds to the fact that no test can
distinguish from uniform). We would like, of
course, to have as small as possible and as close as possible
to .

We now define efficiency of extractors; first, we give the usual
notion and then a weaker version which will suffice for our pur-
poses.

Definition II.6: An extractor is efficient
if it is computable in time polynomial in .

It is weakly efficient if is computable in time polynomial in
.

C. The Equivalence to Extractors

We associate a code with a strong extractor:

Definition II.7: Let be a strong ex-
tractor. For each , define a word

where . The extractor code for is

The next theorem shows that strong extractors give codes
with good soft decoding, and that these two notions are, in fact,
equivalent.

Theorem 1: If is a strong ex-
tractor, then has combinatorial soft decoding. Con-
versely, if has combinatorial soft decoding, even if
only with respect to Boolean weight functions, then is a strong

extractor. Finally, has efficient encoding if and only
if is weakly efficient.

Note that this theorem also implies that combinatorial soft de-
coding with respect to Boolean weight functions implies general
combinatorial soft decoding with only a slight degrading of pa-
rameters.

By efficient encoding, we mean that the encoding time is
polynomial in the encoded length . Therefore,
the last statement in the theorem about efficiency is obvious,
since encoding in amounts to computing at different
points.

Typically, we will consider large alphabets: or
larger. (An exception is when we consider the Johnson bound.)
In this typical case, if we want the size of the solution list to be
polynomial in (so that we have -combinatorial list decoding)
the extractor has to extract at least a constant fraction of the
min-entropy in the given source. That is, if we denote
(i.e., the given source has min-entropy) and (i.e.,
the extractor extracts bits that are close to uniform) then

, or equivalently for some constant , i.e.,
.

Although a good extractor yields a code with good soft de-
coding and efficient encoding, usually we do not have efficient
decoding for such codes. Getting codes with explicit encoding
and decoding is a main goal of this paper, and we will later show
how to achieve it.

The connection between extractors and error-correcting
codes sheds light on the Johnson bound [20], which states that
a binary code with relative distance has the property
that every ball of relative radius contains at most
codewords (the bound was generalized to larger fields in [25]).
Typically, the Johnson bound is the key tool used to determine
the quality of combinatorial list decoding in the traditional
sense. The Johnson bound, however, does not generalize to the
soft-decision setting (e.g., to the setting where all we know is
that the th transmitted symbol is one of possibilities).

The Johnson bound was given several proofs; some of the
more recent ones include a proof with geometric motivation in

3018 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

[26], a proof using inclusion–exclusion in [25] and a combina-
torial proof using the Zarankiewicz bound in [27]. We, however,
interpret the Johnson bound as saying that a good code is a good
extractor, and we give it a simple proof that is identical to the
simple proof of the Leftover Hash Lemma [28]. In Lemma IV.1
we show that our interpretation does generalize to the soft-de-
cision setting.

We also use the equivalence with extractors to derive bounds
on soft decoding. A lower bound of [29] says that a strong
extractor must have

(1)

and

(2)

Furthermore, random extractors, with high probability, almost
match these bounds [29]. The equivalence of Theorem 1 trans-
lates this to nonexplicit codes with soft de-
coding and codewords. The bound (1) then tells us how far
we can push the rate of this code. Namely, the rate is

which is about as long as is much smaller than . The
bound (2) tells us that as long as the code length is much
smaller than the alphabet size , the number of possible solu-
tions cannot be constant. Anything is achievable within these
bounds. In particular, there are codes with many codewords and

soft decoding for a relatively small .

D. Reed–Solomon Codes

There has been a lot of research on efficiently encoding and
decoding Reed–Solomon codes. We first state the beautiful list
decoding result of Guruswami and Sudan [6] building upon
Sudan [5].

Theorem 2: [6] Let be a Reed–Solomon code,
, . For every

where . Furthermore, has efficient list de-
coding for these parameters.

Note that the bound is very good when is small (say, about
) and that it deteriorates as grows. In particular, it is use-

less whenever (e.g., if and).
Restated in our soft-decoding notation, the list decoding algo-
rithm works well as long as is small (about), and is
not guaranteed to work when is large (a constant). We
show that this phenomenon is not an artifact of the analysis
but rather Reed–Solomon codes indeed have poor list decoding
when is large.

Theorem 3: Let be a Reed–Solomon code with
elements, , and a prime power. Suppose
for some integers and . Then, there is a Boolean weight

function with weight for

which .

Thus, in particular, for we get a Boolean weight func-
tion of weight about half, for which there are about close
codewords. Also, notice how the number of codewords in the
bound decays with the relative weight of .

E. An Extractor Code With Efficient Soft Decoding

We saw that good extractors translate to codes with
good combinatorial soft decoding; in particular, if extracts
a constant fraction of the min-entropy of the given source (i.e.,

) and has error , then has combinatorial soft de-
coding. Nevertheless, not every good extractor suits our needs,
as might not have efficient soft decoding. Our main technical
contribution is showing that block-box pseudorandom generator
constructions translate to codes with efficient soft decoding. In
Section VI, we explain in detail the notion of block-box pseudo-
random generator, and show that every code that originates from
such a construction has efficient probabilistic soft decoding. In
Section VII, we show how to make the decoding algorithm de-
terministic for one such code.

Currently, there are two black-box pseudorandom generator
constructions: Trevisan’s construction [21] and Shaltiel and
Umans’s construction [30].

• Trevisan’s extractor extracts half of the min-entropy in the
source using truly random bits, hence its
corresponding code has combinatorial soft
decoding. Its rate is

which should be compared to the best possible rate of
about . This reflects the fact that Trevisan’s ex-
tractor has degree larger than optimal. Nevertheless, we
still accommodate exponentially many codewords into

.

• Shaltiel and Umans’s extractor extracts a subconstant frac-
tion of the min-entropy in the source, ,
using only truly random bits. Hence, its corre-
sponding code has combinatorial soft
decoding for a super-polynomial .
Its rate is

which compares better to the lower bound which is about
.

Any future better black-box extractor construction would im-
mediately translate to a better code. In particular, if such a con-
struction is found with and then
we would get a code with efficient soft decoding and almost
optimal rate.

One special case of interest is when which is similar
to the Reed–Solomon case. It turns out that Trevisan’s code has
soft decoding for exponentially small . In fact, can be as small
as . On the other hand, Reed–Solomon codes do not
have soft decoding for any . We again demonstrate this

TA-SHMA AND ZUCKERMAN: EXTRACTOR CODES 3019

with the case where given a signal the receiver can only guess
the transmitted symbol is one of possible symbols. The code

we presented can recover the original symbol even if just
slightly over half the guesses are correct (half is what you expect
from a random guess) whereas for Reed–Solomon codes there
is no way to recover the original symbol even if every guess is
always correct.

F. Applications

The first application of list decoding [4] was obtaining hard-
core bits, though it was not observed to be a list decoding al-
gorithm at the time. For this application, soft list decoding is
more useful than ordinary list decoding. Using our codes, we
can output many hardcore bits while adding only few auxiliary
random bits. In Section VIII, we explain the problem, previous
work, and our result.

Recently, the results of this paper were used in [31] to give an
explicit space-efficient method of storing a set of elements from
a large universe in such a way that membership in the set can
be determined (with high probability) by reading only one bit
from the set representation. For the history of the problem, and
the extensive previous work on it we refer the reader to [32].

III. EQUIVALENCE OF EXTRACTORS AND SOFT DECODING

We now prove Theorem 1, the equivalence of extractors and
codes with good soft decoding. The proof makes use of an al-
ternate view of extractors suggested in [11], where for a given
test the number of “bad” strings for this test is small.

Proof: (of Theorem 1):
strong extractor has soft decoding:

Suppose is a strong extractor.
Let be a weight function for the code

. Define the test which
accepts with probability . Then

We wish to show that the set is small.
For a set , let be the distribution obtained by

picking uniformly from , uniformly from and evaluating
. By the definition of

Hence, is not -uniform, so by the extractor definition we
must have .

has soft decoding is a strong extractor:
Fix a test . As has soft

decoding, for at most values of

Now let be an arbitrary distribution on with
for all . Then

since the “bad” only account for probability at most .

As this is true for every test , and in particular for the test
that negates , we must have

Hence, is a strong extractor.

IV. THE JOHNSON BOUND

We start with the well known claim that codes with good dis-
tance properties are reasonable extractors:

Claim IV.1: (Codes are extractors) Let be a

code. Let be the function .

Then is a extractor.
Proof: We follow Rackoff’s proof of the Leftover Hash

Lemma as in [33]. Let be of cardinality , and recall
that is the distribution obtained by picking uniformly
from , uniformly from , and evaluating .

The collision probability of , denoted , is
the probability that two independent samples of the distribution

are the same. It is therefore the probability over
and that and .

Obviously, we should have . If we also have
then we get a collision. From the large distance of the code it
follows that if we have probability (over)
of at most of having a collision. Altogether

Rackoff shows that if is distributed over some domain
and then is -uniform. It therefore
follows that is -uniform where

(3)

and is a strong extractor.

The original Johnson bound [20] was for binary codes and
was later generalized to arbitrary alphabets (e.g., in [25]). Our
framework allows us to generalize the the second bound in [25]
to the soft-decision setting.

Lemma IV.1: (Johnson bound—soft-decoding setting) Let
be a

code. Then for , has soft decoding.

Proof: Let be a weight function. Let
and , be as before. On the one hand, for

every we have and, therefore,

3020 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

. On the other hand, from (3) it follows
that

Putting it together we see that .

A special case of the theorem is when and we look at
regular list decoding. We then get that if the relative distance is

then any ball of relative radius contains at most
codewords, which is the original Johnson bound.

V. REED–SOLOMON CODES

Proof (of Theorem 3): The proof uses the multiplicative
subgroups of , an idea that was exploited in a more sophis-
ticated way in [34].

For , contains distinct solutions to the equation
. Denote these solutions by , and define

. Let

and define the Boolean weight function
to be one on and zero otherwise.

Let be the set of polynomials for some of degree at
most . For every and , either and
then or and then

and so . Hence, if denotes the codeword
corresponding to , . Since distinct of
degree less than give distinct codewords ,

, where is the set of all codewords that have full
agreement with , i.e., .

To lower-bound , note that is a unique factoriza-
tion domain, which implies that for each , the such that

is uniquely determined up to multiples of . Conse-
quently, each can arise from at most polynomials
of degree at most (in fact, at most such polynomials).

Therefore, .

VI. EXTRACTORS AND PSEUDORANDOM GENERATORS

In this section, we show that extractors constructed via
so-called black-box pseudorandom generators give extractor
codes with efficient probabilistic soft decoding. In Section VII,
we show how to make the soft decoding deterministic for one
such extractor, Trevisan’s extractor [21]. Section VII does not
rely on this section, so some readers who wish to avoid more
computer science terminology may skip directly to that section.
However, we believe that this section is more basic. We begin
with the necessary background.

A. Background on Nonuniformity and Circuits

A nonuniform algorithm is an infinite sequence of algo-
rithms , one for each input size. To run on an input

of size , we run on . As one might expect, an infinite
sequence of algorithms is more powerful than one algorithm;
intuitively, it may be hard to compute the algorithm from .

Traditionally, the are modeled as circuits; here it is natural
to have a different circuit for each input size. An equivalent way
to model is as a Turing machine with advice. On an input
of size , receives some advice string depending only on

; then performs its computation on and . One may think
of as a description of the circuit.

For more background in this area, we refer the reader to text-
books in computational complexity, such as [35].

B. Pseudorandom Generators

A pseudorandom generator takes a short random string and
expands it to a long string that looks random to all small circuits.

Definition VI.1: Let be two distributions on . We
say a circuit -distinguishes from if

If is uniform on we say -distinguishes from uni-
form.

Definition VI.2: is a strong -pseudorandom
generator against size circuits, if no size circuit -distin-
guishes the distribution from uniform, where the
distribution is obtained by picking uniformly
from and evaluating . (A pseudorandom generator
without the word strong would only require that no small circuit
distinguishes from uniform.)

Note that for strong pseudorandom generators, we require the
circuit size to be smaller than the time to compute ; other-
wise, the circuit could compute and distinguish the output
from uniform.

Currently, no explicit pseudorandom generators are known.
However, it is known how to build pseudorandom generators
from a given hard function . That is, there is a general con-
struction that is guaranteed to be pseu-
dorandom for small circuits whenever is hard for small cir-
cuits. Such a construction first appeared in [36] and was later
improved in [37], [38], [12]. A second construction appears in
[30]. In these constructions, correctness is proved by proving
the contrapositive. If is not a pseudorandom generator, then
by definition there exists a small circuit distinguishing

from uniform. The proof then shows how to use the
distinguisher to build a small circuit for . As is hard for
small circuits, one must conclude that is pseudorandom.

A notable property of all current pseudorandom constructions
is that they are block-box. This means that the generator
only needs black-box access to , i.e., it only needs values on
given inputs, and otherwise does not use any other property of

. Similarly, the reconstruction algorithm that computes using
the distinguisher only needs black-box access to evaluations
of , and otherwise does not use any other property of . This
is captured in the definition of a black-box pseudorandom gen-
erator later. Note that an oracle Turing machine (circuit) is a
Turing machine (circuit) that has black-box access (also called
oracle access) to a function.

Definition VI.3: A black-box generator is an oracle machine
, with black-box access to a Boolean function

TA-SHMA AND ZUCKERMAN: EXTRACTOR CODES 3021

. We say is efficient if it runs in time
polynomial in its input length .

Definition VI.4: A black-box reconstruction algorithm for
with bits of advice, is an algorithm that takes a short ad-

vice string and outputs an oracle cir-
cuit . Let be the running time of and
the size of the oracle circuit implementing . may be uniform
or nonuniform, deterministic or probabilistic.

Definition VI.5: We say is a black-box -pseudo-
random generator if for every Boolean function

, and every circuit -distinguishing
from uniform, there exists an advice string

such that . If is probabilistic, this means
that with high probability over the random coins of , the output

is an oracle circuit, that with oracle access to
correctly computes .

Note that the definition of a black-box pseudorandom gen-
erator does not refer to the size of circuits. However, when we
instantiate to be a hard function for certain size circuits, we
do obtain a pseudorandom generator for small circuits.

We now claim the following.

Proposition VI.1: ([36]) Let be a black-box -pseu-
dorandom generator with the oracle circuit
output by . If can not be computed by size
circuits, then is a strong -pseudorandom generator for size

circuits.
Proof: Let be an arbitrary Boolean

function. If there exists a size circuit -distinguishing the
distribution from uniform, then given the right
advice , computes . We can
then take the oracle circuit for and replace each oracle call
to with a size circuit. We thus get a size circuit
evaluating , contradicting the hardness of .

Notice that for the proposition to be useful, has to
be small. On the other hand, the argument does not require that
the reconstruction algorithm be uniform or efficient.

C. A Probabilistic Soft Decoding Algorithm

Trevisan showed that a black-box pseudorandom generator
gives rise to a strong extractor

defined by [21]. Here, is identi-
fied with a function . We rephrase his
proof to say that the corresponding extractor code , defined
by , has good soft decoding.
Further, we extend it to say that if the reconstruction procedure is
efficient (and hence, the output circuit has small size),
then the code has efficient soft decoding.

Proposition VI.2: Suppose is a black-box pseudo-
random generator with using bits of advice. Then the ex-
tractor code for has -combi-
natorial soft decoding with respect to Boolean weight functions.
If is efficient, then so is this soft decoding.

It follows from Theorem 1 that is a strong ex-
tractor and has -combinatorial soft decoding.

Proof: Let be a Boolean weight
function, and let be a circuit computing . Let be the set
of functions corresponding to , i.e., let be the set of all
functions with . Then for
any , -distinguishes . This is because

and

Therefore, the reconstruction property implies that for every
there exists an advice string such that

. In particular, different functions
must have different advice strings . We conclude that the
number of functions in is at most , as required.

If is efficient, then the decoding algorithm is to cycle over
all advice strings . For each of the functions

, test if , and if so, output . By the previous
argument, this outputs every codeword with . The
running time is polynomial in and the running time of (since
the size of is at most the running time of).

We now extend the previous proposition to soft decoding with
arbitrary weight functions.

Proposition VI.3: Suppose is a black-box pseudo-
random generator with using bits of advice, where is
efficient. Then the extractor code for has

combinatorial soft decoding and efficient proba-
bilistic -soft decoding.

Proof: As mentioned earlier, the combinatorial soft de-
coding follows from Proposition VI.2 and Theorem 1. We now
describe the efficient decoding.

Let be a weight function. Define
the probabilistic test that accepts

with probability . As before, let
be the functions corresponding to . Then, for the same
reason as in Proposition VI.2, for any , -distin-
guishes . We are, therefore, in the same situ-
ation as in Proposition VI.2, but now we have a probabilistic
distinguisher . However, the property of the black-box pseu-
dorandom generator only applies to deterministic circuits.

We get around this by viewing the probabilistic test as
a probability distribution over deterministic tests , where

are the internal coins of . As -distinguishes
from uniform, it must be that for at least faction of

the random coins , -distinguishes from
uniform. Let us call such an good for . If is good for , then
the soft-decoding algorithm from Proposition VI.2 running on

will output .
We therefore define our decoding algorithm to toss

random strings . For each in the sequence, run the
decoding algorithm from Proposition VI.2 on . For fixed ,
the probability that none of are good for is at most

. Thus, this bounds the probability that
is not output. By the union bound, the probability there exists

some that is not output is at most .

3022 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

VII. A DETERMINISTIC SOFT-DECODING ALGORITHM

Proposition VI.3 gives us a probabilistic soft-decoding algo-
rithm. Our next goal is to find a deterministic soft-decoding al-
gorithm. Looking back at the decoding algorithm in Proposition
VI.3 we see that the problem is it uses a probabilistic distin-
guisher . While many choices for work, some do
not and the decoding algorithm then may (with very low proba-
bility, yet nonzero) sample that are all bad.

To rectify this problem, we observe that current pseudo-
random black-box generators are designed very much like
concatenated codes. We then show how to reduce soft decoding
of the concatenated code to soft decoding of the inner code.
We take the inner code to be Reed–Solomon concatenated
with Hadamard, and we show an explicit soft decoding for it.
Together, we get a deterministic soft-decoding algorithm.

The above approach works for both Trevisan’s extractor and
Shaltiel and Umans’ extractor. We work out the details for Tre-
visan’s extractor [21] because technically it is simpler.

A. Weak Designs

We first present the extractor [21] following the somewhat
improved version given in [39]. We begin with some definitions.

Definition VII.1: (Weak design) [39] A family of sets
is a weak design if

1) , and
2) .

We have the following.

Lemma VII.1: [39] For every , , and , there exists a
weak design with

Such a family can be found in time .

We introduce some notation for specifying substrings in-
dexed by weak designs. For and

, we denote by the nonnegative
integer obtained by restricting only to those entries that are
in , i.e., is the number whose binary representation
is .

Also, for strings and , we denote
by the bit long string that has in the locations
indexed by and in the other locations.

B. Soft-Decoding Reed–Solomon Concatenated With
Hadamard

We will need to use a soft-decodable binary code; we choose
to use Reed–Solomon concatenated with Hadamard. Let
be an Reed–Solomon code. Let be an

Hadamard code. The concatenated code is an

code. A simple calculation shows that if we introduce a new
parameter than is an code with
(and). The Johnson bound shows that has good

list decoding, and its generalization shows that has good soft
decoding.

Explicit list decoding is also not hard. In [40], improved
explicit list decoding is shown. A soft-decoding algorithm can
be obtained in a standard way by first soft decoding the inner
Hadamard code with brute force (the number of Hadamard
codewords is only so we can cycle over all of them) and then
using list decoding for the outer Reed–Solomon code. Details
follow.

Lemma VII.2: Let be the
Reed–Solomon concatenated with Hadamard code as above,

, . Then has efficient soft decoding.
Proof: We first define the soft-decoding algorithm, having

black-box access to some weight function
. We view the output bits as composed of blocks of

length each. For each block , the weight function induces
a weight function on the block, where

is the weight gives to in the th location of the the
th block.

For each block , we run a Hadamard soft de-
coding by brute force (i.e., by enumerating all codewords
in the Hadamard code, and checking the weights) and get
a list of all Hadamard codewords in . By
Lemma IV.1, . We now apply Theorem 2 and find

all Reed–Solomon codewords with agreement with the
sets .

Every codeword of that is also in , must have at
least blocks that belong to , and therefore
must appear in the soft-decoding output list. Also, the parame-
ters were chosen such that (keeping in mind that

), and so by Theorem 2, the procedure outputs at most
codewords of , and the whole procedure is efficient.

C. Trevisan’s Extractor

Trevisan [21] constructed an extractor as fol-
lows. Compute a weak design as
in Lemma VII.1. Encode the input using the bi-
nary error correcting code given in Lemma VII.2 to get a

long string . Use the random string
to select output bits from . The th output bit is , where

.

Trevisan’s extractor [21] .

Parameters: . .
Binary code: the binary code given
by Lemma VII.2 with .
Weak Design: design , with

,

Input: .
Random string: .
Output: The output has bits

where .

TA-SHMA AND ZUCKERMAN: EXTRACTOR CODES 3023

Letting and , note that is of
size .

D. Decoding

We now describe the decoding algorithm for .

Algorithm VII-D: Decoding .

Input: .

Algorithm: For every:

,
,

,
set of possible truth tables , where has size

,

define a weight function for the binary code as fol-
lows. For every and :

Let .
Define by

if
if
if

and we let .

Find all codewords with
and output the corresponding .

Lemma VII.3: For every and
every for which , appears
in the output list of Algorithm VII-D.

The proof follows the outline in Section VI, and is a “con-
structive” variation of Trevisan’s proof, giving an efficient algo-
rithm “decoding” the extractor. A technical difference between
this proof and Trevisan’s proof is that our decoding algorithm
reduces to a soft-decoding algorithm of the binary code .

Proof of Lemma VII.3: Fix any such that
. Define the probabilistic test

which accepts with probability . As before, let
be the distribution obtained by

picking uniformly at random from and computing
.

We now define the reconstruction procedure . Define the
hybrid distributions where picks the first
bits from and the last bits from . We have

and

Therefore, there must be an , , such that

In both and , the last bits are uniform and
independent of the rest. Hence, there exists a fixed string

such that fixing the last bits to the last bits of
preserves the gap of at least .

We can also split into those bits in locations
indexed by , which we denote by , and the rest of the bits in
locations which we denote by (and so).
Again, there is a way to fix and still preserve the gap.

Furthermore, once is fixed, the values for
, that appear on both distributions, depend only on

the bits of and in a very weak way. In particular, there are
truth tables that describe these dependencies (the
string describing the truth tables corresponds to
the advice string in Section VI).

Now, for the given we have

Now notice that is

and is

We therefore conclude that

which means that

Since Lemma VII.2 asserts that appears in the
output.

The number of elements in the output list is at most
because we have possibilities for ,

possibilities for , possibilities for , and possibilities for
the tables , and then we get at most
possible answers (see Lemma VII.2). Taking ,
we get a running time of , which completes the
proof of Theorem.

VIII. HARDCORE BITS

One-way functions and their hardcore bits are key tools in
cryptography. Informally, a one-way function is easy to com-
pute but hard to invert. By inverting we mean finding any ele-
ment of . A function on the same domain as is hard-
core for if all statistical information about is hard to pre-
dict even given . We usually allow to also have access to
auxiliary randomness. We formalize all this as follows.

Definition VIII.1: is a one-way function with
security if is computable in time but no proba-
bilistic algorithm running in time can invert with proba-
bility at least , where the probability is over a random input
and the coins of the inverting algorithm.

3024 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

Typically, the time to invert is conjectured to be superpoly-
nomial in the time to compute , but we only need the above
small difference for our result.

Definition VIII.2: Let be a function.
is a hardcore function for , with security

, if there is no probabilistic algorithm running in time
that -distinguishes2 the distributions

and

where is the distribution obtained by
picking uniformly from , uniformly from , and evalu-
ating , and is the distribu-
tion obtained by picking uniformly from , uniformly from

, uniformly from , and evaluating .

We say is hardcore with security if it is hardcore with
security for all one-way functions with security .

Goldreich and Levin [4] showed that for ,
the function is a hardcore bit (with

). Note that this requires as many auxiliary random
bits as input bits , and that the hardcore function has only
one output bit.

Impagliazzo [41] noticed that this is a special case of a generic
construction based on list decodable codes. Let

be a list decodable binary code. Then
(the th bit of the encoding of) is a hardcore predicate. Thus,
the Goldreich and Levin result can be viewed as a list decoding
algorithm for the Hadamard code. Moreover, by using list de-
codable binary codes with better rate, such as Reed–Solomon
concatenated with Hadamard, a hardcore bit can be obtained
with few auxiliary random bits. The hardcore function, though,
still has only one output bit.

The main point of this section is to obtain many hardcore
bits using small auxiliary randomness. This follows from our
observation that Impagliazzo’s construction generalizes to the
case of more output bits. To get more bits, we choose a code
over a larger alphabet, , and the hardcore bits
are . The notion of soft list decoding turns out
to be what is needed here.

Theorem 4: Let be a code with an
soft-decoding algorithm, running in time , . Then

is hardcore with security .
Proof: Suppose there exists a one-way function with

security and a statistical (possibly probabilistic) test
which takes time and -distinguishes the distributions

and . We now give
an inversion algorithm for . The inversion algorithm is given
an input to invert. We first define a weight function

by letting be the
probability that accepts the input . As may be
probabilistic, we do not have direct access to . Nevertheless,
we can estimate by random sampling, and in particular,
if we run on a given times, with

2Recall that �-distinguishing was defined in Definition VI.1

probability , we can obtain an estimate which
differs from by at most .

On input , our inversion algorithm runs the soft-decoding
algorithm for with estimated weight function to
output a list of candidates. For each candidate it tests if

and outputs the first such if it exists.
We now analyze the running time. The decoding algorithm

runs in time given access to . Since each access to is
computed by accesses to , each of which in turn
takes time , the total running time of the decoding algorithm
is

The candidate list has size at most , since the decoding algo-
rithm itself runs in time except for accesses to . Therefore,
the running time for the candidate checks is at most

. Thus, the total running time is .
We now show that the algorithm inverts many in-

puts . We know that -distinguishes the distributions
and Say, without

loss of generality, that accepts
more often than , i.e.,

Equivalently

An averaging argument then gives that there is a set of size
at least , such that for all

(4)

Now, say is of the form for . Then, with
probability at least , all the estimated weights

will be within of the true weight . Since
we output all such that

if our estimates are accurate and our input is for ,
then will appear in the candidate list. Hence, with probability
at least some element of will be output. Since con-
stitutes an fraction of all inputs and our algorithm runs in
time , this contradicts the security of . We conclude that

is hardcore.

We can now use the extractor code to obtain a hardcore
function outputting many bits with few auxiliary random bits.

Theorem 5: There exists a constant such that

defined in Section VII, is hardcore with security .
Furthermore, the function uses only auxiliary randomness
where .

Proof: We have and and so the decoding
running time is bounded by for some polynomial . We
choose so that , which holds as long as
for some constant , and then the decoding running time

TA-SHMA AND ZUCKERMAN: EXTRACTOR CODES 3025

is at most . By Theorem 4, the function is hardcore with
security . The number of truly random bits used for these
parameters is .

The function TR is hardcore for all one-way functions with
security . We can think of a one-way function with se-
curity as having “hardness” . We therefore see that
for every such the function TR outputs a constat fraction of the
hardness of , and does so while using only very few auxiliary
random bits. Thus, the hardcore function TR uses few random
bits and outputs an almost optimal number of hard bits.

ACKNOWLEDGMENT

The authors wish to thank Madhu Sudan for his suggestion
to generalize list decoding results they had to soft-decoding
results. They would also like to thank Muli Safra, Venkatesh
Srinivasan, Madhu Sudan, and Umesh Vazirani for helpful dis-
cussions and comments. The authors would also like to thank
the anonymous referees for many very helpful comments to im-
prove the presentation of the paper.

REFERENCES

[1] V. Guruswami, “Better extractors for better codes?,” in Proc. 36th An-
nual ACM Symp. Theory of Computing, 2004, pp. 436–444.

[2] P. Elias, “List decoding for noisy channels,” in 1957-IRE WESCON
Conv. Rec., 1957, pp. 94–104.

[3] J. M. Wozencraft, “List decoding,” in Quarterly Progress Report, 1958,
vol. 48, MIT Research Laboratory of Electronics, pp. 90–95.

[4] O. Goldreich and L. A. Levin, “A hard-core predicate for all one-way
functions,” in Proc. 21st Annu. ACM Symp. Theory of Computing, 1989,
pp. 25–32.

[5] M. Sudan, “Decoding of Reed Solomon codes beyond the error-correc-
tion bound,” J. Complexity, vol. 13, no. 1, pp. 180–193, 1997.

[6] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45,
pp. 1757–1767, Sept. 1999.

[7] D. Boneh, “Finding smooth integers in short intervals using CRT de-
coding,” in Proc. 32nd Annu. ACM Symp. Theory of Computing, 2000,
pp. 265–272.

[8] M. Sudan, “Coding theory: Tutorial and survey,” in Proc. 42nd Annu.
IEEE Symp. Foundations of Computer Science, 2001, pp. 36–53.

[9] V. Guruswami and P. Indyk, “Near-optimal linear time codes for unique
decoding and new list-decodable codes over smaller alphabets,” in Proc.
34th Annu. ACM Symp. Theory of Computing, 2002, pp. 812–821.

[10] N. Nisan and D. Zuckerman, “Randomness is linear in space,” J.
Comput. Sys. Sci., vol. 52, no. 1, pp. 43–52, 1996.

[11] D. Zuckerman, “Randomness-optimal oblivious sampling,” Random
Structures and Algorithms, vol. 11, pp. 345–367, 1997.

[12] M. Sudan, L. Trevisan, and S. Vadhan, “Pseudorandom generators
without the XOR lemma,” in Proc. 31st Annu. ACM Symp. Theory of
Computing, 1999, pp. 537–546.

[13] A. Wigderson and D. Zuckerman, “Expanders that beat the eigenvalue
bound: Explicit construction and applications,” Combinatorica, vol. 19,
no. 1, pp. 125–138, 1999.

[14] M. Sipser, “Expanders, randomness, or time vs. space,” J. Comput. Syst.
Sci., vol. 36, pp. 379–383, 1988.

[15] D. Zuckerman, “On unapproximable versions of NP-complete prob-
lems,” SIAM J. Computing, vol. 25, pp. 1293–1304, 1996.

[16] E. Mossel and C. Umans, “On the complexity of approximating the VC
dimension,” in Proc. 16th Annu. IEEE Conf. Computational Complexity,
2001, pp. 220–225.

[17] R. Shaltiel, “Recent developments in explicit constructions of extrac-
tors,” Bull. Europ. Assoc. for Theor. Comput. Sci., vol. 77, pp. 67–95,
June 2002.

[18] N. Nisan, “Extracting randomness: How and why—A survey,” in Proc.
11th Annu. IEEE Conf. Computational Complexity, 1996, pp. 44–58.

[19] N. Nisan and A. Ta-Shma, “Extracting randomness: A survey and new
constructions,” J. Comput. Syst. Sci., vol. 58, pp. 148–173, 1999.

[20] S. M. Johnson, “A new upper bound for error-correcting codes,” IEEE
Trans. Inform. Theory, vol. IT-8, pp. 203–207, Apr. 1962.

[21] L. Trevisan, “Extractors and pseudorandom generators,” J. ACM, pp.
860–879, 2001.

[22] G. D. Forney, Jr., “Generalized minimum distance decoding,” IEEE
Trans. Inform. Theory, vol. IT-12, pp. 125–131, Apr. 1966.

[23] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of
Reed–Solomon codes,” IEEE Trans. Inform. Theory, vol. 49, pp.
2809–2825, Nov. 2003.

[24] V. Guruswami, A. Sahai, and M. Sudan, “Soft-decision decoding of Chi-
nese remainder codes,” in Proc. 41st Annu. IEEE Symp. Foundations of
Computer Science, 2000, pp. 159–168.

[25] O. Goldreich, R. Rubinfeld, and M. Sudan, “Learning polynomials
with queries: The highly noisy case,” SIAM J. Discr. Math., vol. 13, pp.
535–570, 2000.

[26] E. Agrell, A. Vardy, and K. Zeger, “Upper bounds for constant-weight
codes,” IEEE Tran. Inform. heory, vol. 46, pp. 2373–2395, Nov. 2000.

[27] J. Radhakrishnan, private communication, 1997.
[28] R. Impagliazzo, L. A. Levin, and M. Luby, “Pseudorandom generation

from one-way functions,” in Proc. 21st Annu. ACM Symp. Theory of
Computing, 1989, pp. 12–24.

[29] J. Radhakrishnan and A. Ta-Shma, “Bounds for dispersers, extractors,
and depth-two superconcentrators,” SIAM J. Discr. Math., vol. 13, no. 1,
pp. 2–24, 2000.

[30] R. Shaltiel and C. Umans, “Simple extractors for all min-entropies and a
new pseudo-random generator,” in Proc. 42nd Annu. IEEE Symp. Foun-
dations of Computer Science, 2001, pp. 648–657.

[31] A. Ta-Shma, “Storing information with extractors,” Inform. Processing
Lett., vol. 83, no. 5, pp. 267–274, 2002.

[32] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh, “Are
bitvectors optimal?,” in Proc. 32nd Annu. ACM Symp. Theory of Com-
puting, 2000, pp. 449–458.

[33] R. Impagliazzo and D. Zuckerman, “How to recycle random bits,” in
Proc. 30th Annu. IEEE Symp. Foundations of Computer Science, 1989,
pp. 248–253.

[34] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman, “Combinato-
rial bounds for list decoding,” IEEE Trans. Inform. Theory, vol. 48, pp.
1021–1034, May 2002.

[35] J. Savage, Models of Computation. Reading, MA: Addison-Wesley,
1998.

[36] N. Nisan and A. Wigderson, “Hardness vs. randomness,” J. Comput.
Syst. Sci., vol. 49, pp. 149–167, 1994.

[37] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, “Bpp has subex-
ponential simulation unless Exptime has publishable proofs,” Comput.
Complexity, vol. 3, pp. 307–318, 1993.

[38] R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma,” in Proc. 29th Annu. ACM
Symp. Theory of Computing, 1997, pp. 220–229.

[39] R. Raz, O. Reingold, and S. Vadhan, “Extracting all the randomness and
reducing the error in Trevisan’s extractors,” in Proc. 31st Annu. ACM
Symp. Theory of Computing, 1999, pp. 149–158.

[40] V. Guruswami and M. Sudan, “List decoding algorithms for certain con-
catenated codes,” in Proc. 32nd Annu. ACM Symp. Theory of Computing,
2000, pp. 181–190.

[41] R. Impagliazzo, private communication, 1997.
[42] M. Sudan, “List decoding: Algorithms and applications,” in SIGACT

News, vol. 31, Mar. 2000, pp. 16–27.

	toc
	Extractor Codes
	Amnon Ta-Shma and David Zuckerman, Member, IEEE
	I. I NTRODUCTION
	II. T OP D OWN O VERVIEW
	A. Soft-Decision Decoding
	Definition II.1: We say a code ${\cal C}_{r} \subseteq {[{\rm M
	Definition II.2: We say a family ${\left \{ {\cal C}_{r}\right \

	B. Strong Extractors
	Definition II.3: A probability distribution D on ${\Omega}$ is
	Definition II.4: The min-entropy of a distribution D is $\min_
	Definition II.5: A function $E: [{\rm C}] \times [{\rm T}] \ri
	Definition II.6: An extractor $E: [{\rm C}] \times [{\rm T}] \

	C. The Equivalence to Extractors
	Definition II.7: Let $E: [{\rm C}] \times [{\rm T}] \to [{\rm M}
	Theorem 1: If $E: [{\rm C}] \times [{\rm T}] \to [{\rm M}]$ is a

	D. Reed Solomon Codes
	Theorem 2: [6] Let ${\cal R}{\cal S} \subseteq {[{\rm M}]}^{T
	Theorem 3: Let ${\cal R}{\cal S} \subseteq {[{\rm M}]}^{T}$ be

	E. An Extractor Code With Efficient Soft Decoding
	F. Applications

	III. E QUIVALENCE OF E XTRACTORS AND S OFT D ECODING
	Proof: (of Theorem 1):

	IV. T HE J OHNSON B OUND
	Claim IV.1: (Codes are extractors) Let ${\cal C}$ be a $$\left[{
	Proof: We follow Rackoff's proof of the Leftover Hash Lemma as i

	Lemma IV.1: (Johnson bound soft-decoding setting) Let ${\cal C}$
	Proof: Let ${w}: [{\rm T}] \times F_{q} \to [0, 1]$ be a weight

	V. R EED S OLOMON C ODES
	Proof (of Theorem 3): The proof uses the multiplicative subgroup

	VI. E XTRACTORS AND P SEUDORANDOM G ENERATORS
	A. Background on Nonuniformity and Circuits
	B. Pseudorandom Generators
	Definition VI.1: Let D_{1},D_{2} be two distributions on ${\Om
	Definition VI.2: $G: [{\rm T}] \to [{\rm M}]$ is a strong $\epsi
	Definition VI.3: A black-box generator is an oracle machine $G^{
	Definition VI.4: A black-box reconstruction algorithm for $G^{f}
	Definition VI.5: We say (G^{f},R) is a black-box ϵ -p
	Proposition VI.1: ([36]) Let (G^{f},R) be a black-box $\ep
	Proof: Let $f: [\log (C)] \to {\left \{0,1\right \}}$ be an arbi

	C. A Probabilistic Soft Decoding Algorithm
	Proposition VI.2: Suppose (G^{f},R) is a black-box pseudorando
	Proof: Let ${w}:[T] \times [M] \to {\left \{0,1\right \}}$ be a

	Proposition VI.3: Suppose (G^{f},R) is a black-box pseudorando
	Proof: As mentioned earlier, the combinatorial soft decoding fol

	VII. A D ETERMINISTIC S OFT -D ECODING A LGORITHM
	A. Weak Designs
	Definition VII.1: (Weak design) [39] A family of sets $Z_{1},
	Lemma VII.1: [39] For every s, m, and $\rho> 1$, there exi

	B. Soft-Decoding Reed Solomon Concatenated With Hadamard
	Lemma VII.2: Let ${\cal C}\subseteq {[{\rm M}]}^{T}$ be the $\l
	Proof: We first define the soft-decoding algorithm, having black

	C. Trevisan's Extractor
	D. Decoding ${ {\cal C}_{\rm TR}}$
	Lemma VII.3: For every $w: {\left \{ 0,1\right \}}^{t}\times {\l
	Proof of Lemma VII.3: Fix any $x \in {\left \{ 0,1\right \}}^{c}

	VIII. H ARDCORE B ITS
	Definition VIII.1: $f: [C] \to {S}$ is a one-way function with s
	Definition VIII.2: Let $f:[C] \rightarrow {S}$ be a function. $h
	Theorem 4: Let ${\cal C}:[C] \rightarrow {[{\rm M}]} ^{T}$ be a
	Proof: Suppose there exists a one-way function f with security

	Theorem 5: There exists a constant $\alpha >0$ such that $${\rm
	Proof: We have ${\rm T}\le {\rm M}$ and ${\epsilon}= {1 \over {\

	V. Guruswami, Better extractors for better codes?, in Proc. 36th
	P. Elias, List decoding for noisy channels, in 1957-IRE WESCON C
	J. M. Wozencraft, List decoding, in Quarterly Progress Report, 1
	O. Goldreich and L. A. Levin, A hard-core predicate for all one-
	M. Sudan, Decoding of Reed Solomon codes beyond the error-correc
	V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and
	D. Boneh, Finding smooth integers in short intervals using CRT d
	M. Sudan, Coding theory: Tutorial and survey, in Proc. 42nd Annu
	V. Guruswami and P. Indyk, Near-optimal linear time codes for un
	N. Nisan and D. Zuckerman, Randomness is linear in space, J. Com
	D. Zuckerman, Randomness-optimal oblivious sampling, Random Stru
	M. Sudan, L. Trevisan, and S. Vadhan, Pseudorandom generators wi
	A. Wigderson and D. Zuckerman, Expanders that beat the eigenvalu
	M. Sipser, Expanders, randomness, or time vs. space, J. Comput.
	D. Zuckerman, On unapproximable versions of NP-complete problems
	E. Mossel and C. Umans, On the complexity of approximating the V
	R. Shaltiel, Recent developments in explicit constructions of ex
	N. Nisan, Extracting randomness: How and why A survey, in Proc.
	N. Nisan and A. Ta-Shma, Extracting randomness: A survey and new
	S. M. Johnson, A new upper bound for error-correcting codes, IEE
	L. Trevisan, Extractors and pseudorandom generators, J. ACM, pp.
	G. D. Forney, Jr., Generalized minimum distance decoding, IEEE T
	R. Koetter and A. Vardy, Algebraic soft-decision decoding of Ree
	V. Guruswami, A. Sahai, and M. Sudan, Soft-decision decoding of
	O. Goldreich, R. Rubinfeld, and M. Sudan, Learning polynomials w
	E. Agrell, A. Vardy, and K. Zeger, Upper bounds for constant-wei
	J. Radhakrishnan, private communication, 1997.
	R. Impagliazzo, L. A. Levin, and M. Luby, Pseudorandom generatio
	J. Radhakrishnan and A. Ta-Shma, Bounds for dispersers, extracto
	R. Shaltiel and C. Umans, Simple extractors for all min-entropie
	A. Ta-Shma, Storing information with extractors, Inform. Process
	H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh,
	R. Impagliazzo and D. Zuckerman, How to recycle random bits, in
	V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman, Combinatori
	J. Savage, Models of Computation . Reading, MA: Addison-Wesley,
	N. Nisan and A. Wigderson, Hardness vs. randomness, J. Comput. S
	L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, Bpp has subexp
	R. Impagliazzo and A. Wigderson, P $=$ BPP if E requires exponen
	R. Raz, O. Reingold, and S. Vadhan, Extracting all the randomnes
	V. Guruswami and M. Sudan, List decoding algorithms for certain
	R. Impagliazzo, private communication, 1997.
	M. Sudan, List decoding: Algorithms and applications, in SIGACT

