
Tel Aviv University

Raymond and Beverly Sackler

Faculty of Exact Sciences

School of Computer Sciences

Bare-Handed Electronic Voting with

Pre-processing

Submitted as a partial fulfillment of the

requirements towards the Master of Science degree by

Ben Riva

The research work has been conducted

under the supervision of

Dr. Amnon Ta-Shma

January 2008

Abstract

Many electronic voting protocols assume the voter votes with some computing device.

This raises the question whether a voter can trust the device he is using. Three years

ago, Chaum, and independently Neff, proposed what we call bare-handed electronic

voting, where voters do not need any computational power in the voting booth. Their

protocols have a strong unforgeability guarantee. The price for that, however, is that

they require the voter to tell his vote to the voting booth.

In this work we propose a protocol where the voter votes bare-handedly, and still

maintains his privacy even with respect to the voting booth. We do this by allowing

the voter the use of a computer device but only at a pre-processing stage - the voting

itself is done bare-handedly. This has many advantages. A voter who has to verify

calculations at the booth has to trust the software he is using, while a voter who

verifies pre-processed calculations can do that at his own time, getting help from

whatever parties he trusts.

Achieving private, coercion-resistant, bare-handed voting with pre-processing is

a non-trivial task and we achieve that only for elections with a bounded number of

candidates. Our solution works by proposing an extension to known voting protocols.

We show that such extended protocols enjoy the same unforgeability guarantee as that

of Chaum and Neff. In addition, our extended protocol is private, and the voter does

not reveal his vote to the booth.

ii

Acknowledgments

..

iii

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1

1.1 Contributions of this work . 4

1.2 Our technique . 5

1.3 Thesis outline . 7

2 Participants, Required Properties and Attack Model 8

3 Cryptographic Tools 11

3.1 ElGamal cryptosystem . 11

3.2 Secret sharing . 13

3.3 Threshold cryptosystem . 13

3.4 Anonymous channels and Mix-nets 15

3.4.1 Verification of mixes . 17

3.5 Zero-knowledge proofs . 18

3.5.1 Zero-knowledge proof of equality of discrete logarithms 19

3.5.2 A Zero knowledge proof for 1-out-of-` re-encryption 19

3.5.3 A Zero knowledge proof for 1-out-of-` message encryption . . . 20

3.6 Coercion in zero-knowledge protocols 20

iv

4 Existing Voting Protocols 22

4.1 Chapter outline . 24

4.2 Protocols which assume the voter has a computational power in the

booth . 24

4.2.1 [FOO92] . 24

4.2.2 [SK95] . 25

4.2.3 [CGS97] . 27

4.2.4 [HS00] . 28

4.3 Protocols which assume the voter is bare-handed 29

4.3.1 Chaum’s visual scheme . 29

4.3.2 Prêt à voter . 30

4.4 Some problems with bare-handed protocols 32

4.4.1 Privacy depends on ballot creator 32

4.4.2 Deniable receipts . 33

4.4.3 Random-coercion . 33

4.4.4 Chain voting . 33

5 Bare-Handed Electronic Voting with Pre-processing 35

5.1 An intuitive discussion . 35

5.2 The underlaying protocols we use . 36

5.3 A formal description of the voting process 37

5.3.1 Tallying . 40

5.3.2 Informal proof of correctness 40

5.4 Physical requirements . 43

5.4.1 The physical assumptions are problematic 43

5.4.2 A practical version using shredding 44

5.4.3 Reducing the ballot’s size . 47

6 Conclusions 48

6.1 Future work . 48

Bibliography 50

v

A Publicly verifiable secret sharing 55

vi

Chapter 1

Introduction

Two centuries ago, Thomas Alva Edison received his first patent on an Electric Vote

Recorder.1 There are several basic properties required from such a system. Above

all, a voting protocol has to be unforgeable, i.e., even a coalition of (computationally

unbounded) adversaries can not forge the voting results. Also, a voting protocol has

to be private, meaning that an adversary can not learn how a specific voter voted.

Another more subtle property is that of coercion-resistance which basically means

that a voter can deny his vote.2 Finally, we would like the system to be auditable

(also called verifiable), meaning that all actions taken during the elections are written

down on a public board open for inspection and verification by everyone.

In the last years, there are two growing directions for achieving such a system:

using cryptographic systems and using non-cryptographic systems. The first, is the

subject of this work and we will return to it soon. The second, the non-cryptographic

systems, are used worldwide in many large scale elections [Wik07b], usually using

the Direct Recording Electronic (DRE) voting machines. Those machines basically

consist of a generic computer and a display. Such a machine is placed in an isolated

voting booth and when a voter enters the booth he can choose his vote using a touch-

screen or a keyboard. Then, the machine records the vote (in a memory card for

instance) and after the elections are over all the votes are summed and the results are

1He, however, failed selling this patent [Tho].
2We explain the different variants of this property later.

1

published. On the good side, those machines improve the vote counting speed and

accuracy, they are more voter-friendly and even more accessible (they can provide

large touch-screen and headphones for handicapped people, or, they can support

many languages) and they spare the troubles with paper ballots (print them, save

them in a safe place and keep them unspoiled). On the bad side, they are poorly

auditable and suspect to many attacks. Even though, those machines have already

served more then a quarter of the registered voters in the United States. Another

system worth to mention is the recent ThreeBallot voting system [RS07] which uses

paper ballots and a scanner, but gives better auditability and privacy then the simple

paper ballot elections. It does so without cryptography.

Lets return to the other direction, cryptographic based voting systems. At first,

we note that such a system is a special case of the much more general problem

of Incoercible Secure Multiparty Computation [CG96] where a set of players jointly

compute an arbitrary function of their inputs, without revealing information about

their inputs. Furthermore, they can deny their inputs afterwards (or more correctly,

they can lie to a coercer about their inputs). Even though this computation has

a polynomial solution, this solution is still unsatisfying against a coercer which can

coerce a voter before the elections.

There are many proposals for cryptographic electronic voting protocols and we

describe a few of them in Section 4.3 Many of those protocols require that the

voter uses computational power in the booth, and the underlying assumption is that

honest voters can control the algorithm they run. However, we should question this

assumption. Viruses and mal-wares are common reality today. How can one be sure

that the algorithm one runs is indeed the intended one? Unforgeability is guaranteed

only if honest voters properly carry out their computations, and so, viruses and mal-

wares could largely affect the results of elections.

This leads to a series of questions. Can we check the device we are running? Can

we trust the algorithm that checks our device? Can we check our vote after the fact

to see whether it was maliciously altered, and if so can we prove it was altered and

3From here we use the shorter term electronic voting for referring to cryptographic electronic
voting.

2

how do we fix the situation?

This led David Chaum [Cha04], and independently Andrew Neff [Nef04], to sug-

gest the notion of what we term as bare-handed voting. The idea is that the voter

comes to the voting booth without any computational power and manually verifies

that his vote is properly processed (e.g., using his eyes and visual cryptography in

Chaum’s scheme). A very appealing aspect of this approach is that the system is

auditable. The auditors (and anyone can be an auditor) can verify the validity of

the votes and the elections in real time. Instead of verifying the election machines

back-to-front (reviewing the source code, checking the hardware) only the machine’s

computation results are being audited. As a result the system is truly unforgeable.

One way to view Chaum’s and Neff’s algorithms is that the voter delegates his

computations to the voting booth, and his only role is to check his vote is correctly

registered. The price of this approach is that the voting booth knows what each

voter voted. Thus, in terms of privacy, the system is unsatisfactory. For example, the

government can easily find out what each citizen voted.

Recent protocols (e.g., [CRS05, LTR+06b, AR06, Cha07]) use paper based voting

where the paper ballots can be prepared in advance by one or more authorities. For

example, in [Cha07] one authority prepares the ballots, in [CRS05] one authority

prepares the ballots, but the ballots are encrypted with a cascade mixing using the

public keys of several parties, and in [LTR+06b] the encryption is distributed.

It is important to understand that there is no privacy towards the party (parties)

that prepare the ballots. The above protocols basically transfer the point of failure.

In [Cha04] we trust the booth and in the above protocols we have to trust the party

that prepares the ballots. For example, if the government prepares the ballot then

there is no privacy towards the government.

Moreover, even if we trust the parties who prepare (and encrypt) the ballots,

there is still a severe privacy problem with many protocols (e.g., [CRS05, AR06,

Cha07]). Suppose some party A can watch the encrypted ballots before they are

being used. Then, that party knows the matching between candidates and encryptions

(that appears on the ballots). After a ballot is used, the published information on the

public board contains the voter’s name and an encrypted value, and therefore party

3

A knows exactly what the voter voted. In other words, the ballots should be kept

guarded until they are used.

Thus, current protocols we are aware of, either require some computational power

from the voter at the booth, and then in return give the voter full privacy, or do not

require computational power from the voter at the booth, but as a result the voter

loses his privacy against the party that prepared the ballot. In this work we show

how to maintain privacy (even against the government) without requiring the voter

to have computational power at the booth. We do that by letting the voter prepare

the ballot himself. This raises several problems which we will discuss next.

1.1 Contributions of this work

In this work we consider bare-handed voting with pre-processing. In our model, voters

need computational power but only at a pre-processing stage. They later on come

to the voting booth (with the pre-processed paper ballots) and vote bare-handedly.

The pre-processing stage in our approach resembles preparing paper ballots in current

manual elections. Any voter can prepare any number of pre-processed ballots in the

pre-processing stage. He can also choose to test the ballots or any (random) subset

of them. Subsequently, the voter comes equipped with the pre-prepared ballots to

the voting booth and manually votes. In the booth we require only simple human

abilities such as: reading and the ability to compare strings.

In our protocol the voter prepares the ballots at home. This has a privacy ad-

vantage, but potentially makes the protocol coercible. Nevertheless, our protocol

supplies a strong guarantee against coercion. We assume a powerful coercer that can

give coerced ballots to the voter, and make sure the voter has no other ballots with

him. We show that if a coercer can coerce a voter, then the coercion is detected with

a good probability. This, in particular, implies that a coercer can not coerce many

people to vote without being detected. We describe how this is done in Section 5.1.

One might ask why the use of a computer outside the booth is safer then the

use of a computer device inside the booth (as in the protocol of [BFP+01]). One

reason is that the voter has no way to check how his device functions inside the

4

booth. Moreover, he can be coerced to use a malicious device. In contrast, a voter

has a choice how to prepare his pre-processed ballots: he can download an open-

source software, program such a software by himself or use a public web-site for that.

Furthermore, he can create as many ballots as he wishes, and therefore he can choose

a subset of the created ballots and check their validity. Furthermore, as our protocol

is coercion-resistant, the voter can get his ballots from a coercer or from a public

machine, as long as he believes that the booth does not collude with that machine.

1.2 Our technique

At this stage one should wonder how difficult it is to transform a bare-handed protocol

where the computation is delegated to the booth, to a bare-handed protocol with pre-

processing where no computation is delegated to the booth. Indeed, this is the subject

of our work. It turns out that this transformation is not easy, and we can achieve it

only for the case where the number of candidates is bounded.

Let us first describe in a schematic level how previous, bare-handed voting proto-

cols work. The voter tells the booth his vote. The booth publishes an encryption of

the vote. The encryption is necessary because we want to maintain privacy towards

the rest of the world. As the booth publishes an encrypted message that others can

not read, the booth also has to prove the validity of the vote, and so the booth also

prepares a non-interactive, zero-knowledge proof of validity and publishes it. We

want the system to be auditable, and so, the encrypted vote and the proof are pub-

licly published. We now have an immediate concern: how does the voter know that

the booth properly encrypted his vote without changing it. Thus, a cut-and-choose

technique is used in which one copy is used for voting, and the other for testing the

booth. The voter chooses randomly which copy to test. We now stand before the

dilemma who actually does this testing? The voter can not do that at the booth

because he is bare-handed. We could hope to delegate it to the auditors, but this

seems to imply that the auditors know both the original vote and its encryption and

we are back to where we have started.

Indeed, Chaum deals with this problem by using visual cryptography, thus letting

5

the voter do a complicated task visually without a computer. The later protocols

[CRS05, AR06] use a different approach. One way of looking at what they do is that

essentially they delegate the testing to the auditors, but instead of testing the booth

just on the candidate the voter picked, they test the booth on all candidates. As

a result, they simplify Chaum’s early ideas and get rid of the visual cryptography

component. On the other hand, this has the cost of losing the ability of dealing with

an unbounded number of candidates (or write-in ballots).

We now want to see whether these ideas can be extended to allow privacy even

towards the booth. First, as we have to preserve privacy towards the booth, we let

the voter encrypt his vote, and because we do not allow the voter computational

power at the booth, the voter does that before he comes to the booth. The voter

gives the booth an encrypted message that the booth can not read, and so the voter

also prepares a non-interactive, zero-knowledge proof of validity before he comes to

vote. Before we go on we record one problematic issue here, which is that since the

voter comes to the booth with a pre-prepared ballot, we have to make sure he is not

coerced. In particular, we need to keep in mind the scenario where the ballot the

voter uses was prepared by a coercer.

Nevertheless, we go on with our attempt. We want the system to be auditable,

and so the vote and the proof have to be publicly published. This raises the threat

of coercion-resistance: the voter might be able to prove his vote by opening the vote

or the validity proof. We deal with that by asking the booth to re-encrypt the vote

randomly. Now, we have to worry about the booth changing the vote, and so we

again use the cut-and-choose technique in which one copy is used for voting and the

other for testing the booth, and we stand again before the dilemma of who is going

to check the testing copy.

Our solution to those problems is surprisingly simple. It follows the spirit of Adida

and Rivest protocol [AR06]. We also deal only with the case of a bounded number

of candidates. We ask the voter to come to the booth with a pre-prepared ballot

(both an encryption of a vote and a proof of validity) for every possible candidate.

The booth then checks that the voter knows how to associate a candidate with the

encrypted vote, and he does so using a cut-and-choose technique. At the end of this

6

process we know that the voter knows a vote for each candidate, and at least in theory

can choose the candidate he actually wants. In a way, this is similar to how privacy

is ensured in paper-ballot elections when the voter enters a booth with a ballot for

each candidate.

We then use ElGamal homomorphic re-encryptions for coercion-resistance. We

use a cut-and-choose technique for testing the booth without revealing the way re-

encryptions are done. The testing is done with respect to all candidates and the

actual verification of the test is done by the auditors. Finally, we use existing voting

protocols (which are not bare-handed), like Sako and Kilian [SK95] and Cramer,

Gennaro and Schoenmakers [CGS97] for the tallying phase.

We also mention that in previous work these techniques could either solve active

attacks, or give coercion-resistance, but could not simultaneously give both properties

(we explain what active attacks are at the end of Section 4.2.2 and our solution in

Section 5.3). Our protocol provides both.

1.3 Thesis outline

In Chapter 2 we describe the problem (the participants and the attack model) with

somewhat more detail. In Chapter 3 we review some cryptographic tools that we will

later use and in Chapter 4 we sketch previous work, both for protocols which require

a computer assistance and for protocols which do not. In Chapter 5 we describe our

bare-handed extension, implementing the above general ideas. Last, in Chapter 6 we

conclude our work.

7

Chapter 2

Participants, Required Properties

and Attack Model

We have voters, voting booths, trustees and auditors. As with many other protocols

we have a public board which is a reliable database accessible by everyone. The

auditors have access only to this public board and constantly check its integrity (data

is only added to the database, old data does not change, everyone gets to see the same

picture) and its contents (proofs are correct etc.). Everyone can be an auditor. One

may think of this public board as an Internet site where all data is accumulated, and

where its reliability stems from the fact that it is under constant public inspection.

The assumption that such a public board can be maintained is made in many previous

works (e.g., [HS00, Cha04]).

Some very basic requirements from an electronic voting protocol (stated in a very

informal way) are:

Unforgeability - No one can falsify the result of the voting.

Eligibility, Unreusability - Respectively requires that only eligible voters vote and

no voter can vote twice.

Auditability, Universal auditability - The first describes the ability of any indi-

vidual voter to determine whether or not his vote has been correctly placed.1

The second corresponds to the ability of any auditor to determine that the whole

1Also called Voter-verifiability.

8

protocol was followed correctly, given that votes had been correctly placed.

Robustness - Dishonest participants can not disrupt the voting. In particular cheat-

ing players should be detected and it should be possible to prove their malicious

behavior and finish the voting process and the counting without their help.

Privacy - No one can link a voter with his vote.

Receipt-freeness, Coercion-resistance - The notion of receipt-freeness was intro-

duced by Benaloh and Tuinstra [BT94], and it means that the voter can not

prove to which candidate he voted. This notion can be generalized in several

ways. The strongest one, usually called coercion-resistance, avoids even sce-

narios where the voter cooperates with the coercer, and they both try to find

a strategy where the voter can prove that he followed the coercer instructions

(e.g., they can choose specific private keys and a strategy such that the voter

can prove that he voted a specific value or a random value). A formal definition

was given in Juels, Catalano and Jakobsson [JCJ05].

For unforgeability, auditability and universal auditability, we assume the mali-

cious party includes any subset of malicious voters, the voting booth and all of the

trustees. We assume the malicious party is computationally unbounded. The require-

ment is that if the malicious party changed the votes of t honest voters then it would

be caught cheating with probability at least 1 − 2−Ω(t). If this property holds only

for computationally bounded adversary we say we have computational unforgeabil-

ity/auditability/universal auditability. We believe unforgeability is the most sensitive

property of a voting system. Losing privacy is bad, but losing vote credibility is disas-

trous. Hence, we believe having a stringent unforgeability definition requiring defence

against an all-powerful, extensive coalition of malicious players is appropriate.

There are many ways to define privacy. The most appropriate one is probably

saying that the information the adversary holds is computationally close to a distri-

bution that has very low mutual information with the actual mapping between voters

and votes, and this should hold even if there is some a-priori knowledge on voting pat-

terns. Such a definition protects not only individuals but also groups of persons (e.g.,

it will not leak information about the way a certain minority group voted). In any

case, we inherit the privacy guarantee that we get from the underlying protocol that

9

we use. For privacy, we restrict ourselves to computationally bounded adversaries.

We allow the adversary to consist of a coalition of the voters, the booth and some of

the trustees (the exact number of trustees depends on the underlying protocol).

Finally, for coercion-resistance, we restrict the adversary to be computationally

bounded. We allow a coalition of malicious voters, the coercer and some trustees

(again, depending on the underlying protocol). Here we make the essential assump-

tion that the booth does not cooperate with this attack (in manual elections there

are voting booths that physically isolate the voter for coercion-resistance. The same

is true for electronic elections as well. All the protocols that we are aware of guar-

antee privacy and coercion-resistance assuming some trust in the system and usually

assuming the coercer does not collude with the booth). We also need to use what

we call a recordable, private channel between the voter and the booth. A recordable,

private channel between two parties A and B is an untappable channel between A

and B that has the following two properties:

• At the request of one of the players, the channel can be examined by an auditor

(this is the reason we call the channel recordable).

• At the end of the conversation, if the two parties agree, the recording is erased

and lost.

The first property is important for robustness, and the second for coercion-resistance.

This assumption calls into some physical device implementing these properties, e.g.,

a printer printing the transcript between the two parties, where later on the printout

is shredded. Similar channels appear in previous works in the area. In Sako and

Kilian [SK95] and in Hirt and Sako [HS00] the channel is defined to have the second

property only (and indeed no robustness is supplied). In Chaum’s visual scheme pro-

posal [Cha04], and in the following protocols of [CRS05, AR06] parts of the protocol

transcript can be shredded. We discuss this in more detail in Section 4.4.

10

Chapter 3

Cryptographic Tools

We briefly review the cryptographic tools we will refer to in the next chapters.

3.1 ElGamal cryptosystem

ElGamal [Gam85] is a frequently used probabilistic public key cryptosystem which

we will use later. We work with ElGamal over a multiplicative group of prime order,

as suggested by [Pfi94, SK95]. At first, we publicly choose two large primes q′ and

q such that q|q′ − 1, i.e., q′ = qk + 1 for some integer k. We also fix a generator g′

of F∗q′ . The cyclic group G we work with is the one generated by g = (g′)k and has

order q′−1
k

= q.

Now, the three cryptosystem algorithms are:

Key generation algorithm - Randomly select x ∈R Z∗q and make it the private

key. The corresponding public key is -

h = gx (3.1)

Encryption algorithm - To encrypt a message m ∈ G (given the public key h), we

uniformly choose r ∈R Z∗q and output -

E(q′, q, g, m, h; r) = (gr,m · hr) (3.2)

11

Decryption algorithm - To decrypt a message (α, β) we compute -

m = β · α−x (3.3)

As we will work with global values q′, q, g and h which are public and shared by all

participants, we abbreviate E(q′, q, g, m, h; r) to E(m; r).

ElGamal is homomorphic, i.e.,

E(m1; r1) · E(m2; r2) = E(m1 ·m2; r1 + r2) (3.4)

where the product of the ciphertext pairs is element-wise.

A re-encryption of an encrypted message (α, β) = E(m; r) is the value E(1; r′) ·
(α, β) for some r′ ∈R Z∗q which is E(m; r + r′), i.e, another encryption of m.

Last, let us denote by E(m; U) the distribution obtained by picking r uniformly

at random from U and evaluating E(m; r). We have the following assumption about

ElGamal:

Assumption 1 (ciphertext indistinguishability) For every m 6= m′ ∈ G, for almost

all secret keys, no computationally bounded process can distinguish between the dis-

tribution E(m; U) and the distribution E(m′; U).

We remark that assumption 1 does not hold if we choose a random q′ and take q

to be q′ − 1, and in particular a non-prime. This was pointed out in [Pfi94], and we

repeat the argument here as we think it clarifies things. As q′ is prime, q = q′ − 1 is

divisible by 2. In particular, the cyclic group G has a subgroup A of order q/2. Also,

it is easy to test membership in A by checking that the element is a q/2 root of unity.

Now, if gr happens to be in A (which happens with probability half) then so does hr,

and in particular m · hr belongs to A iff m does. Thus, one can discover one bit of

information about m, and in particular distinguish between m ∈ A and m′ 6∈ A. We

therefore use as already suggested in [Pfi94] a prime subgroup G of Z∗q′ .

We note that the famous RSA [RSA83] is also a public key cryptosystem. RSA is

based on the hardness of factorization and has the useful property that E(D(m)) = m

which can be used for digital signatures.

12

3.2 Secret sharing

A (t,N) - threshold secret sharing scheme allows a dealer to share a secret between N

players such that any group of t (≤ N) or more players can reconstruct the secret,

but any group of less then t players learn nothing about it.

One classic solution to this problem is the Shamir’s Secret Sharing Scheme [Sha79].

In this scheme, the secret (S) is an integer in Fp (where p is a public prime integer):1

• The dealer selects t− 1 secret random integers ai ∈R Z∗p.
• The dealer calculates N shares of the secret -

si = S +
t−1∑
j=1

aj · ij (3.5)

• The dealer sends si to player i for i = 1 . . . N .

Now, any group of t players can calculate (using Lagrange interpolation over the

field Fp) the value of S using their shares sk1 , . . . , skt -

S =
t∑

j=1

skj
λj where λj =

∏

i=1..t,i6=j

ki

ki − kj

(3.6)

Because we started with t− 1 degree polynomial, any group of less then t shares

has no information about S.

One modification of this scheme is the Publicly Verifiable Secret Sharing scheme

presented in Appendix A. This a scheme has two improvements over the above

scheme:

• Anyone can verify that the dealer sent valid shares.

• When a player reveals his share si, anyone can verify if it is a real share.

3.3 Threshold cryptosystem

A (t,N) - threshold cryptosystem allows decryption of a ciphertext only when a group

of t (≤ N) or more players cooperate, but any group of less then t players can not

1Where all computations are in field Fp.

13

gain any information about the plaintext. There is no single dealer who knows the

secret as in the (t,N) - threshold secret sharing scheme.

One solution to this problem is the Threshold ElGamal Cryptosystem [Ped91,

Ped92] where the solution is based on N parallel executions of publicly verifiable

secret sharing. Informally, the scheme consists of three stages: a key generation stage

where the threshold public key is computed, a keys distribution stage where each

player distributes his (private) share of the threshold public key and computes his

share of the threshold private key, and, a decryption stage.

We will use the same notation from Section 3.1 for ElGamal cryptosystem, mean-

ing we have a group G with a generator g and order q. As we mentioned, the scheme

starts with a key generation stage:

• Each player Pi chooses a private key xi ∈R Z∗q and computes a share hi = gxi .

He publishes a commitment Ci = Commitment(hi, ri) using a random ri.

• When all participants published their commitments, each player opens his com-

mitment Ci and publishes hi, ri.

• The threshold public key is computed h =
N∏

j=1

hj.
2

Next, each Pi distributes his private key xi using a (t,N)-verifiable threshold secret

share:

• Pi chooses a random polynomial f (i) with coefficients over Zq of degree t − 1

where f
(i)
0 = xi -

f (i)(z) =
t−1∑
j=0

f
(i)
j · xj (3.7)

• Pi publishes Fij = gf
(i)
j for j = 0 . . . t− 1.

• After all participants published their Fij values, Pi privately sends a signed share

sij = f (i)(j) to each Pj.

• When Pi receives a share sji from Pj he verifies his consistency by checking

2The corresponding private key is as in ElGamal, x =
N∑

j=1

xj , but it is not known to anyone.

14

that-

gsji =
t−1∏

l=0

F il

jl (3.8)

In case of inconsistency, Pi can publish the signed value of sji.

• Pi signs on h (and after all participants have signed, the public key is legitimate).

• Pi calculates his share of the threshold private key x- 3

si =
N∑

j=1

sji (3.9)

and publishes a commitment zi = gsi . Any player Pj can verify zi by -

gsi =
N∏

l=0

gsil =
N∏

l=0

(
t−1∏

k=0

F ik

lk) (3.10)

Last, a decryption of (α, β) can be computed by any group of t players Pk1 , . . . , Pkt

using the following:

• Each player Pki
publishes wi = αski and proves that Loggzki

= Logαwi using a

non-interactive zero-knowledge proof (see Section 3.5).

• Using a Lagrange interpolation the plaintext can be recovered by m =
β

∏t
j=1 w

λki
i

(where λki
are lagrange coefficients).

3.4 Anonymous channels and Mix-nets

David Chaum introduced the idea of anonymous channels [Cha81] in order to anonymize

e-mail communication. His idea is based on a set of authorities who route e-mails in

a way they can not be traced without some help from the authorities. This set of

authorities is called a Mix-net (and each authority is called a Mix). A simple mix-net

can use any public key encryption in a protocol as followed (also known as Chaumian

mixes):

3Let f be a polynomial at degree N over Zq and let si = f(i). We observe that f(0) = x and
thus si is a share of x.

15

• Each mix Mi (for i = 1 . . . n) has a secret key xi and a public key hi.

• A player who wishes to communicate m, sends a message Eh1(Eh2(. . . Ehn(m)))

to the first mix M1.

• M1 gets messages from several players, decrypts its input messages using its

secret key, randomly permutes them and then sends the permutated messages

to M2.

• M2 decrypts the messages from M1, randomly permutes them and sends the

permutated messages to M3 and so on...

• Mk sends the plaintexts to their destination (we assume the destination is part

of the plaintext).

This type of mix-net is called decryption mix-net. If one of the mixes is honest,

messages can not be linked to senders.

Other variants of mix-nets are re-encryption mix-nets and decrypt and re-encrypt

mix-nets.4 When the underlying encryption scheme is homomorphic (e.g., ElGamal

or Pailier), this can be somewhat simpler. E.g., with ElGamal:

• Each mix Mi (for i = 1 . . . n) has a secret ElGamal key xi and a public key

hi = gxi . Lets denote H>=i =
n∏

j=i

hj.

• A player who wishes to communicate m selects a random number r and sends

a message E(m,H>=1; r) to the first mix M1.

• For each of its inputs (a, b), Mi decrypts using its secret key, selects a random

number r′ and re-encrypts using r′ and Hi+1. Then, it outputs all those re-

encryptions in a random permutation and sends it to the next mix.

Formally, it decrypts each input (a, b) = E(m,Hi; r) and gets (a, b) = E(m,Hi+1; r).

Then it re-encrypts and gets (anew, bnew) = (a, b)·E(1, Hi+1; r
′) = E(m,Hi+1; r+

r′).

Such re-encryption mixes will be used later in Chapter 4.

Mix-nets are very useful. It can be used for anonymous communication of any

kind, including emails, peer-to-peer networks and anonymous vote casting.

4Decrypt and re-encrypt mix-nets are often also refereed to as re-encryption mix-nets.

16

3.4.1 Verification of mixes

Here we are concerned with verifying that a mix functions properly. I.e., we want to

make sure that it did not alter, delete or insert messages.

There are many types of mixes and many methods for verifying their behavior.

The two common methods are: A verifiable secret shuffle [Nef01, Gro03] and Random-

ized partial checking (RPC) [JJR02]. The first is based on a zero-knowledge proof of

the validity of the mix shuffle. It is very efficient but works only with a re-encryption

mix-net. The second, RPC, is less efficient but can be used for any type of mix-net.

We present a simple implementation of RPC as suggested by Chaum [Cha04]. We

use a mix-net where each authority i is responsible for the two consecutive mixes

M2i−1 and M2i. Let A denote the set of inputs to M2i−1 and B the set of inputs to

M2i. We select a random subset Ai ⊂ A of inputs. Let Bi ⊂ B be the set of outputs

of M2i−1 (inputs of M2i) that are connected to Ai. We ask mix M2i−1 to reveal the

edges leaving inputs in Ai, and we ask mix M2i to reveal the edges leaving inputs not

in Bi (See Figure 3.1).

Figure 3.1: Achieving universal-verifiability using dual mixes. A party is responsible
for two consecutive mixes. The party has to reveal a random subset of the first layer,
and the complement subset for the other layer.

Revealing an edge means revealing its two ends and proving the transformation

over that edge (e.g., decryption and re-encryption) was done properly. For a re-

encryption ElGamal mix-net as we described above, revealing an edge (a, b) means

17

publishing on the public board the following:

• The corresponding output ElGamal tuple (anew, bnew).

• The intermediate values b and r′ used in the computation of (anew, bnew).

• A non-interactive zero-knowledge proof that the decryption was properly done

(proving that logg hi = loga(b(b)
−1)).

Using this implementation, each mix reveals only one bit of information for each

message, but also, if a mix tries to cheat about t messages it will be caught with

probability 1− 2−t.

3.5 Zero-knowledge proofs

Zero-knowledge proofs are interactive protocols between a prover and a verifier, in

which the prover proves to the verifier, with high probability, that some statement is

true, while not leaking any information besides the validity of the statement. I.e, the

proof should satisfy the following:

Completeness - If the statement is true, an honest verifier always accepts the proof.

Soundness - If the statement is false, the verifier will reject the proof with a high

probability.

Zero-Knowledge - If the statement is true, a cheating verifier learns nothing be-

sides the validity of the statement (formally, this means that there exists a

simulator that can simulate the protocol transcripts).

If the zero-knowledge guarantee is only for an honest verifier, we say the protocol

is an honest verifier zero-knowledge (HVZK) proof. If all the verifier does during

the interaction is picking random coins and sending them as his messages, we say

the protocol is a public-coin protocol. An HVZK and public-coin protocol can be

converted into a non-interactive zero-knowledge proof using the Fiat-Shamir heuristic

[FS86], by setting the verifier’s messages to be the hash of the preceding transcript.

We now present three zero-knowledge proofs (ZKP) which will be used later on.

18

3.5.1 Zero-knowledge proof of equality of discrete logarithms

Let G be a multiplicative group of order q, and let g1, g2 be two generators of G. The

inputs are v, w ∈ G. The prover knows the discrete logarithms of v and w, i.e., x1 and

x2 such that v = g1
x1 , w = g2

x2 , and claims they are the same, i.e., logg1
v = logg2

w.

Lets denote x = x1 = x2.

The following protocol is from [CP92]:

• The prover chooses a random z ∈ Z∗q and sends a = gz
1 , b = gz

2 to the verifier.

• The verifier chooses a random challenge c ∈ Z∗q and sends it to the prover.

• The prover sends r = (z + cx) (mod q) to the verifier.

• The verifier checks that gr
1 = avc and gr

2 = bwc.

The protocol is honest verifier, perfect, statistical zero knowledge, with perfect

completeness and 1/q soundness error. It is not known to be zero-knowledge against

dishonest verifiers.

It is also a three round public coin protocol, so the proof can be turned into

non-interactive by the Fiat-Shamir heuristic (changing the challenge c to a hash of

a, b, v, w).

3.5.2 A Zero knowledge proof for 1-out-of-` re-encryption

We use the same notation as before. Let G be the multiplicative group as before and

let g ∈ G be the generator and h ∈ G the ElGamal public key. Now, the prover wants

to prove that one of the ` pairs (x1, y1), . . . , (x`, y`) is an ElGamal re-encryption of

the pair (x, y). Say, the re-encrypted pair is (xt, yt) = (x, y) · E(1; r) = (xgr, yhr),

where r is known only to the prover. The protocol is described in Figure 3.2 and is

taken from [CGS97].

Using Fiat-Shamir heuristic, the protocol can be made non-interactive using the

challenge c = H(x, y, a1, . . . , a`, b1, . . . , b`, x1, . . . , x`, y1, . . . , y`). The prover publishes

c, d1, . . . , d`, r1, . . . , r` and verifying is the same as before.

Re-encryption is a symmetric property (if (a′, b′) is a re-encryption of (a, b), then

(a, b) is a re-encryption of (a′, b′)).5 In particular, the above is also a ZKP for the

5This is because E(1; r)−1 = E(1;−r).

19

Prover Verifier

for i = 1 . . . `: ri, di ∈R Z∗q
ai = (xi

x)digri , bi = (yi

y)dihri

w = r · dt + rt
{a1, . . . , a`}, {b1, . . . , b`}

-
c ∈R Z∗qc¾

dt = c−
∑

j 6=t

dj

rt = w − r · dt
{d1, . . . , d`}, {r1, . . . , r`} -

Verify:
c =

∑̀

j=1

dj ,

ai = (xi

x)digri , bi = (yi

y)dihri

Figure 3.2: Re-encryption of 1-out-of-` interactive proof.

case where we are given (x, y) and we want to prove that it is a re-encryption of one

of the ` pairs (xi, yi).

3.5.3 A Zero knowledge proof for 1-out-of-` message encryp-

tion

We now look at the following problem: we are given ` plaintext messages m1, . . . , m`

and one encryption (x, y) and we want to prove that it encrypts one of the ` plaintext

messages. The protocol for that is given in [CGS97] and is based on the 1-out-of-`

re-encryption protocol. We give it here for completeness.

Given m1, . . . , m` and (x, y) = E(mt; r) (for some t and r known to the prover),

the prover publishes (xi, yi) = (x, ym−1
i) for i = 1 . . . `. It is easy to check that

(xi, yi) = E(mtm
−1
i ; r). The prover now proves that one of (xi, yi) is a re-encryption

of E(1; 1) using the ZKP from the previous section.

3.6 Coercion in zero-knowledge protocols

We mention that in both the interactive and the non-interactive protocols in Section

3.5 the prover is coercible if the transcripts are public. For example, during the

20

interactive protocol of Zero-knowledge proof of equality of discrete logarithms (Section

3.5.1) the prover commits to z (using gz
1). If the transcripts are public, a coercer can

coerce the prover to reveal z (which can be done only in one way) and using this

he can calculate x = (r − z)/c. In the non-interactive protocol this coercion is done

using the hash function and z.

21

Chapter 4

Existing Voting Protocols

In the last 30 years, many electronic voting protocols have been proposed. We review

here the ideas we think are the most related to our research and have a big influence.

We can describe a generic process of electronic voting by:

Voter identification - almost all electronic voting protocols use the voter’s ID to

identify a voter, and then check that he or she is an eligible voter (who votes

only once).

Casting a vote - The voter casts a vote using some kind of a voting booth or a

public board. Most electronic voting protocols use isolated voting booth in

order to achieve coercion-resistance, and assume the booth does not cooperate

with coercers.

An important issue here is whether the voter can use a computer in the booth

or not (what we call bare-handed voting 1).

Verifying that a vote was casted as intended - In most electronic voting pro-

tocols, the voter or some other organizations verifies that the voter’s vote is

recorded as intended. We mention that this step is usually skipped in DRE ma-

chines. Indeed, this is the main reason why forgery is a sensitive issue with those

machines and why many forgery allegations were raised (see [Har03, KSRW04])

and actually happened (see [Wik07a] and the Emmy award nominated film

1We do not use here the notation of Voter-verifiable which means that the voter can only verify
that his vote was casted correctly. We want to emphasize that the voter is only a human and when
he is voting, he has only human abilities and no computational device.

22

Hacking Democracy).

Tallying the votes - The registered (encrypted) votes are tallied.

Verifying the tally - Auditors (ideally everyone can be an auditor) verify that the

tally is correct.

For many years, the goal of electronic voting protocols was to present a secure pro-

tocol assuming the voter can carry any efficient computing task. Such an assumption

is both unpractical (it assumes a voter has to come to the booth with a computing

device) and risky (it make correctness depend on the voter’s computer honesty). Nev-

ertheless, it gives the base ground for many more recent protocols. Roughly speaking,

one can divide such protocols (where a computing device is used by the voter) into

the following three categories: using blind signatures (e.g., [FOO92, Oka98]), using

mix-networks (e.g., [SK95, HS00, Nef01]), and, using homomorphic encryption (e.g.,

[BT94, CGS97, Sch99, BFP+01]).

These basic protocols guarantee privacy against passive adversaries, i.e., in a sce-

nario where dishonest votes are independent of honest votes. If we allow active

adversaries, i.e., if dishonest players can vote based on what they see so far on the

public board, then privacy is often not guaranteed (we present this problem in detail

in Section 4.2.2).

Benaloh and Tuinstra proposed a receipt-free protocol which was later broken

[Hir01]. Sako and Kilian [SK95] proposed a receipt-free protocol using mix-networks

and Chameleon blobs and a physical assumption that is similar to the recordable,

private channels we defined, but their protocol requires the voter to know at least

one mix which is honest (rather than just knowing that one such mix exists). [HS00]

proposed a similar but more efficient solution using threshold encryptions, but it has

the same drawback. Moreover, both protocols can be coerced.2

Some other related receipt-free protocols use another participant or device to add

randomness (that is not known to the voter) to the protocol: [MBC01] proposed

a solution which uses a tamper resistant smart-card that produces a random value

hidden from the voter, and [BFP+01] proposed a solution which requires the use of

an authority for randomness, similar to the role of the booth in our protocol.

2A coercer can force the voter to vote randomly and verify his behavior.

23

Bare-handed protocols started with the ground-breaking works of Chaum and

Neff [Cha04, Nef04]. Many other protocols followed (e.g., [CRS05, Rey05, LTR+06b],

and the more recent [Cha07, AR06, MN06]). In many of these protocols there is no

privacy towards the booth (and the voter simply tells his vote to the booth), and in

many of these protocols privacy towards a malicious ballot creator is lost.

4.1 Chapter outline

We start by reviewing protocols which assume that the voter has computational

power in the booth. One of the most influencing idea in this area is Chaum’s mix-

nets [Cha81]. Anonymous communication channels underly in many electronic voting

protocol. We review [FOO92] protocol which uses anonymous channels and blind

signatures. Next, we sketch [SK95] which is simple and yet strong protocol that is

based on mix-nets (Section 4.2.2). We also review a novel protocol based on Threshold

encryption (Section 4.2.3) and its improvement using mix-net (Section 4.2.4).

As we mentioned earlier, most of the early electronic voting protocols assume the

voter has computational power at the booth. On the second part we review two

protocols that drop this assumption. We briefly explain Chaum’s visual scheme, and

review a variant of Chaum’s scheme named Prêt à voter (PaV) [CRS05] which is as

strong as [Cha04] but easier to understand and to implement. We also present a short

section about the main problems with current bare-handed protocols.

4.2 Protocols which assume the voter has a com-

putational power in the booth

4.2.1 [FOO92]

The protocol is based on two ideas proposed by Chaum: anonymous channels (Section

3.4) and blind signatures [Cha82]. A blind signature allows party A to get a signature

of party B on a message, without revealing any information about the message to

party B. The method consists of three steps (described very informally):

24

Blinding - Party A blinds the message by adding a pseudo-random data to the

message.

Signing - Party B sings the blinded message.

Un-blinding - Party A removes the blinding by removing the pseudo-random data.

Now, a sketch of [FOO92] protocol is as follows:

Initialization - The elections authority and the mixes publish their public keys.

Encrypt a vote - The voter selects his vote b and encrypts it E(b; r).

Get a blind signature - The voter identifies to the elections authority and gets a

blind signature of the authority on the encrypted vote Sigauthority(E(b; r)).

Publish the encrypted vote - The voter sends Sigauthority(E(b; r)) to the public

board using the anonymous channel.

Open the votes - After the elections are over, the voter sends b, r and Sigauthority(E(b; r))

to the public board using the anonymous channel. The public board publishes

it and anyone can compute the final tally and audit the elections.

One might ask why the voter sends two messages instead of sending a signed open

vote in the first message. In such a scenario the votes will be published during the

elections, and therefore, we will lose fairness.

Protocol properties:

The protocol is private (as long the anonymous channel is secret) and achieves

robustness, unforgability, eligibility and auditability (only by the voters). The proto-

col does not achieve coercion resistance because a voter can prove what his vote is,

simply by showing b, r and Sigauthority(E(b; r)) to the coercer before the last stage.

4.2.2 [SK95]

In their paper [SK95], Sako and Kilian presented the universally verifiable mixes

(over ElGamal cryptosystem) and one application of such mixes, a receipt-free voting

protocol.

If we simplify their ideas, we find two novel voting protocols. The first protocol is

rather simple: a voter encrypts his vote and publishes it on a public board, and from

25

now on, all the mixes’ computations are universally verified. This is a straightforward

use of the universal verifiability property of the mixes. The second protocol, which is

a receipt-free, is a little more complex and similar to [HS00] which we will describe

in Section 4.2.4.

Protocol properties (of the first protocol):

The protocol is private against passive adversaries. As long as there is at least one

honest mix, finding a voter’s vote is reducible to breaking ElGamal. Active adver-

saries can learn (with high probability) what any specific voter has voted. This was

observed by Pfitzmann [Pfi94], and we describe this attack soon. The protocol enjoys

unforgeability (due to the verification steps), eligibility, unreusability and universal

auditability. As for robustness: if a mix stops working the mixing stage is stuck.

Such a mix can be replaced if we use publicly verifiable secret sharing [Sch99], but

then we need at least half of the mixes to be honest. As before, the protocol does not

achieve coercion-resistance or even receipt-freeness because the randomness used for

the encrypted vote can be used as a receipt.

We finish this section by describing Pfitzmann [Pfi94] attack for active adversaries.

Let there be t possible votes m1, . . . , mt. A voter A votes m, and his masked vote

z = E(m; U) is published on the public board. Another dishonest voter C arrives,

chooses a random w ∈ G and votes z·E(w; U). Let us also assume that all other voters

are honest. When all the votes are processed, C’s vote, with very high probability,

will not be in the set of legal votes {m1, . . . , mt}. In particular, C is able to identify

his vote b, learn that he actually voted the value b = mw, and therefore deduce that

m = bw−1.

Indeed, Pfitzmann shows that this attack exists even if all values are legal votes

but the number of voters V is small compared to the size of G. The attacker C takes

A’s vote (a, b) = E(m; U) and converts it to the vote (ac, bc) for some random c,

which corresponds to voting E(mc; U). When all the votes are revealed C looks for

a pair of votes m and mc, and with a high probability there is only one such pair,

which must represent his value. Again, C learns m.

A natural direction towards this problem is using a public-key cryptosystem that

26

resists chosen ciphertext attacks. In such a system, the active adversary can in-

deed detect his modified message, but can not deduce from it anything about the

original message. Indeed, [ZS93, CS98] for example, showed how to turn public key

encryption to one that is immune against chosen message attacks. However, any such

transformation, by definition, loses the homomorphic properties of the encryption.

4.2.3 [CGS97]

In [CGS97] Threshold encryption is used to replace the mix-net. The protocol consists

of n trustees T1, . . . , Tn and a public board, and goes as follows:

Initialization - All official trustees publish their own public keys and an ElGamal

threshold encryption public key H is published. Also, another generator h of

the multiplicative group is chosen and published (along with all other ElGamal

public values we saw: multiplicative group size and a generator g of the group).

Voting - A voter casts his vote b ∈ {h1, h−1} by publishing E(b) = E(b; r) = (gr, Hr ·
b). He also publishes a NIZKP that this vote is legal (and not h100 for instance).

He does that using the NIZKP from Section 3.5.2.

Tallying - After the elections are over, the value of E(hd) =
∏

b

E(b; r) is publicly

computed using the homomorphic property of ElGamal. A group of t trustees

decrypts it and publishes hd. Using exhaustive search, anyone can calculate d

which is the difference between the two candidates.

We remark that the protocol can be extended to any bounded number of candi-

dates (described in [CGS97]).

Protocol properties:

This protocol achieves privacy (because of the use of threshold encryption, privacy

is achieved as long as there are at most t− 1 dishonest trustees) even against active

adversaries, robustness (as long as there are at least t honest trustees who can decrypt

the results), unforgeability (malicious behavior is caught in the NIZKP), eligibility

(using physical identification), unreusability and universal auditability. The protocol

does not achieve coercion-resistance or even receipt-freeness because the randomness

used for the encrypted vote can be used as a receipt.

27

4.2.4 [HS00]

Hirt and Sako proposed a protocol [HS00] which is a combination of [SK95] and

[CGS97]. It uses universally verifiable mixes to achieve coercion-resistance and verifi-

ability (as presented in [SK95]) and threshold encryption for efficiency (as presented

[CGS97]):

Initialization - All mixes publish their public keys (as shares) and compute a thresh-

old public key H. They also publish another generator h of the multiplicative

group.

Creating encrypted votes - For every voter, the first mix creates a list of zero

encryptions3 of all valid votes (the votes are as in [CGS97], h−1 and h1). Then,

it sends them into a re-encryption mix-net which does not decrypt, but only re-

encrypts using the threshold public key H. Each mix re-encrypts the messages

and permutes them, so the output of the last mix is a random permutation of

encryptions of all valid votes. Each mix also commits (using Chameleon blobs

and the voter’s public key) its permutation on the public board.

Voting - We assume there is an untappable channel between each mix and the voter.

Using those channels, each mix de-commits its permutation. Now, the voter can

link the votes to their encryptions.

The voter publicly selects the encryption of his vote and the other encryptions

are discarded.

Tallying - After elections end, t mixes calculates E(hd) =
∏

b

E(b; r) and decrypt it

to get hd. Again, anyone can find d using linear time exhaustive search which

is the difference between the two candidates.

Those calculation can also be verified using a non-interactive zero knowledge

proof of equality of discrete logarithms (3.5.1).

Protocol properties:

Similar to [SK95] with few minor refinements: privacy is achieved as long as there

are at most t−1 dishonest mixes. Coercion-resistance is achieved as long as the voter

3We denote by zero encryption of a message m the tuple (1,m) which is an encryption of m using
randomness r = 0.

28

knows at least one mix which is not under the control of the coercer. Robustness is

achieved as long as there are at least t honest mixes.

4.3 Protocols which assume the voter is bare-handed

4.3.1 Chaum’s visual scheme

In [Cha04], Chaum presented the first bare-handed protocol. We describe a sketch of

Chaum’s visual scheme. For full details, see [Cha04].

A voter V identifies using an ID and enters a voting booth B. First, V selects his

vote m on a touch-screen. Then, B prints two layers of papers L1, L2 each consisting

of a binary image MLi
and some numeric strings. V verifies that the numeric strings

on both of the layers are identical. He also checks that m = ML1 ⊕ML2 by putting

the two layers one on top of the other and checking that the created image is his vote.

This is the visual part of the protocol and it is based on Visual cryptography [NS94].

If one of the tests fails, B is caught as malicious (but notice that the voter has

no concrete proof for that). Otherwise, V selects one of the layers and B signs and

publishes the selected layer. The other layer is shredded. The booth also prints a

receipt with the selected layer and gives it to V . Using the receipt, V can later on

check that his vote was published correctly on the public board. The receipt tells

nothing about the real value of the vote and can not be used for vote selling.

When the elections are over, the encrypted votes are being decrypted using a

mix-net and all the calculations are verified using randomized partial checks (Section

3.4.1).

There are a few disadvantages to notice: The booth knows what anyone voted.

The booth can show the voter one thing and print another, or publish another value

on the public board and the voter can not prove the booth is cheating because L1, L2

are not signed. Signing L1, L2 does not hold either, because the voter can not really

check the signature without a computer.

29

4.3.2 Prêt à voter

We now present the protocol from [CRS05] named Prêt à Voter (PaV). This protocol

requires n mixes denoted by M1, . . . , Mn, each mix Mi has a public key hi and a

private key xi. We denote by k the number of candidates.

First, an official authority creates many printed ballots, each ballot consists of

two columns: the left column is the list of candidates, lexicographically ordered and

shifted with some random shift π ∈ [1..k]. This shift is encrypted and the encryption

is printed in the bottom of the right column (Figure 4.1).

Figure 4.1: Empty Ballot (π = 2)

The process of creating such a ballot is (we denote by κ a security parameter, e.g.,

κ = 232) :

• Select gi ∈R Zκ for i = 1 . . . n.

• Calculate di = hash(gi) (mod k) for i = 1 . . . n using a cryptographic hash

function.

• Calculate π =
n∑

i=1

di (mod k).

• Select D0 ∈R Zκ and recursively calculate Di = Ehi
(gi ◦Di−1) for i = 1 . . . n.

• Print a ballot with a shift π and an encrypted printed shift Dn

This process is done by the official authority independently for each ballot. In

order to verify that the ballots are well-formed, a random set of ballots is chosen and

tested (opened by the mixes without being counted in the final tally).

When a voter enters the booth, he randomly picks one of those paper ballots.

Then, he marks an χ near his chosen candidate (Figure 4.2). The voter detaches the

30

left column and shreds it. He scans the right column and takes it home as a receipt

(Figure 4.3). The scanner or a poll-worker signs on the receipt to approve it was

casted. Also, in order to test the validity of the ballots, the voter may take home a

few empty ballots and check them using a computer or some democratic organization

helpers.

Figure 4.2: Filled Ballot

Figure 4.3: Detached Ballot

When elections end, all scanned ballots are published on the public board. We

denote by a tuple (r
(N)
j , D

(N)
j) the information of the j-th scanned ballot where r

(N)
j

is the position of χ. Now, a process of mix-net decryption is engaged. Each mix Mi,

in a descending order, performs the next process on its set of inputs
{

(r
(i)
j , D

(i)
j)

}
:

• Calculates gi ◦ D
(i−1)
j = Dxi

(D
(i)
j), then di = hash(gi) (mod k) and r

(i−1)
j =

r
(i)
j − di (mod k) for each j.

• Publishes a random permutation of the set
{

(r
(i−1)
j , D

(i−1)
j)

}

31

We note that each mix changes the shift in a way that the sum of changes is

the initial shift π. That way, the resulting value of of this process, r0, is the voter’s

selection relating to the lexicographic order. Anyone can count the results using those

values.

After the mixes finish their calculations, a RPC verification of the mixes is engaged

(as described in Section 3.4.1).

Protocol properties:

Assuming the authority who is creating the ballots is honest then the protocol is

private as long as there is at least one honest mix. It achieves robustness, unforga-

bility, eligibility, unreusability, universal auditability and coercion-resistance (except

for a random-coercion attack which we describe next).

4.4 Some problems with bare-handed protocols

The above protocols have several drawbacks (few are mentioned in [KSW05, LTR+06b]).

We describe four of them which we think are the most problematic.

4.4.1 Privacy depends on ballot creator

A malicious ballot creator can track the voter’s votes or coerce him. Many improve-

ments, modifications and variants of Prêt à Voter were proposed [LTR+06a, LTR+06b,

Rey05, AR06, Cha07], none of which proved to solve this problem.

In some protocols the problem is even worse. If someone gets to see an empty

ballot and remember its contents he can later on match the voter who used this ballot

and his vote. E.g., in Prêt à Voter, if a party can see an empty ballot, it can remember

the candidates order along with the encryption. Later on, it can recognize this ballot

using the published encryption, match it with the candidates order (on the empty

ballot) and match the voter and his vote. This attack is applicable by anyone who

sees the full ballot, e.g, the creator, people handling the ballots and the poll-workers.

32

4.4.2 Deniable receipts

All bare-handed protocols (including the recent [AR06, Cha07]) use receipts for ver-

ifying the ballots are casted as intended. When a voter leaves the voting booth, he

takes the receipt home where he can later on check it against the public board. If his

ballot was not casted properly, he can detect the problem. This, however, does not

necessarily mean he can prove the cheating. He could do that only if his receipt is

signed.

This leads to another problem, can a bare-handed voter verify that a signed receipt

is signed properly? All current digital signatures require a computer device even just

for verification. Some ad-hoc solutions can be used (e.g., democratic organizations

can check it for the voters, or, using a special paper instead of a signature) but we

are not aware of any systematic solution.

4.4.3 Random-coercion

In many of the protocols, the voter can easily be coerced to vote for some random

candidate, e.g., in Prêt à Voter [Rya05] the coercer can coerce the voter to vote for

the first candidate, or, in PunchScan [Cha07] the voter can be coerced to mark the

right bubble and bring the top page.

Furthermore, a more sophisticate random coercion attacks are also widely appli-

cable. E.g., in Prêt à Voter, a coercer can coerce the voter to vote according to some

function of the printed encryption, e.g., if the first character of the encryption is a

digit then mark the first line, else, mark the third.

We note that both attacks also apply to non bare-handed protocols such as [SK95]

and [HS00] where the voter can be coerced to vote according to some function of the

published encryptions.

4.4.4 Chain voting

There are two main methods for introducing the ballot to a voter: using a computer

which creates a new empty ballot in front of the voter, or, using a big bin of empty

33

ballots and let the voter pick one at random. In the first, we have a privacy problem

towards the booth. In the second, we are suspect to chain voting.

Chain voting is coercing a voter to vote using a given ballot. E.g., in Prêt à Voter,

a coercer may steal an empty ballot, remember its contents and coerce a voter to

use it. Later on he can find this ballot on the public board and see what the voter

voted. Furthermore, the coercer can coerce the voter to steal a new empty ballot, so

he could coerce another voter (which explains the term chain voting).

34

Chapter 5

Bare-Handed Electronic Voting

with Pre-processing

5.1 An intuitive discussion

Let us summarize the situation so far. Someone has to prepare the encrypted ballot.

If the voter prepares it at home, then we lose receipt-freeness (because the voter can

open his vote) and we are susceptible to coercion-resistance (because the voter can be

given the ballot by the coercer). On the other hand, if we ask the booth to encrypt

the vote (as in Chaum’s and Neff’s protocols) we lose privacy towards the booth.

We could also go a middle way: ask the voter to prepare the encrypted vote, and

then let the booth re-encrypt it. However, in such a case, the voter has to make

sure that the booth properly re-encrypts his vote (e.g., to see that the booth is not

multiplying his vote with an encryption of a value other than one) and we do not

want the voter to do computations at the booth. A simple solution might be to ask

the booth to put the re-encryption and the original vote on the public board, and

let the auditors check the calculations, but then we are back to revealing the original

vote, and the coercion problems.

The key idea behind our solution is very simple. We borrowed it from the way

paper-ballot elections are currently carried out. In paper-ballot elections, privacy

and coercion-resistance are obtained by making sure that the voting booth has paper

35

ballots for each of the candidates. In a similar way, we ask the voter to prepare ballots

with valid votes for all existing candidates. For reasons we explain shortly, we ask

the voter to prepare two ballots. We also ask him to give a proof that:

• All the votes he prepared are legal and encode an existing candidate.

• He prepared two votes for each candidate, and he knows the correspondence

between the votes and the candidates.1

These proofs can be prepared in advance.

The booth role is to re-encrypt the ballot’s votes (we call this ballot re-encryption),

which is necessary for coercion resistance. This, in turn, forces us to check the booth.

The voter does this by asking two ballot re-encryptions and randomly choosing one

of the two ballot re-encryptions for testing the booth. The testing itself is done by

the auditors using the data that appears on the public board. The voter then uses

the other re-encryption of his candidate for the actual voting.

Thus, in the first stage a poll-worker checks the voter can associate votes with

candidates, and in the second stage the voter checks the booth properly re-encrypts

messages. We use cut-and-choose tests for both. A coercer may potentially use both

stages for coercion. The way we bypass these problems is by forcing both tests to

apply to all candidates. If you prove you can associate a vote to a candidate you

reveal information. But if you do that for all candidates you reveal nothing.

The implementation details are important as (not surprisingly) there are some

subtle points hiding, as discussed in Section 4.2.2 (regarding active attacks) and

Section 4.4 (regarding deniable receipts, random coercion and chain voting).

5.2 The underlaying protocols we use

Our solution is an extension of existing protocols. We take previous protocols as our

underlying protocol and use it as our tallying protocol. Our extension simply replaces

the vote casting stage.

1This is necessary because the coercer might give the voter a set of valid ballots but without
telling him which encrypted vote corresponds to which candidate. We therefore ask the voter to
show a poll-worker he can match votes with candidates.

36

We focus our attention on previous protocols that use ElGamal. We select proto-

cols which have a separate phase for casting votes and a separate phase for tallying.

We require that the casting ends with a published encrypted vote that can not be

opened easily (e.g., without knowing all trustees’ secret keys). We mention that a

more general abstraction can be made, but in order to simplify our ideas and proofs,

we focus on those specific conditions and protocols.

We can use the [CGS97] protocol (using threshold encryption for tallying) or the

[SK95] protocol (using mix networks for tallying) as our underlying protocols. Both

use ElGamal encryption. The immediate benefit of using ElGamal is its homomorphic

property.

5.3 A formal description of the voting process

Pre-voting :

V prepares two ballots at home. Each ballot is printed on both sides (front and

back) and contains records for each of the candidates.

Say there are D candidates. For every i = 1 . . . D, V picks a random string ri

and prepares an encrypted vote yi = E(mi; ri) for the i’th candidate mi (where

the specifics of this encoding function E depends on the underlying protocol),

along with a NIZKP that yi indeed encrypts a legal candidate.2

On the front side of the ballot, V prints D rows containing the D values yi in

a random order. On the back side, V prints D rows containing the D tuples

(mi, ri) using the same random order. Also, on both sides, the voter’s name

(and a serial number if needed) appears in plaintext. See figure 5.1.

Voting (and verification) :

V identifies himself with an ID. He shows in front of a poll-worker (using a

scanner for instance) the front sides of his two ballots, and this is published

along with the voter’s name on the public board for universal verification. See

Figure 5.2.

The booth B and the auditors check that the non-interactive, zero knowledge

2Such non-interactive, zero-knowledge proofs are described in Section 3.5 and in [CGS97].

37

Figure 5.1: The ballot is printed on both sides. The back side contains (in plaintext) the
candidates’ names along with the random strings used for encrypting their corresponding
votes. The front side contains the encrypted votes E(mi; ri) along with a NIZKP that those
encrypted values are valid.

Figure 5.2: The voter shows the front sides of his two ballots in front of the poll-worker.

proofs are correct and all the votes on the front sides of the two ballots are legal.

A poll-worker picks a random number i ∈ {1, 2} and publishes i on the public

board. The poll-worker asks the voter to scan the back side of the i’th ballot,

and it is sent to the public board. The booth and the auditors check that the

back side matches the front side. This guarantees that the voter knows how to

open his ballots.3 We denote by P the remaining ballot. The voter now enters

the booth.

3Another subtle point is the following. A coercer might supply the voter with legal ballots whose
back side is covered with a scratch area, and tell the voter to vote with a non-scratched ballot. The
voter is able to show the back side of the test ballot (by first scratching it) but must keep the other
ballot covered, effectively enforcing a random vote [Ano07]. We solve this problem by doing this
test in front of a poll-worker.

38

Casting a vote :

Say the voter V wants to vote for the candidate that appears on the c’th row of

P , c ∈ {1, .., D}. Then, V sends the number c to B. The value c is not posted

on the public board (to avoid coercion).

Re-encryption (and verification) :

Say the front side of P has the D values {e1, . . . , eD}. B computes two re-

encryptions of the front side of P , i.e., two sets P (0) =
{

e
(0)
1 , . . . , e

(0)
D

}
and

P (1) =
{

e
(1)
1 , . . . , e

(1)
D

}
, where e

(0)
i and e

(1)
i are obtained by multiplying ei by a

random encryption E(1; U) of 1. Then, the booth picks two random permuta-

tions π0, π1 ∈ SD and publishes π0(P
(0)) and π1(P

(1)) on the public board, where

π(P) is the set P , with the D rows of P permuted according to π. The booth

also publishes on the public board a NIZKP that all rows in π0(P
(0))∪ π1(P

(1))

are re-encryptions of some vote given in P . Finally, the booth also tells the

voter, over the recordable private channel, the values c0 = π0(c) and c1 = π1(c).

The voter publishes a bit b ∈ {0, 1} and the booth reveals a permutation

Πb ∈ SD on the public board (and if the booth is honest then Πb = πb), along

with the randomness used to create the re-encryptions in P (b). The auditors

check correctness and the voter checks that Πb(c) = cb, i.e., that the booth’s

permutation is consistent with the ordering the booth declared to the voter.

Publishing a vote :

The booth publishes cb over the public board and the vote is taken to be P
(b)
cb

.

The voter V checks that the published value matches cb that was sent to him

over the recordable, private channel. If everything so far is correct, V and B

shred the channel’s record (and in particular they shred c, cb, cb) and V leaves

the booth.

This completes the voting stage. Notice that the voter can pre-compute the votes

and the non-interactive proofs in the ballots, and can come to vote at the booth

bare-handed, carrying only his two ballots of votes.

39

5.3.1 Tallying

We can use the tallying suggested either in [SK95] or [CGS97]. For concreteness we

work with [CGS97]. We replace the vote casting phase of the original protocol with

the bare-handed extension above. As described before, [CGS97] protocol is based

on threshold encryption, so we take the ElGamal public key H to be the threshold

public key. Now, when a voter or a booth encrypts or re-encrypts a message, only a

group of at least t trustees will be able to decrypt it. Tallying is done exactly as in

[CGS97]. We use the NIZKP for making sure that the voter appears with a ballot

having all possible candidates. We note that these NIZKP already appear in the

original protocol of [CGS97] for checking the validity of the vote and so they should

be combined.

5.3.2 Informal proof of correctness

Unforgeability, auditability and universal auditability -

The adversary here is an arbitrary coalition of the voting booth and (may be

even all) the trustees. We start with the voting booth. It sends P ′
0, P

′
1 on the

recordable channel. If the booth cheats about even one re-encryption of the

ballot’s re-encryptions and if this re-encryption is selected as P ′
b, it is caught

cheating. We now turn to the trustees. They can only cheat in the decryption.

But because of the NIZKP they must give, they can cheat only with a negligible

probability. Similarly, the voter can try to cast an illegal vote. Again, using

the NIZKP (which was also in the original protocol) we catch a malicious voter

with probability close to one.

The above argument assumes the NIZKP is a ”proof”, i.e., even a computa-

tionally unbounded adversary can not convince a verifier to accept a false claim

(except for some small probability). Indeed, if OWF exists, every language in

NP has a NIZKP [FLS90]. However, the NIZKP obtained using such techniques

have some large polynomial complexity, and are impractical. Another way to

go is to use the Fiat-Shamir heuristic [FS86], but then we can not claim any-

thing formal, and we probably do not have unforgeability against unbounded

40

adversaries.

Privacy -

If there are at most t− 1 dishonest trustees then the encryptions are, by defini-

tion, semantically secure (based on the ElGamal threshold encryption security).

Coercion-resistance -

We assume a coercer prepared the voter’s two ballots and directed him to act

in a specific way. We first notice that -

Claim 1 If one of the paper ballots the voter prepares is not legal the voter is

caught with probability close to one. Also, if one of the two ballots the voter

prepares does not contain a vote for each candidate, or, if the voter can not

match the corresponding back and front parts of a ballot, then the voter is caught

with probability close to half.

One can argue that probability half is not small enough. However, notice that

this means that if a coercer tries to coerce t people, then with high probability

(except for probability 2−Ω(t)), about t/2 of them will be caught, and so with

high probability the coercer himself will be detected.

If the voter holds a valid vote for each candidate, and he can associate encryp-

tions with candidates, he can, in particular, vote to any candidate he likes. We

now show he can not prove to the coercer what choice he had made. After

the voter leaves the booth, the private channel transcripts are shredded. An

outsider only sees the published information on the public board which con-

tains the voter’s selected bit b, the published re-encrypted vote and one set of

re-encryptions which is opened in full (and so is independent of the value c). In

fact, the third item can be efficiently simulated, and so does not add any infor-

mation. The first item, the selected bit, can be chosen in any way the coercer

directed. The second item, the re-encryption of the actual vote, is an ElGamal

re-encryption of one out of k votes and using randomness and keys that the

coercer and the voter do not have. Thus, this re-encryption is computationally

indistinguishable from re-encryption of any of the other votes. In particular,

the voter can claim he sent any c and the coercer will accept with the same

41

probability.

Our protocol uses re-encryption (given by both the voter and the booth) for pri-

vacy and coercion-resistance, and NIZKP (from both the voter and the booth)

to deal with active attacks. One should wonder at this point how do we sustain

coercion-resistance when using NIZKP that are not receipt-free. The answer is

that the whole process is receipt-free, because a zero-knowledge proof is given

for each candidate. A voter that has a vote for each party, does not reveal

anything about his final preference.

Robustness -

Here we check what happens when players are caught cheating or stop cooper-

ating. A voter might act maliciously by accusing a voting booth for no reason.

A booth might violate the protocol. Both can stop cooperating. In either case,

we can find the cheating party by examining the recorded conversation between

the voter and the booth. In the case of the trustees, we need that at least t

trustees will work all the way till the end of the protocol, as in the original

protocol.

Unreusability and eligibility -

For both these properties we rely on the physical identification of a voter with

an ID. Given this an auditor can use the information about a voter coming

to vote (that appears signed by the committee on the public board), and the

voting records (we mention again that the selected vote is placed on the public

board along with the identity of its voter, and is signed by the booth), to verify

that every voter voted only once, and there are no unaccounted votes.

Efficiency -

The voter has to compute a constant number of ElGamal encryptions and

NIZKP, and similarly the booth (per vote). Each trustee decrypts only one

message and publishes only one NIZKP. Another interesting benefit is that we

do not require any public key infrastructure from the voter.

We now look at the voter’s actions in the booth. He gives the front sides of the

ballots and the back side of the selected ballot. He also needs to verify that the

published values are correct, and for that he does a simple visual comparison

42

between the given and the published strings. Similarly, he has to verify that

c0, c1 match the published values.

Bare-handedness -

We look at the voter’s actions in the booth. The voter gives the front sides of

the two ballots and the back side of the selected ballot. The voter then picks

his vote c by looking at the back side of his remaining ballot and choosing the

row number of the candidate he supports. Then, the voter selects a random

bit. Finally, the voter has to compare two integers (each between 1 and D) for

checking the booth. We believe all of this can be done by humans without the

help of a computing device.

5.4 Physical requirements

5.4.1 The physical assumptions are problematic

We now turn to discuss in detail the two physical assumptions underlying our protocol.

We begin with the public-board assumption. Let us distinguish between two variants:

Stronger assumption : The public board is publicly visible to everyone, every-

where.

Weaker assumption : The public board is publicly visible to everyone.

In our protocol we use the stronger assumption, e.g., when we assume the voter

can check that the value the booth uploads to the public-board matches the value he

holds.

Most current protocols, however, only assume the weaker assumption. To com-

pensate for that they use a signed receipt that the voter can later on check against the

public board (e.g., in Chaum’s visual scheme and in Prêt à voter [CRS05] and many

other protocols). However, as we noted above, there is no digital signature which

can be verified by a bare-handed voter. As explained above, verifying the signature

only after the event has the disadvantage that disputes can not be settled. E.g., if a

voter claims the information on the public board does not match what was sent to

him on the recordable, private communication channel, and that the signature that

43

was given to him is not valid, then there is no way to determine whether the booth

is cheating, or the voter is falsely trying to frame the booth.

Our protocol is not different to the other protocols and could also use both vari-

ants. Possible ways for implementing it are:

• Signatures on special paper that the booth can not later deny, or,

• Big screens that can be seen by both the voter and the voting committee.

However, it would be much simpler if we could weaken the requirement, making

it easily feasible.

The same situation occurs with the recordable, private communication channel.

Such a channel implicity appears in many previous bare-handed protocols. We have

two requirements from such a communication channel:

• (Recordability) At the request of one of the participants the channel can be

examined by an auditor.

• (Privacy) At the end of the conversation, if the two parties agree, the recording

is erased and lost.

Often, previous protocols drop the recordability requirement. In such case there

is no way to settle disputes. For example, in Chaum’s visual scheme the privacy

property of the channel is preserved, and is reflected by the fact that the voter shreds

one of the two papers given to him. The recordability property, on the other hand,

is not preserved, and as a result the booth can ignore the voter’s selection and do

anything he wants, and the voter has no way of proving it. As before, signatures do

not help here due the bare-handedness (the booth can give an illegal signature as a

receipt).

5.4.2 A practical version using shredding

We now modify the protocol, simplifying the interaction between the voter and the

booth with the goal of demanding less from the private, recordable channel. Our

modification is similar to ideas used in Prêt à voter [CRS05] and in the recent Scratch

and Vote protocol [AR06].

44

The modification is as follows: The protocol begins as before. The voter prepares

two ballots, one is tested, and the remaining ballot P is used for the actual voting.

The booth then prepares, as before, two re-encryptions P (0) and P (1) of P . Here we

deviate from the previous protocol. The booth prints a ballot with two columns. The

j’th row of the ballot consists of P
(0)
j in the left column and P

(1)
j in the right column

(each with a NIZKP that the re-encryption is legal). The order of the rows in the

re-encryptions P (0) and P (1) is the same as the order of P . Also, the values in each

column are signed by the booth and covered with a scratch surface (see Figure 5.3).

Figure 5.3: 1. The two column are covered. 2. The voter selects a column b, tears his vote
and scratches it. 3. The test column is scratched in front of the poll worker. The vote and
the test column are sent to the public board. All the rest is shredded.

Next, we do the following:

• The voter picks a random b ∈ {0, 1}, scratches off the row of his candidate in

this column (recall, that this is determined by the row of the candidate in the

back side of P) and publishes it as his vote.4

4If we assume the communication with the poll-worker is public, then the voter also separates all
the rows of his chosen column. He does that in order to hide his chosen row from outsiders.

45

• The voter surrenders the other unscratched pieces to the poll-worker. He shows

the poll-worker that only one piece (that of his candidate) is scratched.5

• The remaining pieces of column b are shredded. Also, the voter (or the poll

worker) scratches off the other column. He publishes it and takes it home as a

receipt. The booth reveals the randomness used to create the re-encryptions in

this column, and the auditors check correctness.

The protocol is similar to the one described in Section 5.3 but what we gain here

is a simpler interaction. In particular, we get rid of the recordable, private channel

because the interaction is just from the booth to the voter. Also, we use scratch

surfaces in order to prevent random coercion.

One problem that exists with this protocol is that we can not settle disputes.

Consider for example the scenario where the auditors discover the information in the

scanned column is inconsistent with the data the booth publishes, and the booth

claims the voter did not scan the information the booth sent him. The protocol does

not supply a way to determine whether the voter is honest and the booth is dishonest

or vice versa. As discussed before, this problem implicitly appears in all previous

protocols (and in particular in [CRS05] and [AR06]) and is a reflection of the fact

that the channel that we use is not private, recordable channel. There are several

pragmatic suggestions for solving this problem (e.g., the booth prints its data on a

special paper, or, the booth signs on the back of each vote and those signatures are

tested before and after the voting).

Other than the problem discussed above (which is common to other protocols in

the area) the protocol enjoys the same properties as the one in Section 5.3. Thus, our

protocol is as practical as the other protocols in the field, while enjoying true privacy

even with respect to the booth.

5The reason the voter has to show a poll worker that all other rows are still covered is to avoid
vote-buying. Otherwise, a voter can be paid for voting with an encrypted value that starts, say,
with a specific sequence, effectively forcing a random vote.

46

5.4.3 Reducing the ballot’s size

We can reduce the ballot’s size using two techniques from [AR06]: pseudo random

number generators and bar-codes.

Many of our computations require long random numbers. First, we can replace the

long random numbers with much shorter numbers used as seeds for a pseudo random

generator. The generator’s results are used as the required long random numbers.

Then, we can use bar-codes to replace string format.

47

Chapter 6

Conclusions

Chaum and Neff introduced bare-handed voting. Their protocols are coercion-resistance,

but in their protocols the voter has to tell the booth what his vote is. We introduce

the notion of bare-handed voting with pre-processing and show a simple bare-handed

extension of existing protocols. Technically, we use ElGamal re-encryptions over the

protocols of [CGS97] or [SK95]. Our technique uses NIZKP (which are not receipt-

free) but is still receipt-free because these proofs are given for all candidates. This

part is similar in spirit to current paper ballots elections. Moreover, testing the booth

with a cut-and-choose test is common practice and appears in many protocols. We

use a similar idea here to test also the voter, and therefore we get privacy (even

against the booth), coercion-resistance and unforgeability.

6.1 Future work

Several challenges remain open. Our protocol (similar to previous protocols) requires

two physical assumptions: first, that a public-board is available, and second, that

some kind of private, recordable channel exists between the booth and the voter.

Another interesting problem is: can we build a human-verified digital signature

(a signature which can be checked by a human without a computer device)? This

problem relates to the public-board realization. If we could build such a public-

board which anyone can see anywhere, then we do not need human-verified signatures

48

(because other authorities, with computers, could check it and publish their results

on the public board). Similar, if we could find such a signature, then a signed receipt

will be enough and could replace the stronger variation of a public board.

Other challenges concern to our protocol specifically: Can we ease the voter’s

part in the voting process? Can we support write-in ballots? Can we relax our

requirements from the public-board?

Last, the biggest challenge of electronic voting is still open: find an unforgeable

and private electronic voting protocol which the average voter can easily use. The

voter may use any reasonable devices (e.g., a smart-card or big screens) but still be

confident that his vote is properly casted and counted.

49

Bibliography

[Ano07] Anonymous reviewers, 2007.

[AR06] Ben Adida and Ronald L. Rivest. Scratch and vote: Self-contained paper-

based cryptographic voting. In Workshop on Privacy in the Electronic

Society (WPES), pages 29–40, 2006.

[BFP+01] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern,

and Guillaume Poupard. Practical multi-candidate election system. In

PODC, pages 274–283, 2001.

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-

tions. In STOC, pages 544–553, 1994.

[CG96] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation.

In FOCS, pages 504–513, 1996.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and

optimally efficient multi-authority election scheme. In EUROCRYPT,

pages 103–118, 1997.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO,

pages 199–203, 1982.

[Cha04] David Chaum. Secret-ballot receipts: True voter-verifiable elections.

IEEE Security and Privacy, 2(1):38–47, 2004.

50

[Cha07] David Chaum. Punchscan, http://punchscan.org, April, 2007.

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers.

In CRYPTO, pages 89–105, 1992.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical voter-

verifiable election scheme. In ESORICS, pages 118–139, 2005.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem

provably secure against adaptive chosen ciphertext attack. In CRYPTO,

pages 13–25, 1998.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero

knowledge proofs based on a single random string. In FOCS, pages 308–

317, 1990.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret

voting scheme for large scale elections. In ASIACRYPT, pages 244–251,

1992.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions

to identification and signature problems. In CRYPTO, pages 186–194,

1986.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. In CRYPTO, pages 10–18, 1985.

[Gro03] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In

PKC, pages 145–160, 2003.

[Har03] Beverly Harris. Black Box Voting: Vote Tampering in the 21st Century.

www.blackboxvoting.org, 2003.

[Hir01] Martin Hirt. Multi-Party Computation: Efficient Protocols, General Ad-

versaries, and Voting. PhD thesis, ETH Zurich, 2001.

51

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on ho-

momorphic encryption. In EUROCRYPT, pages 539–556, 2000.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant

electronic elections. In Workshop on Privacy in the Electronic Society

(WPES), pages 61–70, 2005.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets

robust for electronic voting by randomized partial checking. In USENIX

Security, pages 339–353, 2002.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wal-

lach. Analysis of an electronic voting system. In IEEE Symposium on

Security and Privacy, pages 27–40, 2004.

[KSW05] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic voting

protocols: A systems perspective. In USENIX Security, pages 33–50,

2005.

[LTR+06a] David Lundin, Helen Treharne, Peter Y. A. Ryan, Steve Schneider, and

James Heather. Distributed creation of the ballot form in pret a voter

using an element of visual encryption. In Workshop On Trustworthy

Elections (WOTE), 2006.

[LTR+06b] David Lundin, Helen Treharne, Peter Y. A. Ryan, Steve Schneider, James

Heather, and Zhe Xia. Tear and destory: chain voting and destruction

problems shared by pret a voter and punchscan and a solution using visual

encryption. In Workshop on Frontiers in Electronic Elections (FEE),

2006.

[MBC01] Emmanouil Magkos, Mike Burmester, and Vassilios Chrissikopoulos.

Receipt-freeness in large-scale elections without untappable channels. In

IFIP Conference on Towards The E-Society (I3E), pages 683–694, 2001.

52

[MN06] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with

everlasting privacy. In CRYPTO, pages 373–392, 2006.

[Nef01] Andrew Neff. A verifiable secret shuffle and its application to e-voting.

In ACM Conference on Computer and Communications Security (CCS),

pages 116–125, 2001.

[Nef04] Andrew Neff. Practical High Certainty Intent Verification for Encrypted

Votes, www.votehere.com/vhti/documentation/vsv-2.0.3638.pdf, 2004.

[NS94] Moni Naor and Adi Shamir. Visual cryptography. In EUROCRYPT,

pages 1–12, 1994.

[Oka98] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale

elections. In Workshop on Security Protocols, pages 25–35, 1998.

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted party.

In EUROCRYPT, pages 522–526, 1991.

[Ped92] Torben P. Pedersen. Distributed Provers and Verifiable Secret Sharing

Based on the Discrete Logarithm Problem. PhD thesis, Aarhus University,

1992.

[Pfi94] Birgit Pfitzmann. Breaking efficient anonymous channel. In EURO-

CRYPT, pages 332–340, 1994.

[Rey05] David J. Reynolds. A method for electronic voting with coercion-free

receipt. In Workshop on Frontiers in Electronic Elections (FEE), 2005.

[RS07] Ronald L. Rivest and Warren D. Smith. Threevotingprotocols: Three-

ballot, vav, and twin. In Electronic Voting Technology Workshop (EVT),

2007.

[RSA83] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for ob-

taining digital signatures and public-key cryptosystems. Communications

of the ACM, 26(1):96–99, 1983.

53

[Rya05] Peter Y. A. Ryan. A variant of the chaum voter-verifiable scheme. In

Workshop on Issues in the Theory of Security (WITS), pages 81–88, 2005.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme

and its application to electronic. In CRYPTO, pages 148–164, 1999.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612–613, 1979.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - A prac-

tical solution to the implementation of a voting booth. In EUROCRYPT,

pages 393–403, 1995.

[Tho] Thomas edison biography at http://www.thomasedison.com/biog.htm.

[Wik07a] Wikipedia. 2004 united states presidential election controversy, voting

machines, October, 2007.

[Wik07b] Wikipedia. Electronic voting examples, October, 2007.

[ZS93] Yuliang Zheng and Jennifer Seberry. Immunizing public key cryptosys-

tems against chosen ciphertext attacks. IEEE Journal on Selected Areas

in Communications, 11(5):715–724, 1993.

54

Appendix A

Publicly verifiable secret sharing

A publicly verifiable secret sharing scheme has two improvements over the secret

sharing scheme from Section 3.2: anyone can verify that the dealer sent valid shares,

and, when a player reveals his share, anyone can verify that it is his real share. We

show a Publicly Verifiable Secret Sharing protocol, presented by [Sch99]:

• A group Gq of prime order q and two generators g, h ∈ Gq are publicly selected

(e.g., by choosing random primes p and q such that q|p− 1 and taking Gq to be

the unique subgroup of Z∗p of order q).

• Each player Pi (i = 1 . . . N) selects a secret key xi ∈R Z∗q and publishes a public

key hi = hxi .

• Let s be the secret that the dealer wants to share. The dealer picks a random

t− 1 degree polynomial with coefficients in Zq and set a0 = s -

α(x) =
t−1∑
j=0

aj · xj (A.1)

He publishes t commitments Ci = gai for i = 0 . . . t− 1, and, encrypted shares

Si = h
α(i)
i for i = 1 . . . N .

He proves using a non-interactive ZKP that for each i ∈ [1..N] that -

logg(
t−1∏
j=0

Cij

j) = loghi
Si (A.2)

55

We note that
t−1∏
j=0

C ij

j =
t−1∏
j=0

(gaj)ij =
t−1∏
j=0

gaj ·ij = g
∑t−1

j=0 aj ·ij = gα(i) and therefore

fulfilling equation A.2 proves that the published commitments and shares are

valid.

When t players wish to reconstruct the secret, each publishes si = S
1/xi

i and a

non-interactive ZKP that loghhi = logsi
Si in order to prove that his share is correct.

Lets denote by Pk1 , . . . , Pkt the group of t players. Now, the secret can be calculated

using lagrange interpolation, but instead of summing si-s we multiply them in the

next form -

t∏
j=1

s
λkj

kj
=

t∏
j=1

(hα(kj))λkj = h
∑t

j=1 α(kj)·λkj = hs (A.3)

where the λkj
-s are the corresponding lagrange coefficients.

56

