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Abstract

Many works on probabilistic space bounded algorithms try to show that probabilistic
logspace computation is weak, i.e., can be derandomized and be done in deterministic
small space. In this work we take a step aside, and go in another direction. Instead
of asking "How can we derandomize probabilistic space-bounded algorithms?” we ask
"What good can we make out of the probabilistic power we have?”.

We focus on the problem of approximating eigenvalues of stochastic Hermitian
operators. Solving the problem with polynomially-small accuracy, would essentially
imply that one can approximately compute linear algebra in full for such operators
already in BPL. In this paper we achieve approximations only for constant accuracy.
Our technique is new (at least as far as we know). We also show that going beyond
constant accuracy requires a new idea.

We do not have a conjecture as to whether such a better approximation is possible
in BPL or not, and we believe solving this problem is important, and may shed new
light on the strengths and weaknesses of the probabilistic space bounded model. We

hope the paper would stimulate this line of research.






Chapter 1

Introduction

One of the most basic questions in complexity theory is whether randomness buys extra
computational power or not. Two famous instantiations of the problem are the time

and space versions of it, namely the BPP ZPand BPLZ L problems.

The time bounded model. Impagliazzo and Wigderson [IW97] showed that if there
exists a language in E that requires sub-exponential size circuits then P = BPP.
Thus, if non-uniformity does not help solving natural uniform languages, then
randomness does not help either. Many people see that as conclusive evidence that
randomness does not help. A weak converse (that derandomization implies lower

bounds on non-uniform computation) was shown by Kabanets and Impagliazzo
[KTI04].

Yet, there are problems for which we know an efficient probabilistic algorithm,
but not a deterministic one. Polynomial identity testing (PIT) is a prominent
example (perhaps, in a sense, a canonical one — see [KI04]). Another example
is approximating the permanent. Exactly computing the permanent of a matrix
with 0,1 entries is #P complete. Jerrum, Sinclair and Vigoda [JSV04] showed
a randomized FPRAS (fully polynomial randomized approximation scheme) ap-
proximating the permanent of such matrices. If PromiseBPP = P there exists a
deterministic polynomial time approximation scheme (FPTAS) to the problem
[DTS14], but no such algorithm is known to date.

The space-bounded model. Nisan [Nis92] constructed a pseudo-random generator
(PRG) against non-uniform algorithms with logarithmic space that uses seed
of length O(log2 n). Using that he showed BPL is contained in the class having
simultaneously polynomial time and O(log? n) space. Saks and Zhou [SZ99] showed
BPL is contained in DSPACE(log!®n). Reingold [Rei08] showed undirected st-
connectivity (which was shown to be in RL by [AKL"79]) already belongs to
L.

Thus, in the space bounded model, there are unconditional derandomization

results. Yet, we currently do not know a PRG with seed length o(log2 n), nor



a general derandomization result that simultaneously uses o(log2 n) space and

polynomial time.

There is a lot of work trying to extend the PRG and the derandomization results in
the space-bounded model, often by supplying a better result for specific, more restricted
models ([BRRY14, BPW11, Dell, IMZ12, RSV13, SVW14] to cite a few). In this work
we take a step aside, and go in another direction. Instead of asking ”How can we
derandomize probabilistic space-bounded algorithms” we ask ”What good can we make
out of the probabilistic power we have?”.

Thus, instead of looking ”"down” below RL we look "up”. We know that

NC! C L CRL € NL € DET € NC? C DSPACE(O(log?®n)),

where DET is the class of languages that are NC! Turing reducible to the problem
intdet of computing the determinant of an integer matrix. See [Coo85] for a definition
of DET (and also of NCk). As it turns out, many important problems in linear algebra
(like inverting a matrix, or equivalently, solving a set of linear equations) is in DET,
and often complete for it, see again [Coo85]. The fact that NL C DET is due to [Coo85]
who showed that the directed connectivity problem, STCON is reducible to intdet.
DET C NC? follows from Csansky’s Algorithm [Csa76] for the parallel computation of
the determinant. BPL C DET is a corollary of the fact that matrix powering is DET
complete.

Recently, it was shown [TS13] how to approximate the singular value decomposition
(SVD) of a given linear operator in BQL, which is the quantum space bounded class
of computation using only O(logn) qubits.! With that, one can approzimately invert
a matrix in BQL and approximate all the singular values of a linear operator and all
the eigenvalues of a Hermitian operator in BQL. In a sense, what we see is an analogue
of what is known regarding the permanent. Computing the permanent exactly is #P
complete but approximating it is in BPP. Similarly here computing the SVD exactly is
DET complete while approximating it is in BQL.

The question we tackle is whether one can do the same already in the classical
world, namely, we ask whether one can approximate the spectrum in BPL. Thus, unlike
previous works we are not trying to show that probabilistic logspace computation is
weak, but rather we would like to use its strength to show we can solve problems we
currently cannot solve deterministically.

We remark that recently there was another ”de-quantumization” attempt on the
algorithm of [HHL09, TS13] by Ben-Or and Eldar [BOE13] who developed new classical
matrix inversion algorithms based on the above quantum algorithm. However, Ben-Or

and Eldar are concerned with the time complexity of the algorithm and their algorithm

Tt is not difficult to see that BQL C DET [DTS14].



requires polynomial space.

1.1 Approximating eigenvalues of a matrix

One thing we can clearly do in BPL is simulate stochastic processes over n states. A
random walk on a graph is such a process. In fact one may convert a BPL computation
to a stochastic operator A, such that the probability the machine moves from s to ¢
in k steps is A¥[s, 1], see, e.g., [Nis92]. We know we can output an approximation of
its spectrum in BQL. We ask: suppose we are given a stochastic operator A. Can we
approximate its spectrum in BPL?

We do not know how to answer this question, and we further relax it in several ways.
First, we work with stochastic processes corresponding to walks over undirected graphs.
For such graphs Reingold showed that the connectivity problem can be solved in L
[Rei08]. A simple observation shows we can actually work with Hermitian operators
(see the first paragraph in Chapter 4). In such a case eigenvalues and singular values
essentially coincide (i.e., they are the same except for, possibly, their sign). Second,
instead of asking to approximate the whole spectrum, we further relax the problem and

ask about a single eigenvalue. I.e., we would like to solve the following promise problem:

Definition 1.1. (EV, g(A)) We are given as input a stochastic, Hermitian matrix A
of norm 1, A € [-1,1] and a < . The promise problem has the following Yes and No

instances:

Yes instances : There is an eigenvalue \; of A such that [\, — A\| < a.

No instances : All eigenvalues of A are S—far from .

The BQL algorithm solves the above problem for any Hermitian operator A whose

c T

eigenvalues are well separated, say 7 =n"¢ a = 7 and = 2a. With such polynomial
accuracy one can turn the solution of the promise problem to a procedure approximating
the whole spectrum.

We, however, do not achieve polynomially small accuracies. Instead, we prove that
for any two constants o < 3 the above promise problem belongs to BPL. Before going on
we encourage the reader to think about the promise problem with constant parameters
a < B. In what follows we explain our technique and its limitations and give a short

description of an attempt to bypass this limitation.

1.2 Proof idea

The starting point of this work is the observation that for many operators A we can
approximate high powers of A in small space, i.e., we can approximate A*[s,t] in BPL

for any k£ polynomial in n with polynomially good accuracy. We call such an operator



simulatable (see Definition 3.1). As explained before, BPL naturally corresponds to
random walks on stochastic operators, and it is not hard to see that this implies that
if A is the transition matrix of a directed graph then A is simulatable (see Lemma
3.2). We extend this to any stochastic matrix (see Section 3.1). We also extend this
to non-stochastic operators, even with negative or complex entries, as long as the
matrix has bounded infinity norm, namely, those matrices A for which all rows i € [n]
have bounded ¢; norm, };|A[i, j]| < c for some constant c, see Section 3.2. We also
apply this method in order to approximate matrix functions. Specifically, the matrix
exponential, sine and cosine, which appear in the quantum logspace algorithm. However,
here we can only handle limited parameters, see Section 3.3.

Our main result, solving EV, g(A) for constants a < 3, is obtained by considering
the action of certain polynomials on a matrix. If A is simulatable and p is a univariate
polynomial with not too large coefficients (i.e., all coefficients have magnitude polynomial
in n) then we can approximate the entries of the matriz p(A) (that is obtained by
evaluating p over the ring of matrices) by using the BPL matrix power approximations.
An important observation is that if A is Hermitian (or normal) we can view the action
of p on A as the action of p on the eigenvalues of A, see the discussion after Theorem
4.1.

In this work we choose p to be a polynomial that has a peak around A and decays
fast otherwise. Applying p on A amplifies the eigenvalues a—close to A to a value close
to 1, and damps eigenvalues f—far from A close to 0. Thus, Tr (p(A)) approximately
counts the number of eigenvalues close to A\. The quantum algorithm, although stated
in a completely different way, can also be interpreted that way. The function p we
work with is essentially the majority (or a general threshold function). We work with
logarithmic-degree polynomials, as the majority function for higher degrees has super-
polynomial large coefficients. With such parameters we can obtain arbitrarily small
constant accuracy. See Chapter 4.

There are many other candidate functions for such a polynomial p. However, we
prove in Theorem 5.1 that no polynomial can do significantly better than the above.
Le., if we insist on not too large coefficients, no polynomial p can achieve better than
constant accuracy.

We then consider a multi-stage approach where we first take A and approximate
some pi(A) from it. We then run the above amplification step, via p, on p;(A). As
logspace reductions compose we can do constant number of p; compositions, followed
by a single composition of p. This essentially amounts to composting two (or a constant
number of) polynomials of degree log n, and results in a polynomial of degree poly(logn).
However, for the above to work we need to find p; that not only expands gap, but
also does not increase the /o, norm of A too much. In Section 6.1 we study this
approach with the Féjer kernel, which is essentially the function underlying the quantum
protocol. We find that the function amplifies well gaps, has small coefficients, and also

by numeric experiments, often does not increase the /o, norm beyond a small fixed



constant. However, we showed numerically (and also gave theoretical evidence) that
there are graphs where the ¢, norm becomes super-constant. We therefore cannot
employ the above approach to achieve super-constant accuracy for general undirected
graphs.

We believe it is highly natural to explore what probabilistic logspace can achieve
and not only what can be derandomized. We also believe approximating eigenvalues is
a natural problem. Solving the problem in full (i.e., with polynomial accuracy) would
essentially imply that one can approximately compute linear algebra in full (for stochastic,
Hermitian operators) already in BPL. In this paper we achieve approximations only for
constant accuracy. Our technique is new (at least as far as we know). We also show
going beyond constant accuracy requires a new idea. We do not have a conjecture as to
whether such a better approximation is possible in BPL or not, and we believe solving
this problem is important, and may shed new light on the strengths and weaknesses of

the probabilistic space bounded model.






Chapter 2

Preliminaries

2.1 Space bounded probabilistic computation

A deterministic space-bounded Turing machine has three semi-infinite tapes: an input
tape (that is read-only); a work tape (that is read-write) and an output tape (that is write-
only and uni-directional). The space complexity of the machine is the number of cells on
the work tape. The running time of a space-bounded Turing machine with s(n) > logn
space complexity is bounded by 20(s(n) time. A probabilistic space-bounded Turing
machine is similar to the deterministic machine (and in particular always halts within
20(s(M) time) except that it can also toss random coins. One convenient way to formulate
this is by adding a fourth semi-infinite tape, the random-coins tape, that is read-only,
uni-directional and is initialized with perfectly uniform bits. We are only concerned with
bounded-error computation: we say a language is accepted by a probabilistic Turing
machine if for every input in the language the acceptance probability is at least 2/3,
and for every input not in the language it is at most 1/3. As usual, the acceptance
probability can be amplified as long as there is some non-negligible gap between the

acceptance probability of yes and no instances.

Definition 2.1. A language is in BPSPACE(s(n)) if it is accepted by a probabilistic
space bounded TM with space complexity s(n). BPL = U.BPSPACE(clogn).

Often we are interested in computing a value (e.g., an entry in a matrix with integer
values or the whole matrix) and are only able to approximate it with a probabilistic
machine. More precisely, assume there exists some value v = u(z) € R that is determined
by the input z € {0,1}". We say a probabilistic TM M (z,y) (4, e)—approximates u(z)
if:

Voepoyr  Tr (IM(z,y) —u(x)| =] <e (2.1)

The values M (z,y) are almost always close to the correct value u(z), but highly
depend on y, and thus change from one execution of M to another. In fact, we can do
better:



Lemma 2.2. (based on [SZ99]) Suppose M (x,y) (0, €)-approzimates u(x) using O(log 5-)
space. Let ¢ > 0 be arbitrary. Then, there exists another probabilistic TM M'(z,y;s)
with |yl = O(log 57) and [s| = O(log ¢™1), and there ezists a function u'(z,s) such that:

e Foralls, |u'(z,s) —u(z)| < 0.
o Pry[Pry[M'(z,y;s) = u(z,8)] <1—¢] <C(.

In words, throughout the computation we have two kinds of random bits: few
random bits s that we toss and keep (offline random bits) and many random bits y
that we toss and forget (as usual in space bounded computation). The main thing to
notice is that M’ almost always outputs a single value u/(z, s) that does not depend on

the random coins y, and this value is almost always close to the desired value u(z).

2.2 Matrices and random walks

For a positive integer n, we denote [n] = {1,...,n}. A" is the (conjugate) transpose of
a matrix A. For a vector v € C" and p > 0, ||v|, is the £, norm, ||v|[, = (>, |vg|P) /P
As p approaches infinity, the ¢, norm approaches the infinity norm [|v||s = max; |v;].
||v]| denotes the 5 norm of v.

For a matrix A € C,,xp,, the operator norm corresponding to the ¢, norm is ||Al[, =
max|,|,—1 || Av|p. The special case of p = 2, the spectral norm, is also the largest

singular value of the operator A. Also, ||Al|c is
Al = max 3 Al
j

For every p (including infinity), ||Av|l, < ||Allpllv|l,- When p is not stated explicitly, we
denote [|A]| as the induced ¢2 norm of v. Note that the following well-known inequality
always holds: [|A| e < /n||4|. Also, for any U,V € R™*™ such that [|[U||o < 1 and
IV||loo <1 and for any nonnegative integer p, [|[UP — VP| o < p||U — V| so-

We can view a directed or undirected graph G = (V, E') over n vertices, as a linear
operator that describes the transition probabilities of a random walk on G. Specifically,
let A be the adjacency matrix of the graph. Let D be a diagonal matrix D with
D(i,i) = dout(v;) for every i € [n]. Then the transition matriz of G is the linear
operator A = D1 A. Notice that A is stochastic and corresponds to a random walk on

G.

Claim 2.3. Let A be a stochastic matriz. Then, 1, is an eigenvector of A with

eigenvalue 1. All other eigenvalues have absolute value at most 1.

Proof. As the sum of every row of A is exactly 1, A1, = 1, so 1, is an eigenvector
with eigenvalue 1. Now assume there exists an eigenvector v with eigenvalue A. Then,
|AV |0 = [A|||v]|oo- Also, as A is stochastic ||Aljco =1 50 [|AV|loo < || Allcol|V]loe < ||V]loo
and |A| < 1. O

10



Claim 2.3 shows that the largest eigenvalue of any (directed or undirected) graph is
1. However, the largest singular value of a graph might be larger than 1. For example,
the undirected graph {{1,3},{2,3}} on V = {1, 2,3} has the transition matrix

00 1
A=1o0 0 1
230

and SVD decomposition

20 2\ (V2 0 0\ [0 -2 2\
_ | V2 2 V2 2 V2
A=|2 o 2 0 L o|fo —2 L2,

0 -1 0 o o o/\1 o o

so its largest singular value is v/2 > 1.

11
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Chapter 3
Simulatable matrices

A random walk on a graph G (or its transition matrix A) can be simulated by a
probabilistic logspace machine. As a consequence, a probabilistic logspace machine can
approximate well powers of A. Here we try to extend this notion to arbitrary linear
operators A, not necessarily stochastic. We say a matrix A is simulatable if any power

of it can be approximated by a probabilistic algorithm running in small space. Formally:

Definition 3.1. A matrix A of dimension n is simulatable if ||A|| < poly(n) and there
exists a probabilistic algorithm that on input A, k € N, s,¢ € [n], runs in space O(log g—’;)
and (9, ¢)-approximates A¥[s, t].

As expected, the transition matrix of a (directed or undirected) graph is simulatable.

Namely,

Lemma 3.2. Let G = (V, E) be a directed or undirected graph with n vertices and let

A be its transition matriz. Then, A is simulatable.

Proof. Let k € N, s,t € [n] and €, > 0. Consider the algorithm that on input k, s, t,
takes T" independent random walks of length k over G starting at vertex s. The algorithm
outputs the ratio of walks that reach vertex ¢. Let Y; be the random value that is 1
if the 7’th trial reached ¢ and 0 otherwise. Then, for every i, E[Y;] = A¥[s,t]. Also,
Y1,...,Yr are independent. By Chernoff,

T
1
Prl| = Y Yi = Afls, ] 28] < 2¢~20°T
=1

Taking T = poly(d~!,loge™!), the error probability (i.e., getting an estimate that is
0 far from the correct value) is at most . Altogether, the algorithm runs in space
O(log(Tnk|E|)) = O(log(nké~!) + logloge™!), assuming | E| = poly(n, k). O

Intuitively, any stochastic matrix corresponds to a walk on some directed graph. A
technical issue is that the entries of the matrix might have high precision beyond our

small space capabilities. In Section 3.1 we deal with this problem and show:

13



Lemma 3.3. Let A be a stochastic matriz of dimension n. Then, A is simulatable.

In fact, this can be further generalized to any real matrix A (with possibly negative
entries) with bounded infinity norm, i.e., for every row r the sum of the absolute values

of the entries in row 7 is at most 1. In Section 3.2 we show:

Lemma 3.4. Let A be a real matriz of dimension n such that ||Allcc < 1. Then, A is

simulatable.

However, for matrices A that have infinity norm slightly larger than 1 we give a

disappointing answer. For such matrices we prove (in the above section):

Lemma 3.5. Let A be a real matriz of dimension n such that ||Al|cc < 14 for vy > 0.
Then, there exists a probabilistic algorithm that on input A, k € N, s,t € [n], runs in
space O([klog(1l+ )] + log g—f) and (0, ¢)—approzimates A¥[s,t].

Notice that when the infinity norm is bounded by 1 or less, we can simulate in
probabilistic logspace high powers k, namely k£ can be polynomial in n, while for infinity
norm above 1 we can only support k that is logarithmic in n. We prove both lemmas in
the next section. This result is tight in general, as, for e.g., ||(21uxn)*|lco = 2¥.

As explained in the introduction, one motivation to our research is exploring whether
the quantum algorithm for approximating the SVD decomposition of a linear operator,
can be made classical for stochastic matrices. The quantum algorithm proceeds by
viewing an undirected graph GG with transition matrix A as a Hamiltonian describing
the unitary transformation U = e*4. We show that if A is simulatable then small powers

of U = €' can also be approximated in BPL. Specifically,

Lemma 3.6. Let A be a simulatable matriz of dimension n, k an integer. Let U = e*A.

Then, there exists a probabilistic algorithm that on input A, k and s,t € [n], runs in
space O(|k|(1+ || Allc) + log &) and (6, €)—-approzimates U[s, t].

The proof of this lemma appears in Section 3.3. Apart from matrix exponentials
the above lemma implies the approximation of the matrix sine and cosine, as for every
A€ C sin(A) = 3 (e — e7™) and cos(A) = (e + e74).

We conclude with a simple observation:

Corollary 3.1. There exists a probabilistic algorithm TRPOWER(A, n,k,d,¢) that gets
as input a simulatable matriz A of dimension n and k € N, and (§, ) —approximates
Tr (A%) using O(log g—’;) space.

3.1 Stochastic matrices are simulatable

Intuitively, any stochastic matrix corresponds to a walk on some directed graph. A

technical issue is that the entries of the matrix might have high precision beyond our

14



small space capabilities. To deal with that we truncate the matrix to the desired
precision,

Following [SZ99], we define the truncation operator | |¢ as a function mapping any
real number z € [0, 1] and integer ¢ to |z]¢ obtained by truncating the binary expansion
of z after ¢ binary digits. Thus, |z]c =27¢[2%2|. The truncation operator is extended
to matrices by simply applying it entry by entry. It is obvious that this operator maps
stochastic matrices to substochastic matrices, namely, those matrices with all entries
nonnegative and all row sums at most 1. Also, clearly | M — [ M J¢|ls < n27C.

We utilize the truncation operator to describe a space-bounded random walk on a

graph originating from the stochastic matrix. We define:

Definition 3.7. (Truncated transition graph) Given a stochastic matrix A of dimension
n and an integer ¢, denote A = |A|.. Then, the truncated transition (directed) graph
G(A,¢) = (V, E) is defined as follows:

e V={0,1,...,n}.

e For every i, j € [n] there are 2A(i, j) edges going from vertex i to j.

e For every i € [n] there are 2¢ (1 — Z?’:l fl(i,j)) edges going from vertex ¢ to 0.
e There is one edge going from 0 to itself.

We are now ready to prove that stochastic matrices are simulatable.

Proof. (of Lemma 3.3) Let k € N, s,t € [n] and €,5 > 0. Denote ¢ = [log(knd—1) + 1]
and G(A, () = (V, E) the truncated transition graph of A. Note that the number of

edges in G is n - 2¢ + 1. The transition matrix of G is of the form

e A

where A = | A, 0, is a row vector of zeros and e is such that e(i) = 1 — > i1 A(i, 7)

. 1 0
Ak = .
( by Ale Ak>

Let the labeling of rows and columns of A start from 0. Now, consider running the

for every i € [n]. Then,

algorithm described in Lemma 3.2 on G to obtain a (§/2,¢)-approximation of A¥(s,t).
Denote the algorithm’s outcome by M (k, s,t). Then, we obtain with probability at least

1—e¢,

|M(k757t) - Ak(svt” + |Ak(sat) - Ak(svt)|
§/2 + [|A* — A¥||
< §/24k-n-27¢ < 4.

|M (k,s,t) — A¥(s, 1))

IN

IN

15



The algorithm runs in space O(lognkd~!|E| + logloge™!) = O(lognkd~! 4 logloge™1).
As the sum of every row of A is exactly 1, ||Al|sc = 1, implying ||A|| < /n, so A is

simulatable. O

3.2 Matrices with bounded infinity norm are simulatable

In the previous section we were dealing with matrices with non-negative entries. Now,
we would like to extend the above results to arbitrary real matrices, with positive or
negative entries, as long as they have bounded infinity norm. Given a real’ matrix A of
dimension n and a constant c, recall that ||Alo < cif for every i € [n], > ; [A[i, j]| < c.
We show that if ¢ < 1, A is simulatable. For ¢ > 1, however, we obtain a much weaker
result.

Given a bounded matrix A, let d;(A) = >, [Ali, j]|. Define a mapping ¢ such that
w(A)[i,j] = mhﬁl[i,jﬂ. It is immediate that ¢(A) is stochastic. We prove Lemma 3.4,
which states that if ||Al|cc < 1 then A is simulatable.

Proof. (of Lemma 3.4) Let k € N, s,t € [n] and €, > 0. Note that:

AFlst] = DN " Y Alsyia] - Alinig] - - Afig-a, t]

i1=lipg=1  ip_1=1

- ey 3 Ml M Al i),

i1=lig=1  ix_1=1 th—1

where

do(A) - diy (4) ... i, (4)
sgn (A[S,il] . A[il,ig] L— A[ikfl,it]) '

p(A7 <87i177:27 o 7ik717t>) -

Fix, as before, ¢ = [log(knd~!)+1]. Let G = G(p(A),() be the truncated transition
graph of ¢(A) and let A be its transition matrix. First, assume that in the appropriate
indices, A = ¢(A) (i.e., the entries of ¢(A) can be accurately represented using ¢ bits).

Consider the algorithm that on input k, s, t, takes T independent random walks of
length k£ over G starting from vertex s. Iterating over all random walks, the algorithm
approximates + >, y(i), where y(i) = p(A, i) if the walk i reached ¢, and 0 otherwise.
Correspondingly, let Y; be the random value that is p(A, ) if the ¢’th walk reached ¢
and 0 if it did not. Then,

EY;] = Y3 - Y Alsyia]- Alinyig] - .- Alig—1, 8] p(A, (5,01, ... ip-1,t))

i1=lig=1  ip_1=1

= Af[s,1].

! In what follows, by generalizing the sign of an entry to its phase, the result easily applies to complex
matrices as well.

16



Denote the algorithm’s outcome by M (k,s,t). As in Lemma 3.2, and using the fact
that [p(A,7)| <1, the algorithm can (9, e)—approximates E[Y;] by choosing T which is
poly(6~1,loge™!). Following the same analysis as of Lemma 3.2, the algorithm runs in
O(lognkd~! + logloge™!) space.

We now consider the general case, where Ais only an approximation to p(A). Let
V € R™™" be such that E[Y;] = V¥[s,t]. Then ||V — Aljoc < n-27¢ and |[VF[s,t] —
AF[s,t]| < k-n-27¢ < 6. Overall, the algorithm (24, ¢)-approximates A¥[s,t] in this
case as well, with the same space requirements. As || A|| < y/n, we conclude that A is

simulatable. O

The case where ¢ > 1 now also follows easily:

Proof. (of Lemma 3.5) Consider the matrix A’ = (1 +7)71A. As ||A'||c < 1, A’ can be
simulated. Since A*[s,t] = (1+ )k A®[s,t], (1 +~) %6 accuracy is sufficient in order to
(6, ¢)-approximate A¥[s,t]. The result follows directly from Lemma 3.4. O

3.3 Matrix exponentials are simulatable to small powers

Proof. (Lemma 3.6) Consider the Taylor expansion of U*,

) e k4€A4€ k4€+2A4Z+2 o0 k4€+1A4€+1 k4€+3A4Z+3
o B )
=0

40!~ (4l+2)! A+ 10!l (4+3)!

Let U be the approximation obtained by taking the first overall T terms for 7'+ 1 =
[e2|k|(1 + ||Alloo) + In(2n671)]. Then, the truncation error can be bounded as follows
[GVLY6, Theorem 11.2.4]%.

nszAHZo—H max HeisAH
oo

L~
— oo<
177 = Ulleo < (T+1)! o<s<k

Playing with the parameters:

. n|jikA| L ekl Al T 6
UF — 0 < [k Allss™ jikalls < nelHllAl ( |zl|!Jr 1|oo) <!

(T + 1)

We now approximate the truncated series by (&', e")-approximating powers of A, for
— ﬁ and ¢ = ¢/T. We approximate the real part and imaginary part separately.
4 4

For the real part, the accumulated accuracy error is ZZT:M oven %6’ . However, %
maximizes at £ = |k| and using Stirling formula it is bounded by 4/%l < 47 Thus, the

accumulated error is at most 747§’ < §/4 and the same holds for the imaginary part.

2The theorem is stated with ||-|| replacing ||-||co, but the proof also proves the claim as we state.
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Adding it to it the truncation error (that we showed is at most §/2) the truncation
error is at most 8. The error probability is at most T’ = «.

The space complexity is bounded by O(log T + log nTd'~1e'~1) = O(|k|(1 + || Al|so) +
lognd—te 1). O
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Chapter 4

Approximating eigenvalues with

constant accuracy

In this chapter we try to approximate the eigenvalues of the transition matrix of an
undirected graph. Consider an undirected graph G = (V, E) with an adjacency matrix
A and degree matrix D and let A = DA be its transition matrix, as described in
Chapter 2. Note that unless G is regular, A need not be Hermitian. However, consider
the matrix ' L = D~Y/24AD~Y/2. L is Hermitian and thus has an eigenvector basis.
A= DY2LDY2 so A is conjugate to L and A itself is also diagonalizable and has
real eigenvalues. A is stochastic, so from Claim 2.3 we infer that its eigenvalues are in
the range [—1,1]. The matrix we work with is B = $A + 11,,,,,, which is stochastic,
has eigenvalues in the range [0, 1], and whose eigenvectors are in a natural one-to-one
correspondence with A’s eigenvalues.

So assume we have a matrix B, with a full eigenvector basis and real eigenvalues
0< A\, <... <A < 1. The ultimate goal is to output an approximation of its spectrum
in small space. We do not know how to do that, nor whether this is possible or not.
Instead, we achieve a much more modest goal: we show a probabilistic algorithm that
approximates with constant accuracy whether there exists an eigenvalue close to a given

value X\ or not. Formally,

Theorem 4.1. There exists a probabilistic algorithm that on input B as above, constants
B >a>0 and X € [0,1] such that:

e There are d eigenvalues \; satisfying |\ — \;| < a.
o All other eigenvalues \; satisfy |\ — \;j| > B.

outputs d with probability at least 2/3. Furthermore the algorithm runs in probabilistic
space O(logn).

The parameters «, 3 describe the accuracy of the algorithm. The accuracy we achieve

is far from being satisfying. The matrix B has n eigenvalues in the range [0, 1], so the

!The matrix £ = I — L is usually referred to as the normalized Laplacian of a graph.
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average distance between two neighboring eigenvalues is 1/n. Thus, the assumption that
there is an interval of length 5 — o with no eigenvalue is often not true. The desired
accuracy we would like to get is o(1/n). Having such accuracy would enable outputting
an approximation of the whole spectrum of B, using methods similar to those in [TS13],
thus getting a true classical analogue to the quantum algorithm in [TS13]. However,
we do not know how to achieve subconstant accuracy. The question whether better
accuracy is possible in BPL is the main problem raised by this work. Even proving
Theorem 4.1 with its constant accuracy is non-trivial.

The main idea behind the algorithm is to manipulate the eigenvalues of B by
computing a polynomial in the input matrix B, without knowing the decomposition of
B to eigenvectors and eigenvalues. More precisely, assume B decomposes to B = VDV !
where V' is invertible and D diagonal with B’s eigenvalues on the main diagonal. Then,
B* =V DFV~! and

A0 0
Dk: — 0 0
0 0 M

n

Thus, if p: R — R is a degree 7" univariate polynomial p(z) = Z;TFZO c;zt then p(B) =
ZZT:O CiBi is

pM) 00
pB)=V| o . o |V
0 0 p(\)

In particular, if p : R — R has a peak around A and is close to 0 otherwise, then
Tr (p(B)) approximately counts the number of eigenvalues B has around A. Thus, if we
can compute p(B) in small probabilistic space, we can solve the problem.

More formally, we assume p(z) = Zf\io c;xt can be efficiently computed in the sense
that M, |c;| = 206(™) and for every i, ¢; can be computed (exactly) by a deterministic
Turing machine that uses O(s(n)) space. We further assume p(z) has a sharp peak
around A, i.e., p(x) > 1—nfor x € [A\—a, \+a] and p(x) < nfor z € [0, 1]\ (A\—B, A+ ).

In the next section we show how to obtain such a polynomial p with s(n) = O( 0 Blo_go’f)z)

2

and n =n(n) =n"
Having that, we are ready to present the algorithm. The input to the algorithm is
n, A\, a, 3. We set M = s(n) = 32(8 —a)2logn, & =6 -2725" and ¢’ =¢.275("),

The algorithm evaluates

M
Z ¢; - TRPOWER(A, n,i,d,¢'))
=0

where TRPOWER is the probabilistic algorithm guaranteed by Corollary 3.1.

Lemma 4.1. The algorithm runs in space O(s(n) +log(nd—te™1)).
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Proof. The algorithm has a loop over i. For every i it stores ¢; (that can be computed
in O(s(n)) space), and TRPOWER(A,n,i,0’,&") (that can be computed in O(s(n) +
log(nd'~te'~1)) space). As Tr (A?) < n, the number of bits required to store the output
is also bounded by O(s(n)), obtaining the desired space complexity. O

Lemma 4.2. The algorithm (0, ¢)-approximates Tr (p(A)).

Proof. As Tr (p(A)) =Y, ¢;Tr (AY), applying Corollary 3.1 we obtain that with proba-
bility at least 1 — 25(We/ =1 — ¢,

deg(p)
> ¢ (Tr (A") — TRPOWER(A, n,i,8,¢'))| < §'2%() = 4. (4.1)
=0 OJ

With that we can complete the proof of Theorem 4.1.

Proof. (of Theorem 4.1) Consider R(B, \), the above approximation of Tr (p(B)) with
§ =n"? and € = 1/3. Then, from Lemma 4.2, with probability at least 2/3,

R(B,\) < Tr (p(B))+9d

< )+ D pa)+9
=M <o it A —A[>B
< d+(n—dn+d

< d+ (nmp+9).

Similarly, R(B,A) > d — (nn+ ). As for large enough n, nn+ § < 1/2, d is obtained
by taking the integer closest to R(B, \).

From Lemma 4.1, the space complexity for computing d is given by O(s(n) +
log(nd—te™1)) = O(logn). O

4.1 Using the symmetric threshold functions

There are several natural candidates for the function p above. In this section we use
the threshold function to obtain such a function p. Assume A is rational, A = % for

some integers k and M. Define:
M\ . M
— i1 — —i
pA(z) ;:k < ; >90 (1-x)

p approximates well the threshold function Thy(z) : [0,1] — {0, 1} that is one for

x > A and zero otherwise. Specifically,

Lemma 4.3. Let x € [0,1]. pa(x) approzimates Thy(x) over [0,1] with accuracy

(E(6))M= | where § = /\:C;x and £(8) = ﬁ.
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Proof. px(x) represents the probability of getting at least k 1-s, in M independent
trials X;, each getting 1 with probability . The lemma then follows by Chernoff. Set
p=Mz. If § >0, then x < k/M so Thy(z) =0 and

M 9 u
pa(z) = Pr [Z} Xi>(1+0)p| < <(1+5)1+5> : (4.2)
If § <0, Thy(z) = 1 and
M e H
pa(z) =1—Pr [; Xi<(l+dop| = 1- <(1+5)1+5) . (4.3)
In both cases, |pr(z) — Thy(z)| < (£(5))M=. O

Let us now express py(z) as a polynomial in x, p)(z) = Zi]\io c;x'. We have,

i = 35 (s 31 ()

Therefore, ¢; = (=1)'> 5 _\u (j )( Z.fj])(—l)J and |c;| < 7% 5\ (j)( l-,j]) <
M ( A%Q)Q = 20(M) " Furthermore, ¢; can be computed (exactly) by a deterministic
Turing machine that uses O(M) space by simply running through the loop over j, each

time updating the current result by (—1)7 (];4) (]\f__f)

To obtain the polynomial p define:

p(x) = pr-alz) = prya(@).

where M = 32(8 — a) 2logn and A = (a + 3)/2.

Lemma 4.4. p(x) > 1 —n"2 for every x that is a—close to \ (i.e., |x — \| < o) and
p(x) < n=2 for every x that is B—far from \ (i.e., |z — N > B).

Proof. We show that pyia approximates Thyia for x > A+ g and x < A+ «, and
pr_A approximates Thy_a for z > A — « and x < A\ — . Specifically, the following
bounds hold:
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<n2 >1—n2 <n~

p ? 2
>0 <n7?/2 >1-n"2/2
Prx+A ?
<n72%/2 >1-n"2/2 <1
br—-A ?
1 1 1 1 1 1
0 A—pf A — A A+« A+
£

Let us show that the middle entry is correct. For |z — (A 4+ A)| > (8 — «)/2 and
0= %, the approximation error is (£(6))M*, and if 6 > 0,

2 (z=(A+A))?
(g(é))MI < e_SSWMx < e~ At M

< e—(a:—()\+A))2M/2 < n_2/2,

and if —1 < 6 <0,

(E@)M < o FM/2 < @ OHANPM/2 < =2 g

Similar calculations also holds for other entries. So indeed p(z) = pr_a(z) — prsa(z)

satisfies the required conditions. O
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Chapter 5

An approach for approximating
eigenvalues with enhanced

accuracy

We first formalize the above properties of p that were useful to us. We say that
P = {pAv"}/\e[O 1nen 1S a family of polynomials if for every A € [0, 1] and n € N there is

a univariate polynomial py ,, with coefficients in R.

Definition 5.1. (Small family) Let P be a family of polynomials and fix A € [0, 1]. For

every n € N, write py ,(z) = Z?i%(m’") canit'. We say the family is s(n)-small if,

o deg(prn) < 25("),
e For every 0 <i < deg(pan), [cani| <2°0", and

e There exists a deterministic Turing machine running in space s(n) that outputs

CAn,05 -+ s Cxn,deg(pa,n)*

Definition 5.2. (Distinguisher family) Let P be a family of polynomials and fix n € N.
Given a < fin (0,1) and n < 1/2, we say the family is (o, 3, n)-distinguisher for
A€ 0,1],

e For every = € [0,1] that is a—close to A, pxn(x) € [1 —n,1], and

e For every = € [0,1] that is ffar from A, py ,(z) € [0, 7].

As in the previous chapter, let B have a full set of real eigenvalues 0 < A, <
... < A1 < 1. Also, assume there exist matrices V and D such that V is invertible,
B =VDV~!and D is diagonal with B’s eigenvalues. We further assume that || B[ < 1.

We would like to try and relax the conditions of Theorem 4.1 and in particular for
any given A to reduce the promised interval in which there are no eigenvalues (i.e., to

reduce the gap 5 — «) and also to improve the accuracy of the result (i.e., to reduce «).
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Unfortunately, finding threshold families of polynomials that are O(log n)-small and

have o and f that are o(1) is impossible. For that we use:

Lemma 5.3. [Tim63, Theorem 2.9.11] Let T,,(x) be the Chebyshev polynomial (of the
first kind) of degree n. Then, if the polynomial P,(z) = >"" c;xt satisfies the inequality

|Pp(z)| < L on the segment [a,b] then at any point outside the segment we have

2r —a—>b
n (2]

For properties of the Chebyshev polynomials see [Riv74, Chapter 1.1]. We mention

| Pr(2)| < L-

a few properties that we use. An explicit representation of T, (x) is given by

(w— x2—1>n+(x+m>
2

n

Th(z) =

We can also see that |T,,(—xz)| = |T(z)| and that T}, is monotonically increasing for
x > 1. Also,

Ta(1+2) < (142 + /(T e — 1)” < (1+4VE)" <elmvE<otnVE  (51)

for 0 < e < 1. With that we prove:

Theorem 5.1. Let «, 3, \,n be such that o < 3, A+ 3 < %, B =o(1) and n = o(n~1).
Then there is no («, B,n)—distinguisher family for X that is O(logn)—small.

Proof. Assume there exists such a family {p%n}/\e[o 1)nen With s(n) = ' logn. We first
show that without loss of generality p has logarithmic degree. Let ry ,,(x) be the residual
error of truncating py ,(x) after clogn terms, for ¢ that will soon be determined. Also,

w.l.o.g., assume x € [0,1) is bounded away from 1. Then:

deg(p)\,n) x
/

@ < Y eanal -2t <0t
i=clogn+1

clogn
8 1 nc/fclog(l/a:)

l—-z " 1—=x

' +2—log(1—x)
log(1/x)
We now show that O(logn)—degree polynomials cannot decay around A fast enough.

So, by taking ¢ = | ] we obtain 7y ,(z) < n=2.

Assume to the contrary that there exists such a distinguisher family, so |px,(z)] < n~!
for x € [\ + $3,1]. Then, following Theorem 5.3 we have that:

‘p)\,n(/\)’

IN
S
|

. Tc-logn %ﬁi,}l)’
- nil : Tc-logn 1+ %)‘ By ‘Tn(x)‘ = ’Tn(—.’li)‘
< nl Tegn (1 +48)| By the monotonicity of T;,(z) for > 1 and A+ 8 < §

By Equation (5.1) |px,(\)| < n—1232cVBlogn < p=1432VB - Ag B = o(1) for n large
enough we have |py,(\)| < n~'/2, contradicting the fact that [py,(\)| >1—-n"t O
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Theorem 5.1 leads us to consider instead a multi-stage approach. suppose B has
the promise that all eigenvalues are either a—close to A or f—far from A, but § — « is
too small to be handled using the techniques of Chapter 4. We say we can ezpand the
gap (a, ) to a larger gap (o, 3') if we can find a polynomial p; with the property that
the number of eigenvalues of B in [\ — a, A + @] equals the number of eigenvalues of
p1(B) in [N — o/, N + /] and similarly for 8 and 8’. That is, p1 amplifies the small gap
(ar, B) to a larger gap (¢/,3"). Then, we can first compute pi(B) using a small-space
algorithm, and then run the algorithm of Theorem 4.1 on pi(B).

However, for this approach to work, it is crucial that p;(B) is simulatable. The only
way we know to guarantee that p;(B) is simulatable is by bounding the infinity norm
of p1(B) and using Lemma 3.4. In Chapter 6 we explore this framework with p; being
the Féjer kernel, which is the function that appears in the quantum logspace algorithm
for approximating the spectrum of a matrix. We find out the function is small and
distinguishing, but unfortunately it does not always preserve the infinity norm. The

bottom line is that currently we cannot get this framework to work.
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Chapter 6

The Féjer kernel

Throughout, we extend the notion of a matrix polynomial to a general matrix function,
whereas its computation is done via truncating the function’s Taylor series. See [Hig08]
for a comprehensive treatment of matrix functions. We use the same notation for a
function of a real variable and a function of a matrix, as it is clear from context.

0,1],TeN (T will be

a function of n) that is computable in probabilistic small space, amplifies gap and

As noted, we need a distinguisher family of functions {fx 7}, el

preserves the infinity norm. All properties will soon be formally described. The function
we consider as a candidate is the (normalized) Féjer kernel. It plays a central role in
Fourier analysis (see [Hof07, Chapter 2]), and more interestingly, as the probability
density function involved in the measurement of a quantum phase estimation circuit

(see [KLMO7, Chapter 7] or [NC00, Chapter 5] for more details).
The Féjer kernel has the following form:

| T2 k
fr(z) = — Z 1+2Zcos(jaj)
k=0 Jj=1
1 2=
= — 4+ — (T — k) cos(kx). (6.1)
T T2 pt

Up to removable discontinuities, it can also be written as:

sin?
fre) = 2o 2 6.2)

T? sin?

ol

ML)

so it is immediate that the function is even, and for every x and T' > 0, fr(x) € [0, 1].
It is then natural to set fr(z) = fr(z — A). Equation (6.1), together with Lemma 3.6,

shows:

Claim 6.1. Let A be a simulatable matriz of dimension n, an integer T > 0, X € [0, 1]
and let U = fr(A — Myxn). Then, there exists a probabilistic algorithm that on input
A, T, X and s,t € [n], runs in space O(T + log 5-) and (6, ) -approzimates Uls, t].
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Also, fr is a good distinguisher:

Lemma 6.2. The family {fTv)\}TeN,)\e[O,l] s a (%, 2%, 1/4) ~distinguisher. Also, for

every T € N, fr(x) is monotonically decreasing in [0, %]

Proof. Fix T € N. By differentiation of Equation (6.1) we infer that:

M=

fr@) =~

T2 k(T — k) sin(kz).

k=1

Hence, fr(0) =1 is a maxima. Also, for x € (0, %], sin(kxz) > 0 for every 0 < k <T —1
so fr(z) < 0 and thus monotonically decreasing there.
The fact that for « > 27/T, fr(z) < 1/4 follows from [HS65, Section 18]. Now, for

x < w/(2T), we have fr(xz) > fr(r/(2T)). And indeed,

T 1 1 1 1672
fr (ﬁ) POTNCIIERY > — >

T T2 95in? (4T) — T2 272 ’ -

>~ w

The last lemma concerns amplification.

Lemma 6.3. LetT >0,0<c; <ca <2 andco > Tci. Then, the following hold, for

every integer m > 0 and large enough T'.

—m 2 —-m
1. fT (01T72+2 ) >1-— %Tﬁ2+2 +1.
2. f (C T—2+2*m) <1_ (ﬁ i C%*C%) p-2+27m
- JT 2 = 12 96 :

Proof. First, by definition, and using cos(xz) > 1 — % and Z;}F:_(} Z§:1 §2 < %,

o T-1 k (cle—2+2—m) P
fT(ClT—2+2—m) > 1- T Z 5 > 1 17§T_2_~_2—m+1
k=0 j=1
For the second part, by definition,
9 T—1 k
fr(aT2*27) — fr(eT 27" = T2 Z coS (C1jT_2+27m) — CoS <02jT_2+27m>,
k=0 j=1

As cos(c1z) — cos(com) > 1(cd — ¢})a? for ¢o < 2 and ZZ:_OI Sk 2> i

j=1J = 24>
T-1 k
Fr@T 22 7") = T = 533 (G -d) (i)
k=0 j=1
2 _ .2 .
Z 65 " (& T72+2 +1 ‘ (6 3)
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From the Taylor expansion of fr, we infer that fr(z) <1+ 1—12(1 —TH2? + %x{ SO

_ 2 _ 2 N2 A N
242"y _ [ _ Gp-2vemmtt) o GO <T—2+2 m) ‘1 (T—1+2 m) A
prte 22 - (1= 41 <4 v (6.4

For m > 1, the right hand side of (6.4) is o(T2+2"""") (w.r.t. T). Thus, for large
enough T,

—m 2 —m 1 C2 - C2 —m+1
T—2+2 (1 G2t} 2 QT G242
frie ) < 12 =92 7R ’
which considering (6.3), implies that
2 2 2
22T oo g 94 T-2+27
Jrlez ) s <12 LT

For m = 0, (6.4) becomes:

12 360 — 12 90’

2 22 4 2p—2 2
c ciT c ciT c
1> < 4 1 4 1

501

and for large enough 7', fr(c1) <1 — =3+. Therefore, following (6.3) and the fact that

c3 > 3¢}, we obtain:

2 2 2
c5 — ¢} 2 3c3—
< — < 1-—
fries) < frle) === < <12 144 )
2 2 2 2 2 2
c c5—c 2 —3c2 c5—c
< 1- (& 2 1 2 1) <« 1_ < 2 1) O
- <12 + 72 + 144 - 12 + 96

The last property we required is norm preservation. That is, given that A satisfies
our mentioned properties and has a bounded infinity norm (let us say by 1), there exists
a universal constant C' so that || frA(A)]|cc < C for every T and A € [0, 1]. The Féjer
kernel does not satisfy the norm preservation, at least not without imposing further

restrictions on A, as we show in Section 6.2.

6.1 The multistage framework with the Féjer kernel

For the role of p;, the gap expanding polynomial, consider the family of functions

{1} rcoaren such that A € [0,1], fra(B) = fr(B — Muxn) for every A € [0,1],
T = O(logn) and fr is the Féjer kernel. Recall that ||B||cc < 1. We further restrict B

to satisfy the following assumption.

Assumption 6.4. There exists an explicit universal constant C such that for every
A€ (0,1, [fra(B)]loe < C.

We begin with some intuition. Assume we are given a promise on the eigenvalues’

separation around A. Specifically:
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e There are d eigenvalues \; of B satisfying |A — \;| < iT‘l.
e All other eigenvalues \; satisfy [\ — \;| > 271

Following Lemmas 6.2 and 6.3, fr\ has a peak around A and it increases the gap in

such a way that there exist positive constants ¢; > ¢y so that:
e There are d eigenvalues \; of fr\(B) satisfying A; > ¢;.
e All other eigenvalues A; satisfy \; < co.

Indeed, the problem of finding the number of eigenvalues of B around A reduces to
finding the number of eigenvalues of fr (B) above a certain threshold. Moreover, we
expanded the gap from O(T~!) to a constant. Note that the tradeoff is that we cannot
necessarily approximate fr (B) to high powers. Therefore, we continue working with
c1 JfrA(B) instead. This matrix is simulatable, so the above promise problem can be

solved by the technique presented in Chapter 4.

Remark. In fact, given a constant m > 1, constant number of compositions can expand

a gap of O(T~2%2™™) to a constant gap by considering the following matrix:

GrmB) = C ' fro1 (CV fro (- C M o1 (CTH fra(B)) -++))

where fr -1 is iterated m times. By slightly strengthening Assumption 6.4, Gx 7.m(B)
is simulatable and its eigenvalues around 1 are in one-to-one correspondence with the

eigenvalues of B around A. However, for simplicity, we only concern the case of m = 1.

Lemma 6.5. Given A\ € [0,1], T > 0 and constants 0 < a < B < 2 satisfying' B > Ta,

assume the following holds:
e There are d eigenvalues \; of B satisfying |\ — \;| < T~ 1.
o All other eigenvalues satisfy | X — \;| > BT~ 1.

Then, for some positive constants 1 > o, there are d eigenvalue \; of fr\(B) satisfying

Ai > 71 and all other eigenvalues satisfy A; < ~o.

Proof. From Lemma 6.2 and Lemma 6.3, there are d eigenvalues \; of fr (B) satisfying

A > fT(aT_l) >1-— ‘i‘—; Also, following Lemma 6.3, there are no eigenvalues satisfying

a2 52_a2 a2
- =+ ) <Ni<1l——
<12+ 96 )—)"< 12’

as desired. 2 O

'For the simplicity of the proofs, we do not attempt to optimize the constants’ constraints.
2_42 a? 2 . oy .
2 Also, note that %+ﬂT/‘}—§ = % > 7, so multiple compositions can be made, expanding
smaller gaps.
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We shall now state that the above transformation can be approximated probabilis-
tically in small space. Its proof follows directly from Claim 6.1, Assumption 6.4 and

Lemma 3.4.

Lemma 6.6. Let B be a matriz of dimension n that satisfies Assumption 6.4, T =
O(logn) and X € [0,1]. Then, C~1f, 7(B) is simulatable.

The analogue of the above lemma for constant number of compositions (see the
above remark) uses Lemma 2.2, that assures a truncated fixed approximation for every
computation level, with high probability. Following the above discussion, we can now

prove our main theorem for this chapter.

Theorem 6.1. There exists a probabilistic algorithm that on input B and A € [0, 1]
such that B is as above (specifically, satisfying Assumption 6.4), and

e There are d eigenvalues \; satisfying |\ — \;| < %log_1 n.

o All other eigenvalues \; satisfy |\ — \;| > 2log™ ! n.

outputs d with probability at least 2/3. Furthermore the algorithm runs in probabilistic
space O(logn).

Proof. The eigenvector basis of X = C~! fr \(B) is the same as this of B, as eigenvectors
are preserved under matrix polynomials (and, due to Cayley-Hamilton, every matrix
function representable as an infinite series corresponds to a finite degree polynomial).
Thus, following the properties of the Féjer kernel, X satisfies the conditions of Theorem
4.1. Also, it is easy to see that the proof of Lemma 6.5 determines the exact computation
(in logarithmic space) of the pre-assumed « and 5.

In what follows, we use the notations of Chapter 4. As the algorithm of Theorem
4.1 requires reading the entries of X multiple times, we use Lemma 2.2, that implies
the existence of a matrix X’ whose entries are computable in O(logn) space, such that
with probability at least 5/6, | X’ — X |loo < n 22735 regardless of the random coin
tosses. We can also safely assume that || X'|| < 1 (otherwise, simply truncate the
entries, resulting in a controllable loss of accuracy).

Consider running the algorithm guaranteed from Chapter 4 with § = n=2/2 and
e =1/6 on X', obtaining R(X’, \). We infer that

[R(X',A) = R(X,\)| < |Tr (p(X') — p(X))] +2nd
< n-2%M| X — X'|| oo 4 206 < 2071,

so running the algorithm on X’ returns, with high probability, the same result as running
the algorithm with X itself, hence returning the number of eigenvalues in the given
range with probability at least 2/3, as desired. Also, the space complexity needed to
compute X, X’ and R(X’,\) is bounded by O(logn). O
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6.2 The Féjer kernel blows up the /., norm

We argue that the transition matrix of the hypercube graph does not satisfy Assumption
6.4. However this result, amongst other numerical trials that are not brought here, does
not dismiss the possibility that more restricted class of matrices, such as transition
matrices of undirected regular graphs of constant degree, does satisfy the assumption.

In what follows, we use definitions and notations from the theory of Cayley graphs
and discrete Fourier analysis. See [Trell] and [dWO08] for the exact definitions. Also,
we denote ey, be a vector with 1 in the k-th entry and 0 elsewhere (its dimension will be
clear from the context).

For every integer d > 0, let G be the group {0, 1}d with the bitwise XOR operations.
Let Qq = Cay(G,{e1,...,eq}) be the corresponding Cayley graph, also what is known
as the hypercube graph. Namely, the graph whose vertices correspond to elements of
{0, 1}d and two vertices are adjacent if and only if they differ in exactly one coordinate.
Set n = 2% and define A to be the n x n transition matrix of Qg.

It is well known that A has a full set of eigenvectors, corresponding to the n characters
of G. That is, for every r,z € {0,1}%,

va::L q;:i_ S i
r (] \/ﬁx’”( ) \/ﬁ( 1) ,

where we map elements between {0,1}* and [n] in the obvious way. Correspondingly,

the eigenvalues of A satisfy

A =

[SHN

5 |

xr(e) =1—2—.

; d

=1

Therefore, A =73" _ (0.1} Arvrvf so fp(A), where fr is the Féfer kernel3, is given by

fr(4) = Z fT()‘T)UTU;[-

re{0,1}¢

For every r € {0,1}%, let g(r) = fr(1 — 2|r|/d) (the dependency on T becomes implicit).
Then, we can consider g to be a function from {0,1}% to [0,1] and it is also immediate
that g is symmetric, i.e. its value does not change under permutation of indices. The

infinity norm of fr(A) is given by:

Il fr(A)||co = max Z g(r)elvwiea = max Z g(r)v,[blvy[a]l .

beln] a€[n] |ref0,1}9 el a€[n] |re{0,1}*

However, note that ) _|>, g(r)v.[a+b]| is the same for every b € [n] (as different

3 We consider fr rather than fr for simplicity. The results are the same.
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values of b correspond to permutations of the first row), so it is sufficient to take

Ir@le= Y |5 X @)= X i)

ae{0,1}4 re{0,1}¢ ae{0,1}4

where g(a) is the Fourier coefficient. Hence, if we define a vector of all coefficients g,
Il fr(A)|lco = ||g]l1, also known as the spectral norm of the function g.
Although no results concerning the spectral norm of symmetric functions over

4

continuous ranges are known, * numerical experiments suggests that in our case,

llg]l1 = ©(d), implying that the hypercube graph is a counterexample for our assumption.

4 Useful bounds on the spectral norm are known when the range of ¢ is Boolean. In [AFH12], the
following Theorem is proven:

Claim 6.7. [AFH12, Theorem 1.1] For a function g : {0,1}* — {—1,1}, let 7o and 1 be the minimum
integers less than d/2 such that f(x) or f(x) - PARITY(x) is constant for x with |z| € [ro,n — r1]. Define
r(g) = maxro,r1. Then, for any symmetric function g : {0,1}* — {—1,1}, we have

log gl =© (’"(f) log %)

wherever r(f) > 1.
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Chapter 7

Further directions

The results of Chapter 6 give rise to the following question.

Question 7.1. Given an Hermitian matrix A of dimension n with eigenvalues that are

well-separated and in [0, 1], and an integer T = poly(n), can the entries of €4 be

approximated in O(logn) space, by a probabilistic algorithm, with high probability?

Or, more generally,

Question 7.2. Can any unitary matrix be simulated?

If the answer to either question is affirmative, then fr\(A) can be approximated
for every A € [0,1] and T that is poly(n). Then we could use the following claim from
[KLMO07, Chapter 7].

e For every = € [~1,1] such that |z| < 7, fr(z) > % .

e For every z € [—1,1] such that |z| > %, fr(x) < 2(\/:17_1).

Then, even for promise parameters o and § that are polynomially small we can use the

algorithm of Chapter 4 in order to extract the eigenvalues of A using Tr (f7,A(A)) with
T = poly(n).
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