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Abstract

Many works on probabilistic space bounded algorithms try to show that probabilistic

logspace computation is weak, i.e., can be derandomized and be done in deterministic

small space. In this work we take a step aside, and go in another direction. Instead

of asking ”How can we derandomize probabilistic space-bounded algorithms?” we ask

”What good can we make out of the probabilistic power we have?”.

We focus on the problem of approximating eigenvalues of stochastic Hermitian

operators. Solving the problem with polynomially-small accuracy, would essentially

imply that one can approximately compute linear algebra in full for such operators

already in BPL. In this paper we achieve approximations only for constant accuracy.

Our technique is new (at least as far as we know). We also show that going beyond

constant accuracy requires a new idea.

We do not have a conjecture as to whether such a better approximation is possible

in BPL or not, and we believe solving this problem is important, and may shed new

light on the strengths and weaknesses of the probabilistic space bounded model. We

hope the paper would stimulate this line of research.
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Chapter 1

Introduction

One of the most basic questions in complexity theory is whether randomness buys extra

computational power or not. Two famous instantiations of the problem are the time

and space versions of it, namely the BPP
?
= P and BPL

?
= L problems.

The time bounded model. Impagliazzo and Wigderson [IW97] showed that if there

exists a language in E that requires sub-exponential size circuits then P = BPP.

Thus, if non-uniformity does not help solving natural uniform languages, then

randomness does not help either. Many people see that as conclusive evidence that

randomness does not help. A weak converse (that derandomization implies lower

bounds on non-uniform computation) was shown by Kabanets and Impagliazzo

[KI04].

Yet, there are problems for which we know an efficient probabilistic algorithm,

but not a deterministic one. Polynomial identity testing (PIT) is a prominent

example (perhaps, in a sense, a canonical one – see [KI04]). Another example

is approximating the permanent. Exactly computing the permanent of a matrix

with 0, 1 entries is #P complete. Jerrum, Sinclair and Vigoda [JSV04] showed

a randomized FPRAS (fully polynomial randomized approximation scheme) ap-

proximating the permanent of such matrices. If PromiseBPP = P there exists a

deterministic polynomial time approximation scheme (FPTAS) to the problem

[DTS14], but no such algorithm is known to date.

The space-bounded model. Nisan [Nis92] constructed a pseudo-random generator

(PRG) against non-uniform algorithms with logarithmic space that uses seed

of length O(log2 n). Using that he showed BPL is contained in the class having

simultaneously polynomial time and O(log2 n) space. Saks and Zhou [SZ99] showed

BPL is contained in DSPACE(log1.5 n). Reingold [Rei08] showed undirected st-

connectivity (which was shown to be in RL by [AKL+79]) already belongs to

L.

Thus, in the space bounded model, there are unconditional derandomization

results. Yet, we currently do not know a PRG with seed length o(log2 n), nor
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a general derandomization result that simultaneously uses o(log2 n) space and

polynomial time.

There is a lot of work trying to extend the PRG and the derandomization results in

the space-bounded model, often by supplying a better result for specific, more restricted

models ([BRRY14, BPW11, De11, IMZ12, RSV13, SVW14] to cite a few). In this work

we take a step aside, and go in another direction. Instead of asking ”How can we

derandomize probabilistic space-bounded algorithms” we ask ”What good can we make

out of the probabilistic power we have?”.

Thus, instead of looking ”down” below RL we look ”up”. We know that

NC1 ⊆ L ⊆ RL ⊆ NL ⊆ DET ⊆ NC2 ⊆ DSPACE(O(log2 n)),

where DET is the class of languages that are NC1 Turing–reducible to the problem

intdet of computing the determinant of an integer matrix. See [Coo85] for a definition

of DET (and also of NCk). As it turns out, many important problems in linear algebra

(like inverting a matrix, or equivalently, solving a set of linear equations) is in DET,

and often complete for it, see again [Coo85]. The fact that NL ⊆ DET is due to [Coo85]

who showed that the directed connectivity problem, STCON is reducible to intdet.

DET ⊆ NC2 follows from Csansky’s Algorithm [Csa76] for the parallel computation of

the determinant. BPL ⊆ DET is a corollary of the fact that matrix powering is DET

complete.

Recently, it was shown [TS13] how to approximate the singular value decomposition

(SVD) of a given linear operator in BQL, which is the quantum space bounded class

of computation using only O(log n) qubits.1 With that, one can approximately invert

a matrix in BQL and approximate all the singular values of a linear operator and all

the eigenvalues of a Hermitian operator in BQL. In a sense, what we see is an analogue

of what is known regarding the permanent. Computing the permanent exactly is #P

complete but approximating it is in BPP. Similarly here computing the SVD exactly is

DET complete while approximating it is in BQL.

The question we tackle is whether one can do the same already in the classical

world, namely, we ask whether one can approximate the spectrum in BPL. Thus, unlike

previous works we are not trying to show that probabilistic logspace computation is

weak, but rather we would like to use its strength to show we can solve problems we

currently cannot solve deterministically.

We remark that recently there was another ”de-quantumization” attempt on the

algorithm of [HHL09, TS13] by Ben-Or and Eldar [BOE13] who developed new classical

matrix inversion algorithms based on the above quantum algorithm. However, Ben-Or

and Eldar are concerned with the time complexity of the algorithm and their algorithm

1It is not difficult to see that BQL ⊆ DET [DTS14].
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requires polynomial space.

1.1 Approximating eigenvalues of a matrix

One thing we can clearly do in BPL is simulate stochastic processes over n states. A

random walk on a graph is such a process. In fact one may convert a BPL computation

to a stochastic operator A, such that the probability the machine moves from s to t

in k steps is Ak[s, t], see, e.g., [Nis92]. We know we can output an approximation of

its spectrum in BQL. We ask: suppose we are given a stochastic operator A. Can we

approximate its spectrum in BPL?

We do not know how to answer this question, and we further relax it in several ways.

First, we work with stochastic processes corresponding to walks over undirected graphs.

For such graphs Reingold showed that the connectivity problem can be solved in L

[Rei08]. A simple observation shows we can actually work with Hermitian operators

(see the first paragraph in Chapter 4). In such a case eigenvalues and singular values

essentially coincide (i.e., they are the same except for, possibly, their sign). Second,

instead of asking to approximate the whole spectrum, we further relax the problem and

ask about a single eigenvalue. I.e., we would like to solve the following promise problem:

Definition 1.1. (EVα,β(A)) We are given as input a stochastic, Hermitian matrix A

of norm 1, λ ∈ [−1, 1] and α < β. The promise problem has the following Yes and No

instances:

Yes instances : There is an eigenvalue λi of A such that |λi − λ| ≤ α.

No instances : All eigenvalues of A are β–far from λ.

The BQL algorithm solves the above problem for any Hermitian operator A whose

eigenvalues are well separated, say τ = n−c, α = τ
4 and β = 2α. With such polynomial

accuracy one can turn the solution of the promise problem to a procedure approximating

the whole spectrum.

We, however, do not achieve polynomially small accuracies. Instead, we prove that

for any two constants α < β the above promise problem belongs to BPL. Before going on

we encourage the reader to think about the promise problem with constant parameters

α < β. In what follows we explain our technique and its limitations and give a short

description of an attempt to bypass this limitation.

1.2 Proof idea

The starting point of this work is the observation that for many operators A we can

approximate high powers of A in small space, i.e., we can approximate Ak[s, t] in BPL

for any k polynomial in n with polynomially good accuracy. We call such an operator
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simulatable (see Definition 3.1). As explained before, BPL naturally corresponds to

random walks on stochastic operators, and it is not hard to see that this implies that

if A is the transition matrix of a directed graph then A is simulatable (see Lemma

3.2). We extend this to any stochastic matrix (see Section 3.1). We also extend this

to non-stochastic operators, even with negative or complex entries, as long as the

matrix has bounded infinity norm, namely, those matrices A for which all rows i ∈ [n]

have bounded `1 norm,
∑

j |A[i, j]| ≤ c for some constant c, see Section 3.2. We also

apply this method in order to approximate matrix functions. Specifically, the matrix

exponential, sine and cosine, which appear in the quantum logspace algorithm. However,

here we can only handle limited parameters, see Section 3.3.

Our main result, solving EVα,β(A) for constants α < β, is obtained by considering

the action of certain polynomials on a matrix. If A is simulatable and p is a univariate

polynomial with not too large coefficients (i.e., all coefficients have magnitude polynomial

in n) then we can approximate the entries of the matrix p(A) (that is obtained by

evaluating p over the ring of matrices) by using the BPL matrix power approximations.

An important observation is that if A is Hermitian (or normal) we can view the action

of p on A as the action of p on the eigenvalues of A, see the discussion after Theorem

4.1.

In this work we choose p to be a polynomial that has a peak around λ and decays

fast otherwise. Applying p on A amplifies the eigenvalues α–close to λ to a value close

to 1, and damps eigenvalues β–far from λ close to 0. Thus, Tr (p(A)) approximately

counts the number of eigenvalues close to λ. The quantum algorithm, although stated

in a completely different way, can also be interpreted that way. The function p we

work with is essentially the majority (or a general threshold function). We work with

logarithmic-degree polynomials, as the majority function for higher degrees has super-

polynomial large coefficients. With such parameters we can obtain arbitrarily small

constant accuracy. See Chapter 4.

There are many other candidate functions for such a polynomial p. However, we

prove in Theorem 5.1 that no polynomial can do significantly better than the above.

I.e., if we insist on not too large coefficients, no polynomial p can achieve better than

constant accuracy.

We then consider a multi-stage approach where we first take A and approximate

some p1(A) from it. We then run the above amplification step, via p, on p1(A). As

logspace reductions compose we can do constant number of p1 compositions, followed

by a single composition of p. This essentially amounts to composting two (or a constant

number of) polynomials of degree log n, and results in a polynomial of degree poly(log n).

However, for the above to work we need to find p1 that not only expands gap, but

also does not increase the `∞ norm of A too much. In Section 6.1 we study this

approach with the Féjer kernel, which is essentially the function underlying the quantum

protocol. We find that the function amplifies well gaps, has small coefficients, and also

by numeric experiments, often does not increase the `∞ norm beyond a small fixed
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constant. However, we showed numerically (and also gave theoretical evidence) that

there are graphs where the `∞ norm becomes super-constant. We therefore cannot

employ the above approach to achieve super-constant accuracy for general undirected

graphs.

We believe it is highly natural to explore what probabilistic logspace can achieve

and not only what can be derandomized. We also believe approximating eigenvalues is

a natural problem. Solving the problem in full (i.e., with polynomial accuracy) would

essentially imply that one can approximately compute linear algebra in full (for stochastic,

Hermitian operators) already in BPL. In this paper we achieve approximations only for

constant accuracy. Our technique is new (at least as far as we know). We also show

going beyond constant accuracy requires a new idea. We do not have a conjecture as to

whether such a better approximation is possible in BPL or not, and we believe solving

this problem is important, and may shed new light on the strengths and weaknesses of

the probabilistic space bounded model.
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Chapter 2

Preliminaries

2.1 Space bounded probabilistic computation

A deterministic space-bounded Turing machine has three semi-infinite tapes: an input

tape (that is read-only); a work tape (that is read-write) and an output tape (that is write-

only and uni-directional). The space complexity of the machine is the number of cells on

the work tape. The running time of a space-bounded Turing machine with s(n) ≥ log n

space complexity is bounded by 2O(s(n)) time. A probabilistic space-bounded Turing

machine is similar to the deterministic machine (and in particular always halts within

2O(s(n)) time) except that it can also toss random coins. One convenient way to formulate

this is by adding a fourth semi-infinite tape, the random-coins tape, that is read-only,

uni-directional and is initialized with perfectly uniform bits. We are only concerned with

bounded-error computation: we say a language is accepted by a probabilistic Turing

machine if for every input in the language the acceptance probability is at least 2/3,

and for every input not in the language it is at most 1/3. As usual, the acceptance

probability can be amplified as long as there is some non-negligible gap between the

acceptance probability of yes and no instances.

Definition 2.1. A language is in BPSPACE(s(n)) if it is accepted by a probabilistic

space bounded TM with space complexity s(n). BPL = ∪cBPSPACE(c log n).

Often we are interested in computing a value (e.g., an entry in a matrix with integer

values or the whole matrix) and are only able to approximate it with a probabilistic

machine. More precisely, assume there exists some value u = u(x) ∈ R that is determined

by the input x ∈ {0, 1}n. We say a probabilistic TM M(x, y) (δ, ε)–approximates u(x)

if:

∀x∈{0,1}n Pr
y

[|M(x, y)− u(x)| ≥ δ] ≤ ε (2.1)

The values M(x, y) are almost always close to the correct value u(x), but highly

depend on y, and thus change from one execution of M to another. In fact, we can do

better:
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Lemma 2.2. (based on [SZ99]) Suppose M(x, y) (δ, ε)–approximates u(x) using O(log n
δε)

space. Let ζ > 0 be arbitrary. Then, there exists another probabilistic TM M ′(x, y; s)

with |y| = O(log n
δεζ ) and |s| = O(log ζ−1), and there exists a function u′(x, s) such that:

• For all s, |u′(x, s)− u(x)| ≤ δ.

• Prs [Pry[M
′(x, y; s) = u′(x, s)] < 1− ε] ≤ ζ.

In words, throughout the computation we have two kinds of random bits: few

random bits s that we toss and keep (offline random bits) and many random bits y

that we toss and forget (as usual in space bounded computation). The main thing to

notice is that M ′ almost always outputs a single value u′(x, s) that does not depend on

the random coins y, and this value is almost always close to the desired value u(x).

2.2 Matrices and random walks

For a positive integer n, we denote [n] = {1, . . . , n}. A† is the (conjugate) transpose of

a matrix A. For a vector v ∈ Cn and p > 0, ‖v‖p is the `p norm, ‖v‖p = (
∑

i |vi|p)
1/p.

As p approaches infinity, the `p norm approaches the infinity norm ‖v‖∞ = maxi |vi|.
‖v‖ denotes the `2 norm of v.

For a matrix A ∈ Cn×n, the operator norm corresponding to the `p norm is ‖A‖p =

max‖v‖p=1 ‖Av‖p. The special case of p = 2, the spectral norm, is also the largest

singular value of the operator A. Also, ‖A‖∞ is

‖A‖∞ = max
r

∑
j

|Ar,j |.

For every p (including infinity), ‖Av‖p ≤ ‖A‖p‖v‖p. When p is not stated explicitly, we

denote ‖A‖ as the induced `2 norm of v. Note that the following well-known inequality

always holds: ‖A‖∞ ≤
√
n‖A‖. Also, for any U, V ∈ Rn×n such that ‖U‖∞ ≤ 1 and

‖V ‖∞ ≤ 1 and for any nonnegative integer p, ‖Up − V p‖∞ ≤ p‖U − V ‖∞.

We can view a directed or undirected graph G = (V,E) over n vertices, as a linear

operator that describes the transition probabilities of a random walk on G. Specifically,

let Ã be the adjacency matrix of the graph. Let D be a diagonal matrix D with

D(i, i) = dout(vi) for every i ∈ [n]. Then the transition matrix of G is the linear

operator A = D−1Ã. Notice that A is stochastic and corresponds to a random walk on

G.

Claim 2.3. Let A be a stochastic matrix. Then, 1n is an eigenvector of A with

eigenvalue 1. All other eigenvalues have absolute value at most 1.

Proof. As the sum of every row of A is exactly 1, A1n = 1n so 1n is an eigenvector

with eigenvalue 1. Now assume there exists an eigenvector v with eigenvalue λ. Then,

‖Av‖∞ = |λ|‖v‖∞. Also, as A is stochastic ‖A‖∞ = 1 so ‖Av‖∞ ≤ ‖A‖∞‖v‖∞ ≤ ‖v‖∞
and |λ| ≤ 1.
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Claim 2.3 shows that the largest eigenvalue of any (directed or undirected) graph is

1. However, the largest singular value of a graph might be larger than 1. For example,

the undirected graph {{1, 3} , {2, 3}} on V = {1, 2, 3} has the transition matrix

A =

0 0 1

0 0 1
1
2

1
2 0


and SVD decomposition

A =


√

2
2 0 −

√
2

2√
2

2 0
√

2
2

0 −1 0



√

2 0 0

0
√

2
2 0

0 0 0


0 −

√
2

2 −
√

2
2

0 −
√

2
2

√
2

2

1 0 0


†

,

so its largest singular value is
√

2 > 1.
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Chapter 3

Simulatable matrices

A random walk on a graph G (or its transition matrix A) can be simulated by a

probabilistic logspace machine. As a consequence, a probabilistic logspace machine can

approximate well powers of A. Here we try to extend this notion to arbitrary linear

operators A, not necessarily stochastic. We say a matrix A is simulatable if any power

of it can be approximated by a probabilistic algorithm running in small space. Formally:

Definition 3.1. A matrix A of dimension n is simulatable if ‖A‖ ≤ poly(n) and there

exists a probabilistic algorithm that on input A, k ∈ N, s, t ∈ [n], runs in space O(log nk
δε )

and (δ, ε)–approximates Ak[s, t].

As expected, the transition matrix of a (directed or undirected) graph is simulatable.

Namely,

Lemma 3.2. Let G = (V,E) be a directed or undirected graph with n vertices and let

A be its transition matrix. Then, A is simulatable.

Proof. Let k ∈ N, s, t ∈ [n] and ε, δ > 0. Consider the algorithm that on input k, s, t,

takes T independent random walks of length k over G starting at vertex s. The algorithm

outputs the ratio of walks that reach vertex t. Let Yi be the random value that is 1

if the i’th trial reached t and 0 otherwise. Then, for every i, E[Yi] = Ak[s, t]. Also,

Y1, . . . , YT are independent. By Chernoff,

Pr[| 1
T

T∑
i=1

Yi −Ak[s, t]| ≥ δ] ≤ 2e−2δ2T

Taking T = poly(δ−1, log ε−1), the error probability (i.e., getting an estimate that is

δ far from the correct value) is at most ε. Altogether, the algorithm runs in space

O(log(Tnk|E|)) = O(log(nkδ−1) + log log ε−1), assuming |E| = poly(n, k).

Intuitively, any stochastic matrix corresponds to a walk on some directed graph. A

technical issue is that the entries of the matrix might have high precision beyond our

small space capabilities. In Section 3.1 we deal with this problem and show:
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Lemma 3.3. Let A be a stochastic matrix of dimension n. Then, A is simulatable.

In fact, this can be further generalized to any real matrix A (with possibly negative

entries) with bounded infinity norm, i.e., for every row r the sum of the absolute values

of the entries in row r is at most 1. In Section 3.2 we show:

Lemma 3.4. Let A be a real matrix of dimension n such that ‖A‖∞ ≤ 1. Then, A is

simulatable.

However, for matrices A that have infinity norm slightly larger than 1 we give a

disappointing answer. For such matrices we prove (in the above section):

Lemma 3.5. Let A be a real matrix of dimension n such that ‖A‖∞ ≤ 1 + γ for γ > 0.

Then, there exists a probabilistic algorithm that on input A, k ∈ N, s, t ∈ [n], runs in

space O(dk log(1 + γ)e+ log nk
δε ) and (δ, ε)–approximates Ak[s, t].

Notice that when the infinity norm is bounded by 1 or less, we can simulate in

probabilistic logspace high powers k, namely k can be polynomial in n, while for infinity

norm above 1 we can only support k that is logarithmic in n. We prove both lemmas in

the next section. This result is tight in general, as, for e.g., ‖(2In×n)k‖∞ = 2k.

As explained in the introduction, one motivation to our research is exploring whether

the quantum algorithm for approximating the SVD decomposition of a linear operator,

can be made classical for stochastic matrices. The quantum algorithm proceeds by

viewing an undirected graph G with transition matrix A as a Hamiltonian describing

the unitary transformation U = eiA. We show that if A is simulatable then small powers

of U = eiA can also be approximated in BPL. Specifically,

Lemma 3.6. Let A be a simulatable matrix of dimension n, k an integer. Let U = eiA.

Then, there exists a probabilistic algorithm that on input A, k and s, t ∈ [n], runs in

space O(|k|(1 + ‖A‖∞) + log n
δε) and (δ, ε)–approximates Uk[s, t].

The proof of this lemma appears in Section 3.3. Apart from matrix exponentials

the above lemma implies the approximation of the matrix sine and cosine, as for every

A ∈ Cn×n, sin(A) = 1
2i

(
eiA − e−iA

)
and cos(A) = 1

2

(
eiA + e−iA

)
.

We conclude with a simple observation:

Corollary 3.1. There exists a probabilistic algorithm TrPower(A,n, k, δ, ε) that gets

as input a simulatable matrix A of dimension n and k ∈ N, and (δ, ε)–approximates

Tr (Ak) using O(log nk
δε ) space.

3.1 Stochastic matrices are simulatable

Intuitively, any stochastic matrix corresponds to a walk on some directed graph. A

technical issue is that the entries of the matrix might have high precision beyond our

14



small space capabilities. To deal with that we truncate the matrix to the desired

precision,

Following [SZ99], we define the truncation operator b cζ as a function mapping any

real number z ∈ [0, 1] and integer ζ to bzcζ obtained by truncating the binary expansion

of z after ζ binary digits. Thus, bzcζ = 2−ζb2ζzc. The truncation operator is extended

to matrices by simply applying it entry by entry. It is obvious that this operator maps

stochastic matrices to substochastic matrices, namely, those matrices with all entries

nonnegative and all row sums at most 1. Also, clearly ‖M − bMcζ‖∞ ≤ n2−ζ .

We utilize the truncation operator to describe a space-bounded random walk on a

graph originating from the stochastic matrix. We define:

Definition 3.7. (Truncated transition graph) Given a stochastic matrix A of dimension

n and an integer ζ, denote Ā = bAcζ . Then, the truncated transition (directed) graph

G(A, ζ) = (V,E) is defined as follows:

• V = {0, 1, . . . , n}.

• For every i, j ∈ [n] there are 2ζĀ(i, j) edges going from vertex i to j.

• For every i ∈ [n] there are 2ζ
(

1−
∑n

j=1 Ā(i, j)
)

edges going from vertex i to 0.

• There is one edge going from 0 to itself.

We are now ready to prove that stochastic matrices are simulatable.

Proof. (of Lemma 3.3) Let k ∈ N, s, t ∈ [n] and ε, δ > 0. Denote ζ = dlog(knδ−1) + 1e
and G(A, ζ) = (V,E) the truncated transition graph of A. Note that the number of

edges in G is n · 2ζ + 1. The transition matrix of G is of the form

Ã =

(
1 0n

e Ā

)

where Ā = bAcζ , 0n is a row vector of zeros and e is such that e(i) = 1−
∑n

j=1 Ā(i, j)

for every i ∈ [n]. Then,

Ãk =

(
1 0n∑k−1

i=0 Ā
ie Āk

)
.

Let the labeling of rows and columns of Ã start from 0. Now, consider running the

algorithm described in Lemma 3.2 on G to obtain a (δ/2, ε)–approximation of Āk(s, t).

Denote the algorithm’s outcome by M(k, s, t). Then, we obtain with probability at least

1− ε,

|M(k, s, t)−Ak(s, t)| ≤ |M(k, s, t)− Āk(s, t)|+ |Āk(s, t)−Ak(s, t)|

≤ δ/2 + ‖Āk −Ak‖∞
≤ δ/2 + k · n · 2−ζ ≤ δ.
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The algorithm runs in space O(log nkδ−1|E|+ log log ε−1) = O(log nkδ−1 + log log ε−1).

As the sum of every row of A is exactly 1, ‖A‖∞ = 1, implying ‖A‖ ≤
√
n, so A is

simulatable.

3.2 Matrices with bounded infinity norm are simulatable

In the previous section we were dealing with matrices with non-negative entries. Now,

we would like to extend the above results to arbitrary real matrices, with positive or

negative entries, as long as they have bounded infinity norm. Given a real1 matrix A of

dimension n and a constant c, recall that ‖A‖∞ ≤ c if for every i ∈ [n],
∑

j |A[i, j]| ≤ c.
We show that if c ≤ 1, A is simulatable. For c > 1, however, we obtain a much weaker

result.

Given a bounded matrix A, let di(A) =
∑

j |A[i, j]|. Define a mapping ϕ such that

ϕ(A)[i, j] = 1
di(A) |A[i, j]|. It is immediate that ϕ(A) is stochastic. We prove Lemma 3.4,

which states that if ‖A‖∞ ≤ 1 then A is simulatable.

Proof. (of Lemma 3.4) Let k ∈ N, s, t ∈ [n] and ε, δ > 0. Note that:

Ak[s, t] =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik−1=1

A[s, i1] ·A[i1, i2] · . . . ·A[ik−1, t]

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik−1=1

|A[s, i1]|
ds(A)

· |A[i1, i2]|
di1(A)

· . . . · |A[ik−1, t]|
dik−1

(A)
· p (A, 〈s, i1, i2, . . . , ik−1, t〉) ,

where

p (A, 〈s, i1, i2, . . . , ik−1, t〉) =
ds(A) · di1(A) · . . . · dik−1

(A)

sgn (A[s, i1] ·A[i1, i2] · . . . ·A[ik−1, it])
.

Fix, as before, ζ = dlog(knδ−1)+1e. Let G = G(ϕ(A), ζ) be the truncated transition

graph of ϕ(A) and let Ã be its transition matrix. First, assume that in the appropriate

indices, Ã = ϕ(A) (i.e., the entries of ϕ(A) can be accurately represented using ζ bits).

Consider the algorithm that on input k, s, t, takes T independent random walks of

length k over G starting from vertex s. Iterating over all random walks, the algorithm

approximates 1
T

∑
i y(i), where y(i) = p(A, i) if the walk i reached t, and 0 otherwise.

Correspondingly, let Yi be the random value that is p(A, i) if the i’th walk reached t

and 0 if it did not. Then,

E[Yi] =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik−1=1

Ã[s, i1] · Ã[i1, i2] · . . . · Ã[ik−1, t] · p(A, 〈s, i1, . . . , ik−1, t〉)

= Ak[s, t].

1 In what follows, by generalizing the sign of an entry to its phase, the result easily applies to complex
matrices as well.
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Denote the algorithm’s outcome by M(k, s, t). As in Lemma 3.2, and using the fact

that |p(A, i)| ≤ 1, the algorithm can (δ, ε)–approximates E[Yi] by choosing T which is

poly(δ−1, log ε−1). Following the same analysis as of Lemma 3.2, the algorithm runs in

O(log nkδ−1 + log log ε−1) space.

We now consider the general case, where Ã is only an approximation to ϕ(A). Let

V ∈ Rn×n be such that E[Yi] = V k[s, t]. Then ‖V −A‖∞ ≤ n · 2−ζ and |V k[s, t] −
Ak[s, t]| ≤ k · n · 2−ζ ≤ δ. Overall, the algorithm (2δ, ε)–approximates Ak[s, t] in this

case as well, with the same space requirements. As ‖A‖ ≤
√
n, we conclude that A is

simulatable.

The case where c > 1 now also follows easily:

Proof. (of Lemma 3.5) Consider the matrix A′ = (1 + γ)−1A. As ‖A′‖∞ ≤ 1, A′ can be

simulated. Since Ak[s, t] = (1 + γ)kA′k[s, t], (1 + γ)−kδ accuracy is sufficient in order to

(δ, ε)–approximate Ak[s, t]. The result follows directly from Lemma 3.4.

3.3 Matrix exponentials are simulatable to small powers

Proof. (Lemma 3.6) Consider the Taylor expansion of Uk,

Uk = eikA =
∞∑
`=0

(
k4`A4`

(4`)!
− k4`+2A4`+2

(4`+ 2)!

)
+ i

∞∑
`=0

(
k4`+1A4`+1

(4`+ 1)!
− k4`+3A4`+3

(4`+ 3)!

)
.

Let Ũ be the approximation obtained by taking the first overall T terms for T + 1 =

de2|k|(1 + ‖A‖∞) + ln(2nδ−1)e. Then, the truncation error can be bounded as follows

[GVL96, Theorem 11.2.4]2.

‖Uk − Ũ‖∞ ≤
n‖ikA‖T+1

∞
(T + 1)!

max
0≤s≤k

‖eisA‖∞

Playing with the parameters:

‖Uk − Ũ‖∞ ≤
n‖ikA‖T+1

∞
(T + 1)!

e‖ikA‖∞ ≤ ne|k|‖A‖∞
(
e|k|‖A‖∞
T + 1

)T+1

≤ δ

2
.

We now approximate the truncated series by (δ′, ε′)–approximating powers of A, for

δ′ = δ
4T ·4T and ε′ = ε/T . We approximate the real part and imaginary part separately.

For the real part, the accumulated accuracy error is
∑T

`=0,` even
|k|`
`! δ
′. However, |k|

`

`!

maximizes at ` = |k| and using Stirling formula it is bounded by 4|k| ≤ 4T . Thus, the

accumulated error is at most T4T δ′ ≤ δ/4 and the same holds for the imaginary part.

2The theorem is stated with ‖·‖ replacing ‖·‖∞, but the proof also proves the claim as we state.
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Adding it to it the truncation error (that we showed is at most δ/2) the truncation

error is at most δ. The error probability is at most Tε′ = ε.

The space complexity is bounded by O(log T + log nTδ′−1ε′−1) = O(|k|(1 + ‖A‖∞) +

log nδ−1ε−1).
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Chapter 4

Approximating eigenvalues with

constant accuracy

In this chapter we try to approximate the eigenvalues of the transition matrix of an

undirected graph. Consider an undirected graph G = (V,E) with an adjacency matrix

Ã and degree matrix D and let A = D−1Ã be its transition matrix, as described in

Chapter 2. Note that unless G is regular, A need not be Hermitian. However, consider

the matrix 1 L = D−1/2ÃD−1/2. L is Hermitian and thus has an eigenvector basis.

A = D−1/2LD1/2, so A is conjugate to L and A itself is also diagonalizable and has

real eigenvalues. A is stochastic, so from Claim 2.3 we infer that its eigenvalues are in

the range [−1, 1]. The matrix we work with is B = 1
2A + 1

2In×n, which is stochastic,

has eigenvalues in the range [0, 1], and whose eigenvectors are in a natural one-to-one

correspondence with A’s eigenvalues.

So assume we have a matrix B, with a full eigenvector basis and real eigenvalues

0 ≤ λn ≤ . . . ≤ λ1 ≤ 1. The ultimate goal is to output an approximation of its spectrum

in small space. We do not know how to do that, nor whether this is possible or not.

Instead, we achieve a much more modest goal: we show a probabilistic algorithm that

approximates with constant accuracy whether there exists an eigenvalue close to a given

value λ or not. Formally,

Theorem 4.1. There exists a probabilistic algorithm that on input B as above, constants

β > α > 0 and λ ∈ [0, 1] such that:

• There are d eigenvalues λi satisfying |λ− λi| ≤ α.

• All other eigenvalues λi satisfy |λ− λi| ≥ β.

outputs d with probability at least 2/3. Furthermore the algorithm runs in probabilistic

space O(log n).

The parameters α, β describe the accuracy of the algorithm. The accuracy we achieve

is far from being satisfying. The matrix B has n eigenvalues in the range [0, 1], so the

1The matrix L = I − L is usually referred to as the normalized Laplacian of a graph.
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average distance between two neighboring eigenvalues is 1/n. Thus, the assumption that

there is an interval of length β − α with no eigenvalue is often not true. The desired

accuracy we would like to get is o(1/n). Having such accuracy would enable outputting

an approximation of the whole spectrum of B, using methods similar to those in [TS13],

thus getting a true classical analogue to the quantum algorithm in [TS13]. However,

we do not know how to achieve subconstant accuracy. The question whether better

accuracy is possible in BPL is the main problem raised by this work. Even proving

Theorem 4.1 with its constant accuracy is non-trivial.

The main idea behind the algorithm is to manipulate the eigenvalues of B by

computing a polynomial in the input matrix B, without knowing the decomposition of

B to eigenvectors and eigenvalues. More precisely, assume B decomposes to B = V DV −1

where V is invertible and D diagonal with B’s eigenvalues on the main diagonal. Then,

Bk = V DkV −1 and

Dk =


λk1 0 0

0
. . . 0

0 0 λkn


Thus, if p : R→ R is a degree T univariate polynomial p(x) =

∑T
i=0 cix

i then p(B) =∑T
i=0 ciB

i is

p(B) = V


p(λ1) 0 0

0
. . . 0

0 0 p(λn)

V −1

In particular, if p : R → R has a peak around λ and is close to 0 otherwise, then

Tr (p(B)) approximately counts the number of eigenvalues B has around λ. Thus, if we

can compute p(B) in small probabilistic space, we can solve the problem.

More formally, we assume p(x) =
∑M

i=0 cix
i can be efficiently computed in the sense

that M, |ci| = 2O(s(n)) and for every i, ci can be computed (exactly) by a deterministic

Turing machine that uses O(s(n)) space. We further assume p(x) has a sharp peak

around λ, i.e., p(x) ≥ 1−η for x ∈ [λ−α, λ+α] and p(x) ≤ η for x ∈ [0, 1]\(λ−β, λ+β).

In the next section we show how to obtain such a polynomial p with s(n) = O( logn
(β−α)2 )

and η = η(n) = n−2.

Having that, we are ready to present the algorithm. The input to the algorithm is

n,A, λ, α, β. We set M = s(n) = 32(β − α)−2 log n, δ′ = δ · 2−2s(n) and ε′ = ε · 2−s(n).

The algorithm evaluates

M∑
i=0

ci ·TrPower(A,n, i, δ′, ε′))

where TrPower is the probabilistic algorithm guaranteed by Corollary 3.1.

Lemma 4.1. The algorithm runs in space O(s(n) + log(nδ−1ε−1)).
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Proof. The algorithm has a loop over i. For every i it stores ci (that can be computed

in O(s(n)) space), and TrPower(A,n, i, δ′, ε′) (that can be computed in O(s(n) +

log(nδ′−1ε′−1)) space). As Tr (Ai) ≤ n, the number of bits required to store the output

is also bounded by O(s(n)), obtaining the desired space complexity.

Lemma 4.2. The algorithm (δ, ε)–approximates Tr (p(A)).

Proof. As Tr (p(A)) =
∑

i ciTr (Ai), applying Corollary 3.1 we obtain that with proba-

bility at least 1− 2s(n)ε′ = 1− ε,∣∣∣∣∣∣
deg(p)∑
i=0

ci
(
Tr (Ai)−TrPower(A,n, i, δ′, ε′)

)∣∣∣∣∣∣ ≤ δ′22s(n) = δ. (4.1)

With that we can complete the proof of Theorem 4.1.

Proof. (of Theorem 4.1) Consider R(B, λ), the above approximation of Tr (p(B)) with

δ = n−2 and ε = 1/3. Then, from Lemma 4.2, with probability at least 2/3,

R(B, λ) ≤ Tr (p(B)) + δ

≤
∑

i:|λi−λ|≤α

p(λi) +
∑

i:|λi−λ|≥β

p(λi) + δ

≤ d+ (n− d)η + δ

≤ d+ (nη + δ).

Similarly, R(B, λ) ≥ d− (nη + δ). As for large enough n, nη + δ < 1/2, d is obtained

by taking the integer closest to R(B, λ).

From Lemma 4.1, the space complexity for computing d is given by O(s(n) +

log(nδ−1ε−1)) = O(log n).

4.1 Using the symmetric threshold functions

There are several natural candidates for the function p above. In this section we use

the threshold function to obtain such a function p. Assume λ is rational, λ = k
M for

some integers k and M . Define:

pλ(x) =
M∑
i=k

(
M

i

)
xi(1− x)M−i.

p approximates well the threshold function Thλ(x) : [0, 1]→ {0, 1} that is one for

x ≥ λ and zero otherwise. Specifically,

Lemma 4.3. Let x ∈ [0, 1]. pλ(x) approximates Thλ(x) over [0, 1] with accuracy

(ξ(δ))Mx, where δ = λ−x
x and ξ(δ) = eδ

(1+δ)1+δ .
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Proof. pλ(x) represents the probability of getting at least k 1-s, in M independent

trials Xi, each getting 1 with probability x. The lemma then follows by Chernoff. Set

µ = Mx. If δ > 0, then x < k/M so Thλ(x) = 0 and

pλ(x) = Pr

[
M∑
i=1

Xi ≥ (1 + δ)µ

]
≤

(
eδ

(1 + δ)1+δ

)µ
. (4.2)

If δ ≤ 0, Thλ(x) = 1 and

pλ(x) = 1− Pr

[
M∑
i=1

Xi < (1 + δ)µ

]
≥ 1−

(
eδ

(1 + δ)1+δ

)µ
. (4.3)

In both cases, |pλ(x)−Thλ(x)| ≤ (ξ(δ))Mx.

Let us now express pλ(x) as a polynomial in x, pλ(x) =
∑M

i=0 cix
i. We have,

pλ(x) =
M∑

j=λM

(
M

j

)
xj(1− x)M−j =

M∑
j=λM

M−j∑
t=0

(
M

j

)(
M − j
t

)
(−1)txj+t.

Therefore, ci = (−1)i
∑i

j=λM

(
M
j

)(
M−j
i−j
)
(−1)j and |ci| ≤

∑i
j=λM

(
M
j

)(
M−j
i−j
)
≤

M
(
M
M/2

)2
= 2O(M). Furthermore, ci can be computed (exactly) by a deterministic

Turing machine that uses O(M) space by simply running through the loop over j, each

time updating the current result by (−1)j
(
M
j

)(
M−j
i−j
)
.

To obtain the polynomial p define:

p(x) = pλ−∆(x)− pλ+∆(x).

where M = 32(β − α)−2 log n and ∆ = (α+ β)/2.

Lemma 4.4. p(x) ≥ 1 − n−2 for every x that is α–close to λ (i.e., |x − λ| < α) and

p(x) ≤ n−2 for every x that is β–far from λ (i.e., |x− λ| ≥ β).

Proof. We show that pλ+∆ approximates Thλ+∆ for x ≥ λ + β and x ≤ λ + α, and

pλ−∆ approximates Thλ−∆ for x ≥ λ − α and x ≤ λ − β. Specifically, the following

bounds hold:
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0 λ− β λ− α λ λ+ α λ+ β 1

pλ+∆

pλ−∆

p

?

?

? ?

≤ n−2/2 ≥ 1− n−2/2 ≤ 1

≥ 0 ≤ n−2/2 ≥ 1− n−2/2

≥ 1− n−2≤ n−2 ≤ n−2

x

Let us show that the middle entry is correct. For |x − (λ + ∆)| ≥ (β − α)/2 and

δ = λ+∆−x
x , the approximation error is (ξ(δ))Mx, and if δ > 0,

(ξ(δ))Mx ≤ e−
δ2

δ+2
Mx ≤ e−

(x−(λ+∆))2

λ+∆+x
M

≤ e−(x−(λ+∆))2M/2 ≤ n−2/2,

and if −1 < δ ≤ 0,

(ξ(δ))Mx ≤ e−δ
2Mx/2 ≤ e−(x−(λ+∆))2M/2 ≤ n−2/2.

Similar calculations also holds for other entries. So indeed p(x) = pλ−∆(x)− pλ+∆(x)

satisfies the required conditions.
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Chapter 5

An approach for approximating

eigenvalues with enhanced

accuracy

We first formalize the above properties of p that were useful to us. We say that

P = {pλ,n}λ∈[0,1],n∈N is a family of polynomials if for every λ ∈ [0, 1] and n ∈ N there is

a univariate polynomial pλ,n with coefficients in R.

Definition 5.1. (Small family) Let P be a family of polynomials and fix λ ∈ [0, 1]. For

every n ∈ N, write pλ,n(x) =
∑deg(pλ,n)

i=0 cλ,n,ix
i. We say the family is s(n)–small if,

• deg(pλ,n) ≤ 2s(n),

• For every 0 ≤ i ≤ deg(pλ,n), |cλ,n,i| ≤ 2s(n), and

• There exists a deterministic Turing machine running in space s(n) that outputs

cλ,n,0, . . . , cλ,n,deg(pλ,n).

Definition 5.2. (Distinguisher family) Let P be a family of polynomials and fix n ∈ N.

Given α < β in (0, 1) and η < 1/2, we say the family is (α, β, η)–distinguisher for

λ ∈ [0, 1],

• For every x ∈ [0, 1] that is α–close to λ, pλ,n(x) ∈ [1− η, 1], and

• For every x ∈ [0, 1] that is β–far from λ, pλ,n(x) ∈ [0, η].

As in the previous chapter, let B have a full set of real eigenvalues 0 ≤ λn ≤
. . . ≤ λ1 ≤ 1. Also, assume there exist matrices V and D such that V is invertible,

B = V DV −1 and D is diagonal with B’s eigenvalues. We further assume that ‖B‖∞ ≤ 1.

We would like to try and relax the conditions of Theorem 4.1 and in particular for

any given λ to reduce the promised interval in which there are no eigenvalues (i.e., to

reduce the gap β − α) and also to improve the accuracy of the result (i.e., to reduce α).
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Unfortunately, finding threshold families of polynomials that are O(log n)–small and

have α and β that are o(1) is impossible. For that we use:

Lemma 5.3. [Tim63, Theorem 2.9.11] Let Tn(x) be the Chebyshev polynomial (of the

first kind) of degree n. Then, if the polynomial Pn(x) =
∑n

i=0 cix
i satisfies the inequality

|Pn(x)| ≤ L on the segment [a, b] then at any point outside the segment we have

|Pn(x)| ≤ L ·
∣∣∣∣Tn(2x− a− b

b− a

)∣∣∣∣ .
For properties of the Chebyshev polynomials see [Riv74, Chapter 1.1]. We mention

a few properties that we use. An explicit representation of Tn(x) is given by

Tn(x) =

(
x−
√
x2 − 1

)n
+
(
x+
√
x2 − 1

)n
2

.

We can also see that |Tn(−x)| = |Tn(x)| and that Tn is monotonically increasing for

x > 1. Also,

|Tn(1 + ε)| ≤
(

1 + ε+
√

(1 + ε)2 − 1
)n
≤
(
1 + 4

√
ε
)n ≤ e4n

√
ε ≤ 28n

√
ε (5.1)

for 0 ≤ ε ≤ 1. With that we prove:

Theorem 5.1. Let α, β, λ, η be such that α ≤ β, λ+ β ≤ 1
2 , β = o(1) and η = o(n−1).

Then there is no (α, β, η)–distinguisher family for λ that is O(log n)–small.

Proof. Assume there exists such a family {pλ,n}λ∈[0,1],n∈N with s(n) = c′ log n. We first

show that without loss of generality p has logarithmic degree. Let rλ,n(x) be the residual

error of truncating pλ,n(x) after c log n terms, for c that will soon be determined. Also,

w.l.o.g., assume x ∈ [0, 1) is bounded away from 1. Then:

rλ,n(x) ≤
deg(pλ,n)∑
i=c logn+1

|cλ,n,i| · xi ≤ nc
′ · x

c logn

1− x
≤ 1

1− x
nc
′−c log(1/x).

So, by taking c = d c
′+2−log(1−x)

log(1/x) e we obtain rλ,n(x) ≤ n−2.

We now show that O(log n)–degree polynomials cannot decay around λ fast enough.

Assume to the contrary that there exists such a distinguisher family, so |pλ,n(x)| < n−1

for x ∈ [λ+ β, 1]. Then, following Theorem 5.3 we have that:

|pλ,n(λ)| ≤ n−1 ·
∣∣∣Tc·logn

(
λ−β−1
−λ−β+1

)∣∣∣
= n−1 ·

∣∣∣Tc·logn

(
1 + 2β

1−λ−β

)∣∣∣ By |Tn(x)| = |Tn(−x)|
≤ n−1 · |Tc·logn(1 + 4β)| By the monotonicity of Tn(x) for x > 1 and λ+ β ≤ 1

2

By Equation (5.1) |pλ,n(λ)| ≤ n−1232c
√
β logn ≤ n−1+32c

√
β. As β = o(1) for n large

enough we have |pλ,n(λ)| ≤ n−1/2, contradicting the fact that |pλ,n(λ)| ≥ 1− n−1.
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Theorem 5.1 leads us to consider instead a multi-stage approach. suppose B has

the promise that all eigenvalues are either α–close to λ or β–far from λ, but β − α is

too small to be handled using the techniques of Chapter 4. We say we can expand the

gap (α, β) to a larger gap (α′, β′) if we can find a polynomial p1 with the property that

the number of eigenvalues of B in [λ − α, λ + α] equals the number of eigenvalues of

p1(B) in [λ′−α′, λ′ +α′] and similarly for β and β′. That is, p1 amplifies the small gap

(α, β) to a larger gap (α′, β′). Then, we can first compute p1(B) using a small-space

algorithm, and then run the algorithm of Theorem 4.1 on p1(B).

However, for this approach to work, it is crucial that p1(B) is simulatable. The only

way we know to guarantee that p1(B) is simulatable is by bounding the infinity norm

of p1(B) and using Lemma 3.4. In Chapter 6 we explore this framework with p1 being

the Féjer kernel, which is the function that appears in the quantum logspace algorithm

for approximating the spectrum of a matrix. We find out the function is small and

distinguishing, but unfortunately it does not always preserve the infinity norm. The

bottom line is that currently we cannot get this framework to work.
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Chapter 6

The Féjer kernel

Throughout, we extend the notion of a matrix polynomial to a general matrix function,

whereas its computation is done via truncating the function’s Taylor series. See [Hig08]

for a comprehensive treatment of matrix functions. We use the same notation for a

function of a real variable and a function of a matrix, as it is clear from context.

As noted, we need a distinguisher family of functions {fλ,T }λ∈[0,1],T∈N (T will be

a function of n) that is computable in probabilistic small space, amplifies gap and

preserves the infinity norm. All properties will soon be formally described. The function

we consider as a candidate is the (normalized) Féjer kernel. It plays a central role in

Fourier analysis (see [Hof07, Chapter 2]), and more interestingly, as the probability

density function involved in the measurement of a quantum phase estimation circuit

(see [KLM07, Chapter 7] or [NC00, Chapter 5] for more details).

The Féjer kernel has the following form:

fT (x) =
1

T 2

T−1∑
k=0

1 + 2

k∑
j=1

cos(jx)


=

1

T
+

2

T 2

T−1∑
k=1

(T − k) cos(kx). (6.1)

Up to removable discontinuities, it can also be written as:

fT (x) =
1

T 2

sin2 Tx
2

sin2 x
2

, (6.2)

so it is immediate that the function is even, and for every x and T > 0, fT (x) ∈ [0, 1].

It is then natural to set fT,λ(x) = fT (x− λ). Equation (6.1), together with Lemma 3.6,

shows:

Claim 6.1. Let A be a simulatable matrix of dimension n, an integer T > 0, λ ∈ [0, 1]

and let U = fT (A− λIn×n). Then, there exists a probabilistic algorithm that on input

A, T , λ and s, t ∈ [n], runs in space O(T + log n
δε) and (δ, ε)–approximates U [s, t].
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Also, fT is a good distinguisher:

Lemma 6.2. The family {fT,λ}T∈N,λ∈[0,1] is a
(
π

2T ,
2π
T , 1/4

)
–distinguisher. Also, for

every T ∈ N, fT (x) is monotonically decreasing in
[
0, π2T

]
.

Proof. Fix T ∈ N. By differentiation of Equation (6.1) we infer that:

f ′T (x) = − 2

T 2

T∑
k=1

k(T − k) sin(kx).

Hence, fT (0) = 1 is a maxima. Also, for x ∈ (0, πT ], sin(kx) > 0 for every 0 < k ≤ T − 1

so f ′T (x) < 0 and thus monotonically decreasing there.

The fact that for x ≥ 2π/T , fT (x) ≤ 1/4 follows from [HS65, Section 18]. Now, for

x ≤ π/(2T ), we have fT (x) ≥ fT (π/(2T )). And indeed,

fT

( π

2T

)
=

1

T 2

1

2 sin2
(
π

4T

) ≥ 1

T 2

16T 2

2π2
≥ 3

4
.

The last lemma concerns amplification.

Lemma 6.3. Let T > 0, 0 < c1 < c2 ≤ 2 and c2 ≥ 7c1. Then, the following hold, for

every integer m ≥ 0 and large enough T .

1. fT

(
c1T

−2+2−m
)
≥ 1− c21

12T
−2+2−m+1

.

2. fT

(
c2T

−2+2−m
)
≤ 1−

(
c21
12 +

c22−c21
96

)
T−2+2−m+1

.

Proof. First, by definition, and using cos(x) ≥ 1− x2

2 and
∑T−1

k=0

∑k
j=1 j

2 ≤ T 4

12 ,

fT (c1T
−2+2−m) ≥ 1− 2

T 2

T−1∑
k=0

k∑
j=1

(
c1jT

−2+2−m
)2

2
≥ 1− c2

1

12
T−2+2−m+1

.

For the second part, by definition,

fT (c1T
−2+2−m)− fT (c2T

−2+2−m) =
2

T 2

T−1∑
k=0

k∑
j=1

cos
(
c1jT

−2+2−m
)
− cos

(
c2jT

−2+2−m
)
.

As cos(c1x)− cos(c2x) ≥ 1
4(c2

2 − c2
1)x2 for c2 ≤ 2 and

∑T−1
k=0

∑k
j=1 j

2 ≥ T 4

24 ,

fT (c1T
−2+2−m)− fT (c2T

−2+2−m) ≥ 2

T 2

T−1∑
k=0

k∑
j=1

1

4

(
c2

2 − c2
1

) (
jT−2+2−m

)2

≥ c2
2 − c2

1

48
T−2+2−m+1

. (6.3)
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From the Taylor expansion of fT , we infer that fT (x) ≤ 1 + 1
12(1− T 2)x2 + T 4

360x
4, so

fT (c1T
−2+2−m)−

(
1− c2

1

12
T−2+2−m+1

)
≤ c2

1

12

(
T−2+2−m

)2
+

c4
1

360

(
T−1+2−m

)4
.(6.4)

For m ≥ 1, the right hand side of (6.4) is o(T−2+2−m+1
) (w.r.t. T ). Thus, for large

enough T ,

fT (c1T
−2+2−m)−

(
1− c2

1

12
T−2+2−m+1

)
≤ 1

2
· c

2
2 − c2

1

48
T−2+2−m+1

,

which considering (6.3), implies that

fT (c2T
−2+2−m) ≤ 1−

(
c2

1

12
+
c2

2 − c2
1

96

)
T−2+2−m+1

.

For m = 0, (6.4) becomes:

fT (c1)−
(

1− c2
1

12

)
≤ c2

1T
−2

12
+

c4
1

360
≤ c2

1T
−2

12
+
c2

1

90
,

and for large enough T , fT (c1) ≤ 1− 5c21
72 . Therefore, following (6.3) and the fact that

c2
2 ≥ 3c2

1, we obtain:

fT (c2) ≤ fT (c1)− c2
2 − c2

1

48
≤ 1−

(
c2

1

12
+

3c2
2 − 5c2

1

144

)
≤ 1−

(
c2

1

12
+
c2

2 − c2
1

72
+
c2

2 − 3c2
1

144

)
≤ 1−

(
c2

1

12
+
c2

2 − c2
1

96

)
.

The last property we required is norm preservation. That is, given that A satisfies

our mentioned properties and has a bounded infinity norm (let us say by 1), there exists

a universal constant C so that ‖fT,λ(A)‖∞ ≤ C for every T and λ ∈ [0, 1]. The Féjer

kernel does not satisfy the norm preservation, at least not without imposing further

restrictions on A, as we show in Section 6.2.

6.1 The multistage framework with the Féjer kernel

For the role of p1, the gap expanding polynomial, consider the family of functions

{fλ,T }λ∈[0,1],T∈N such that λ ∈ [0, 1], fT,λ(B) = fT (B − λIn×n) for every λ ∈ [0, 1],

T = O(log n) and fT is the Féjer kernel. Recall that ‖B‖∞ ≤ 1. We further restrict B

to satisfy the following assumption.

Assumption 6.4. There exists an explicit universal constant C such that for every

λ ∈ [0, 1], ‖fT,λ(B)‖∞ ≤ C.

We begin with some intuition. Assume we are given a promise on the eigenvalues’

separation around λ. Specifically:
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• There are d eigenvalues λi of B satisfying |λ− λi| ≤ 1
4T
−1.

• All other eigenvalues λi satisfy |λ− λi| ≥ 2T−1.

Following Lemmas 6.2 and 6.3, fT,λ has a peak around λ and it increases the gap in

such a way that there exist positive constants c1 > c2 so that:

• There are d eigenvalues λi of fT,λ(B) satisfying λi ≥ c1.

• All other eigenvalues λi satisfy λi ≤ c2.

Indeed, the problem of finding the number of eigenvalues of B around λ reduces to

finding the number of eigenvalues of fT,λ(B) above a certain threshold. Moreover, we

expanded the gap from O(T−1) to a constant. Note that the tradeoff is that we cannot

necessarily approximate fT,λ(B) to high powers. Therefore, we continue working with

C−1fT,λ(B) instead. This matrix is simulatable, so the above promise problem can be

solved by the technique presented in Chapter 4.

Remark. In fact, given a constant m ≥ 1, constant number of compositions can expand

a gap of O(T−2+2−m) to a constant gap by considering the following matrix:

Gλ,T,m(B) = C−1fT,C−1

(
C−1fT,C−1

(
· · · C−1fT,C−1

(
C−1fT,λ(B)

)
· · ·
))

where fT,C−1 is iterated m times. By slightly strengthening Assumption 6.4, Gλ,T,m(B)

is simulatable and its eigenvalues around 1 are in one-to-one correspondence with the

eigenvalues of B around λ. However, for simplicity, we only concern the case of m = 1.

Lemma 6.5. Given λ ∈ [0, 1], T > 0 and constants 0 < α < β ≤ 2 satisfying1 β ≥ 7α,

assume the following holds:

• There are d eigenvalues λi of B satisfying |λ− λi| ≤ αT−1.

• All other eigenvalues satisfy |λ− λi| ≥ βT−1.

Then, for some positive constants γ1 > γ2, there are d eigenvalue λi of fT,λ(B) satisfying

λi ≥ γ1 and all other eigenvalues satisfy λi ≤ γ2.

Proof. From Lemma 6.2 and Lemma 6.3, there are d eigenvalues λi of fT,λ(B) satisfying

λi ≥ fT (αT−1) ≥ 1− α2

12 . Also, following Lemma 6.3, there are no eigenvalues satisfying

1−
(
α2

12
+
β2 − α2

96

)
≤ λi < 1− α2

12
,

as desired. 2

1For the simplicity of the proofs, we do not attempt to optimize the constants’ constraints.
2 Also, note that α2

12
+ β2−α2

96 /α2

12
= 7α2+β2

8α2 ≥ 7, so multiple compositions can be made, expanding
smaller gaps.
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We shall now state that the above transformation can be approximated probabilis-

tically in small space. Its proof follows directly from Claim 6.1, Assumption 6.4 and

Lemma 3.4.

Lemma 6.6. Let B be a matrix of dimension n that satisfies Assumption 6.4, T =

O(log n) and λ ∈ [0, 1]. Then, C−1fλ,T (B) is simulatable.

The analogue of the above lemma for constant number of compositions (see the

above remark) uses Lemma 2.2, that assures a truncated fixed approximation for every

computation level, with high probability. Following the above discussion, we can now

prove our main theorem for this chapter.

Theorem 6.1. There exists a probabilistic algorithm that on input B and λ ∈ [0, 1]

such that B is as above (specifically, satisfying Assumption 6.4), and

• There are d eigenvalues λi satisfying |λ− λi| ≤ 1
4 log−1 n.

• All other eigenvalues λi satisfy |λ− λi| ≥ 2 log−1 n.

outputs d with probability at least 2/3. Furthermore the algorithm runs in probabilistic

space O(log n).

Proof. The eigenvector basis of X = C−1fT,λ(B) is the same as this of B, as eigenvectors

are preserved under matrix polynomials (and, due to Cayley-Hamilton, every matrix

function representable as an infinite series corresponds to a finite degree polynomial).

Thus, following the properties of the Féjer kernel, X satisfies the conditions of Theorem

4.1. Also, it is easy to see that the proof of Lemma 6.5 determines the exact computation

(in logarithmic space) of the pre-assumed α and β.

In what follows, we use the notations of Chapter 4. As the algorithm of Theorem

4.1 requires reading the entries of X multiple times, we use Lemma 2.2, that implies

the existence of a matrix X ′ whose entries are computable in O(log n) space, such that

with probability at least 5/6, ‖X ′ −X‖∞ ≤ n−22−3s(n), regardless of the random coin

tosses. We can also safely assume that ‖X ′‖∞ ≤ 1 (otherwise, simply truncate the

entries, resulting in a controllable loss of accuracy).

Consider running the algorithm guaranteed from Chapter 4 with δ = n−2/2 and

ε = 1/6 on X ′, obtaining R(X ′, λ). We infer that

|R(X ′, λ)−R(X,λ)| ≤ |Tr (p(X ′)− p(X))|+ 2nδ

≤ n · 23s(n)‖X −X ′‖∞ + 2nδ ≤ 2n−1,

so running the algorithm on X ′ returns, with high probability, the same result as running

the algorithm with X itself, hence returning the number of eigenvalues in the given

range with probability at least 2/3, as desired. Also, the space complexity needed to

compute X,X ′ and R(X ′, λ) is bounded by O(log n).
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6.2 The Féjer kernel blows up the `∞ norm

We argue that the transition matrix of the hypercube graph does not satisfy Assumption

6.4. However this result, amongst other numerical trials that are not brought here, does

not dismiss the possibility that more restricted class of matrices, such as transition

matrices of undirected regular graphs of constant degree, does satisfy the assumption.

In what follows, we use definitions and notations from the theory of Cayley graphs

and discrete Fourier analysis. See [Tre11] and [dW08] for the exact definitions. Also,

we denote ek be a vector with 1 in the k-th entry and 0 elsewhere (its dimension will be

clear from the context).

For every integer d ≥ 0, let G be the group {0, 1}d with the bitwise XOR operations.

Let Qd = Cay(G, {e1, . . . , ed}) be the corresponding Cayley graph, also what is known

as the hypercube graph. Namely, the graph whose vertices correspond to elements of

{0, 1}d and two vertices are adjacent if and only if they differ in exactly one coordinate.

Set n = 2d and define A to be the n× n transition matrix of Qd.

It is well known that A has a full set of eigenvectors, corresponding to the n characters

of G. That is, for every r, x ∈ {0, 1}d,

vr[x] =
1√
n
χr(x) =

1√
n

(−1)
∑d
i=1 rixi ,

where we map elements between {0, 1}d and [n] in the obvious way. Correspondingly,

the eigenvalues of A satisfy

λr =
1

d

d∑
i=1

χr(ei) = 1− 2
|r|
d
.

Therefore, A =
∑

r∈{0,1}d λrvrv
†
r so fT (A), where fT is the Féfer kernel3, is given by

fT (A) =
∑

r∈{0,1}d
fT (λr)vrv

†
r.

For every r ∈ {0, 1}d, let g(r) = fT (1− 2|r|/d) (the dependency on T becomes implicit).

Then, we can consider g to be a function from {0, 1}d to [0, 1] and it is also immediate

that g is symmetric, i.e. its value does not change under permutation of indices. The

infinity norm of fT (A) is given by:

‖fT (A)‖∞ = max
b∈[n]

∑
a∈[n]

∣∣∣∣∣∣
∑

r∈{0,1}d
g(r)e†bvrv

†
rea

∣∣∣∣∣∣ = max
b∈[n]

∑
a∈[n]

∣∣∣∣∣∣
∑

r∈{0,1}d
g(r)vr[b]vr[a]

∣∣∣∣∣∣ .
However, note that

∑
a |
∑

r g(r)vr[a+ b]| is the same for every b ∈ [n] (as different

3 We consider fT rather than fT,λ for simplicity. The results are the same.
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values of b correspond to permutations of the first row), so it is sufficient to take

‖fT (A)‖∞ =
∑

a∈{0,1}d

∣∣∣∣∣∣ 1

2d

∑
r∈{0,1}d

g(r)χr(a)

∣∣∣∣∣∣ =
∑

a∈{0,1}d
|ĝ(a)|,

where ĝ(a) is the Fourier coefficient. Hence, if we define a vector of all coefficients ĝ,

‖fT (A)‖∞ = ‖ĝ‖1, also known as the spectral norm of the function g.

Although no results concerning the spectral norm of symmetric functions over

continuous ranges are known, 4 numerical experiments suggests that in our case,

‖ĝ‖1 = Ω(d), implying that the hypercube graph is a counterexample for our assumption.

4 Useful bounds on the spectral norm are known when the range of g is Boolean. In [AFH12], the
following Theorem is proven:

Claim 6.7. [AFH12, Theorem 1.1] For a function g : {0, 1}d → {−1, 1}, let r0 and r1 be the minimum
integers less than d/2 such that f(x) or f(x) ·Parity(x) is constant for x with |x| ∈ [r0, n− r1]. Define
r(g) = max r0, r1. Then, for any symmetric function g : {0, 1}d → {−1, 1}, we have

log ‖ĝ‖1 = Θ

(
r(f) log

d

r(f)

)
wherever r(f) > 1.
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Chapter 7

Further directions

The results of Chapter 6 give rise to the following question.

Question 7.1. Given an Hermitian matrix A of dimension n with eigenvalues that are

well-separated and in [0, 1], and an integer T = poly(n), can the entries of eiTA be

approximated in O(log n) space, by a probabilistic algorithm, with high probability?

Or, more generally,

Question 7.2. Can any unitary matrix be simulated?

If the answer to either question is affirmative, then fT,λ(A) can be approximated

for every λ ∈ [0, 1] and T that is poly(n). Then we could use the following claim from

[KLM07, Chapter 7].

• For every x ∈ [−1, 1] such that |x| ≤ π
T , fT (x) ≥ 4

π2 .

• For every x ∈ [−1, 1] such that |x| ≥ 2π√
T

, fT (x) ≤ 1
2(
√
T−1)

.

Then, even for promise parameters α and β that are polynomially small we can use the

algorithm of Chapter 4 in order to extract the eigenvalues of A using Tr (fT,λ(A)) with

T = poly(n).
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תקציר

בזכרון הסתברותי חישוב כי להראות מנסים חסומי־זכרון באלגוריתמים העוסקים רבים מחקרים

דטרמינסטי לאלגוריתם להגיע ובכך מלאה דרנדומיזציה עבורו לבצע שניתן במובן חלש, הוא לוגריתמי

"הכיצד לשאול במקום אחר. בכיוון צעד לוקחים אנו זו בעבודה כן. גם לוגריתמי בזכרון הרץ שקול

את לנצל ניתן "הכיצד שואלים אנו חסומי־זכרון?", הסתברותיים לאלגוריתמים דרנדומיזציה לבצע ניתן

שברשותינו?". ההסתברותי הכוח

זו בעיה באם והרמיטיים. סטוכסטיים אופרטורים של עצמיים ערכים קירוב של בבעיה מתמקדים אנו

קירובי כל את לבצע אלו, אופרטורים עבור למעשה, ניתן כי לומר נוכל פולינומי־קטן, דיוק תוך תפתר

כרצונינו. קטן קבוע כדי עד שהם לקירובים מגיעים אנו זה במחקר .BPL ב־ הלינארית האלגברה

הקבוע הדיוק מחסום את לעבור כי גם מראים אנו ידיעתנו). (למיטב חדשה היא שמוצגת הטכניקה

חדש. רעיון בהכרח ידרוש

הוא הזו הבעיה פתרון כי מאמינים ואנו יותר, טוב קירוב של התכנותו לגבי השערה עדיין לנו אין

מקווים אנו הזכרון. חסום ההסתברותי המודל של והחולשה החוזק על חדש אור לשפוך ועשוי חשוב,

מחקר. של זה כיוון תלבה זו עבודה כי

i





תודות

שבסבלנותו, תא־שמע אמנון פרופ' שלי, למנחה הרבה הערכתי את להביע ארצה ובראשונה בראש

המתהווה יכולתי את ועידודו השקעתו לזכות זוקף אני זו. עבודה את איפשר הרבות ותובנותיו נלהבותו

היסודיים. הרעיונות אחר ולחפש בצלילות לחשוב

לקבוצה מגיעה רבה הוקרה בנוסף, התמידית. תמיכתם על למשפחתי במיוחד להודות ארצה

לצידי. עומדים ועדיין עמדו אשר חברים, של דופן יוצאת אך קטנה

זה. מחקר מימון על תל־אביב לאוניברסיטת מסורה תודה הכרת
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