
Tel Aviv University
Raymond and Beverly Sackler

Faculty of Exact Sciences
School of Computer Sciences

Improving the Alphabet Size
in Expander Based Code Constructions

Submitted as a partial fulfillment of the
requirements towards the M.Sc. degree by

Eran Rom

The research work has been conducted
under the supervision of
Dr. Amnon Ta-Shma

January 2006

To Inbal, for making my ’academic adventure’ possible.

Abstract

Various code constructions use expander graphs to improve the error resilience. Often the use of

expanding graphs comes at the expense of the alphabet size. This is the case, e.g., in [1], [8] and

[7]. We show that by replacing the balanced expanding graphs used in the above constructions

with unbalanced dispersers or extractors (depending on the actual construction) the alphabet size

can be dramatically improved.

CONTENTS

Acknowledgments . 1

1 Introduction . 2
1.1 Composing a code and a disperser . 2
1.2 Previous work and our improvement . 3
1.3 On the dispersers and extractors that we use . 4

2 The improvement in specific applications . 6
2.1 Error correcting codes . 6

2.1.1 Improving the alphabet size . 7
2.1.2 Approaching the singleton bound . 8
2.1.3 Beating the Zyablov bound for large alphabets 9

2.2 Error correcting codes with explicit decoding . 9
2.3 High noise list decodable codes . 10
2.4 Summary . 11

3 Preliminaries . 14
3.1 Codes . 14
3.2 Justesen code . 15
3.3 A general decoding scheme . 17
3.4 Expanding graphs . 17
3.5 Extractors and list recoverability from arbitrary size 22
3.6 A note on the non-optimality of the construction 23
3.7 The dispersers and extractors parameters . 23

3.7.1 The optimal disperser Gopt . 24
3.7.2 The balanced disperser Gbalanced . 24
3.7.3 The Zig-Zag based constructions GDopt , GEopt and Gexplicit 25

4 The internal structure of the different constructions 31
4.1 Taking C to be a linear code . 31
4.2 Taking C to be a list decodable code . 32
4.3 Taking C to be a list recoverable code . 34
4.4 Taking C to be a list recoverable code from arbitrary size 35

5 Asymptotically good error correcting codes over large alphabets 37
5.1 Improving the alphabet size (Theorem 1) . 37
5.2 Approaching the singleton bound (Theorems 2, 3) 37
5.3 Beating the Zyablov bound (Theorem 4) . 41

REFERENCES . 43

i

6 Appendix . 45
6.1 Asymptotically good error correcting codes with explicit decoding procedure (The-

orem 5) . 45
6.2 List decodable codes with optimal rate . 48
6.3 List decodable codes with optimal list size . 50
6.4 Almost optimal rate list decodable codes . 52

ii

Acknowledgments

Three and a half years ago I have decided to leave the ”industry” and try the ”academy”.

Although I have found that this might not be my way, I am more than happy for trying it. My

”academic” experience has been a most challenging, interesting and enjoyable one. I don’t think

that it could be an experience, unless I had Amnon as an advisor. Amnon, thank you for your

guidance, patience, time and last but not least thank you for making the world of theoretical

computer science a most fascinating one.

During these last few years I was lucky to re-meet Oded Schwartz, and to gain a true friend.

You have been (and am sure, will be) a most valuable and enjoyable company.

Finally, I would like to thank my beloved family for their love, encouragement and faith.

1

Chapter 1

Introduction

1.1 Composing a code and a disperser

A powerful technique for constructing high noise resilient codes uses a combination of codes

with expanding graphs. The technique was first introduced by [1], and further developed in [8],

[6] and [7]. This composition can be formalized as follows:

Definition 1 (graph encoding) Let G = ([N], [L], E) be a regular bipartite graph, with regular

right degree T . Let Σ be an alphabet. We define a function G : ΣN → (ΣT)L as follows: Given

x ∈ ΣN , we let G(x) = G(x)1, . . . , G(x)L, where G(x)` = (x`1 , . . . , x`T
), and `1, . . . , `T ∈ [N] are

the neighbors of ` ∈ [L] in G.

Figure 1.1 illustrates this graph encoding.

[L]

x1

x2

xN

T

Bipartite graph
G=([N],[L],E)

with regular right degree T

G(x)l=(xl,1 ,…,xl,T)
T

[N]

G(x)=G(x)1,…,G(x)L

Figure 1.1: Graph encoding. x1, . . . , xN ∈ Σ on the left are ”put” along the graph’s left side [N],
defining for each ` ∈ [L] an ordered vector of its neighbors: G(x)` = (x`,1, . . . , x`,T) ∈ ΣT , where
x`,t is the symbol that was matched to the tth neighbor of ` ∈ [L] in [N]. G(x) is defined to be
G(x)1, . . . , G(x)L.

Definition 2 (composition) Let C ⊂ FqN . Let G be as above. We define the composition code

G ◦ C = {G(c)|c ∈ C}.

2

The composition of a code and a bipartite expanding graph can be thought of as a concatenation

with a repetition code, followed by mixing and regrouping the codes’ coordinates.

A trivial fact about the composition described above is that if C is linear then so is G ◦ C.

To achieve the high error resilience, or large relative distance, G must have the following prop-

erty: any small subset of [L], say of size εL, sees almost all vertices in [N], say at least (1− δ)N .

This property is the property of a disperser.1 As we show next, this disperser’s property assures

that if C has relative distance δ, then G ◦ C has relative distance (1− ε).

We now define the entropy loss of a disperser, which plays a major role in our analysis. Having

regular right degree T in G implies that any set of size εL on the right can see at most εLT vertices

on the left. The disperser’s expansion property assures that the set sees almost all vertices of [N],

and so εLT must be Ω(N). However, it can be much larger. Thus, a measurement for the quality

of the expansion is ΛG = εLT
N

, called the entropy loss of the disperser.

The following lemma demonstrates how the composition above increases error resilience, and

summarizes the parameters of the code composition G ◦ C as a function of the parameters of C

and G.

Lemma 1 If G : [L] × [T] → [N] is a (εL, δ)- disperser with entropy loss Λ, and if C is a

[N, rN, δN]q code then G ◦ C is a [L, r·ε
Λ

L, (1− ε)L]qT code

We give the easy proof in section 4.1. This property translates the small relative distance δ to

large relative distance (1− ε), while increasing the alphabet size.

1.2 Previous work and our improvement

[1] take the graph G to be a balanced expander (L = N), and use the fact that it is a good

disperser. As we saw this suffices for the error amplification. The cost of this, however, is enlarging

the alphabet from Σ to ΣT . Recall that the expansion property required is that any εN vertices

1Dispersers, extractors, error correcting codes, list decodable codes and other definitions needed for our purpose
are fully detailed in section 3.

3

on the left will see an least (1−δ)N ≥ 1
2
N vertices on the right. This implies εNT ≥ 1

2
N , yielding

a degree T of order 1
ε
.

However, if we take an unbalanced disperser we can achieve the same error with a much smaller

degree (T = logO(1)(1
ε
)), yielding a much smaller alphabet size. One can worry what happens to

the rate when taking an unbalanced disperser. However, as we saw before the new rate is r·ε
ΛG

.

Thus, by taking a disperser with optimal entropy loss, we don’t lose on the rate, while dramatically

improve the alphabet size.2

We apply this improvement to the constructions of [1], [8] and [7]. All these constructions are

of the form G ◦ C, and differ in the actual code C used, and the actual properties required from

the expanding graph G used.

1.3 On the dispersers and extractors that we use

We now survey the actual dispersers and extractors3 G that we use in the various G ◦ C

constructions. As suggested above we are looking for dispersers with optimal entropy loss and

small degree. The first disperser we consider, denoted, Gopt has the best entropy loss and degree

possible as follows from a lower bound and a matching upper bound for dispersers shown by [11].

This disperser, however, is only shown to exist using the probabilistic method, and there is no

known explicit construction for it.

Lemma 1 shows that in order to achieve relative distance (1 − ε) for G ◦ C, we need a dis-

perser which expands every set of constant fraction ε. In terms of expanding graphs we need a

disperser/extaractor for the high min–entropy range. The recent extractor analogue of the zig-zag

product, due to [13], gives good constructions for the high min–entropy range. We consider three

constructions based on the zig-zag scheme. The first one is a disperser, denoted GDopt . GDopt

has an optimal entropy loss and near optimal degree. This construction uses two optimal sub

2In fact a balanced expander is a good disperser, but not with optimal entropy loss, and so we also slightly
improve the rate.

3The exact definition of extractros is given in section 3.4

4

components which need to be found by an exhaustive search, which takes 2
1
ε polylog(N) time,

where ε and N are the error and input length of the disperser GDopt . The second zig-zag based

construction we use, denoted, GEopt is an extractor with optimal entropy loss and near optimal

degree. As with GDopt the construction uses two optimal sub components which need to be found

in time 2
1
ε polylog(N). GEopt and GDopt are referred to as semi-explicit because of the exhaustive

search they require. The last zig-zag based construction we use, denoted Gexplicit, has optimal

entropy loss but a bigger degree, however, it is explicit and uses the extractors of [12] as sub

components.

Finally, we consider Gbalanced, the balanced disperser that appears in [1], [7], and in some of

the constructions in [8]. This disperser, which is based on Ramanujan graphs has relatively

large degree and sub optimal entropy loss. The exact parameters of these dispersers including

construction times and computation times are given in section 3.7.

In all of our improvements we improve on a construction which uses either Gbalanced or a balanced

extractor. Whenever Gbalanced is used, we examine what improvement we get replacing it with

Gopt, GDopt , and Gexplicit. Although Gexplicit is an extractor, having stronger properties than a

disperser and thus larger degree and entropy loss, it is explicit and in most cases still achieves

major improvement. Whenever a balanced extractor is used we find what happens when replacing

it with GEopt , and with Gexplicit.

5

Chapter 2

The improvement in specific applications

We demonstrate our improvement in the following constructions:

1. The construction of [1] which composes Justesen code with a balanced disperser to give an

explicit constant rate code with arbitrarily large relative distance.

2. The construction of [1] leaves open the problem of decoding the code. [8] presents an error

correcting code G ◦ C with explicit unique decoding, by taking C to be a list decodable

code. We improve this construction as well.

3. List decodable codes with various range of parameters. We improve three constructions of

list decodable codes having various parameters’ tradeoffs.

2.1 Error correcting codes

We begin with the construction of asymptotically good error correcting codes of [1]. The con-

struction of error correcting codes has the two combinatorially conflicting goals of simultaneously

increasing the rate and the relative distance. A basic lower bound, known as the singleton bound,

states that if C is a (N, rN, δN)q code then:

r ≤ 1− δ +
1

N
(2.1)

The only codes achieving the singleton bound are Reed-Solomon codes having:

r(δ) ≥ 1− δ (2.2)

6

However, the alphabet size of these codes is at least the block length of the code. A probabilistic

argument shows that for any prime power q, there exist linear codes over alphabet of size q having:

r(δ) ≥ 1−Hq(δ) (2.3)

This bound is known as the Gilbert-Varshamov bound. Thus, it is natural to concatenate Reed-

Solomon codes with a code achieving the Gilbert-Varshamov bound. This gives the Zyablov

bound:

RZyablov(δ, q) ≡ maxδ≤µ≤1− 1
q
(1−Hq(µ))(1− δ/µ) (2.4)

[1] show how to construct a code with arbitrarily large relative distance δ < 1, rate Ω(1−δ) and

alphabet of size 2O(1
1−δ

). This construction is demonstrated in the two following ways of interest

to us:

1. Approaching the singleton bound. When q tends to infinity, the rate function of [1] has the

form of r(δ) ≥ γ0(1− δ). This resembles the singleton bound except the γ0 factor.

2. Beating the Zyablov bound for large alphabet size. It turns out that the rate function of [1]

beats the Zyablov bound for large alphabets.

We next show how replacing the balanced disperser with an unbalanced disperser can improve the

alphabet size above to 2O(log(1
1−δ

)). We also show how this improvement implies an improvement

on the above two issues.

2.1.1 Improving the alphabet size

[1] give a construction of asymptotically good error correcting codes over large alphabets. We

show how replacing the balanced expander used in their construction can be improved by using

an unbalanced disperser:

Theorem 1 For every relative distance δ < 1, there exists an explicitly constructible family of

codes of rate Ω(1− δ) over alphabet of size:

7

• 2O(1
1−δ

), when using Gbalanced as in [1].

• 2O(log(1
1−δ

)), when using Gopt.

• 2O(log2(1
1−δ

)), when using GDopt.

• p̃log(1
1−δ

), when using Gexplicit and where p̃log(x) = 22polyloglog(x)
.

2.1.2 Approaching the singleton bound

The construction of [1] is of the form G ◦ CJus, where CJus is a Justesen code1 and G is the

balanced disperser, Gbalanced above. They show:

Theorem 2 [1] There exists positive constants γ0, γ1, such that for every δ > δmin(γ0), there

exists qmin(δ), such that for every q > qmin the rate function of the construction satisfies:

R(δ, q) > γ0(1− δ)− γ1

log2 q
(2.5)

We show that by using an unbalanced disperser we get:

Theorem 3 There exists a positive constant γ0, such that for every γ1 > 0, there is δmin(γ1) such

that for every δ > δmin, there exists qmin(δ), such that for every q > qmin the rate function of the

construction satisfies (2.5)

For large alphabets, the rate function (2.5) resembles the singleton bound

R(δ) ≤ (1− δ)

but with γ0 in front of (1− δ) instead of 1. We show that the constant γ0, can be improved when

using an unbalanced disperser as shown in Table 2.1. Another difference relates to γ1. While in

theorem 3, γ1 can be arbitrarily small, in the original construction it is a constant greater than

0. Thus, we achieve rate which doubles or triples the rate achieved in [1].

1We elaborate on Justesen code in section 3.2

8

Disperser used γ0 γ1

Gbalanced [1] ≈ 0.021 > 0.58
Gopt ≈ 0.0605 o(1)
GDopt ≈ 0.0427 o(1)

Table 2.1: The constants in the rate function of asymptotically good error correcting codes.

2.1.3 Beating the Zyablov bound for large alphabets

[1] show that for large alphabet size (2.5) lies above the Zyablov bound (2.4). We show:

Theorem 4 The rate function RG◦CJus
(δ, q) lies above the Zyablov bound for alphabet size q of:

• 2Θ(1
1−δ

), when using Gbalanced ([1]).

• poly(1
1−δ

), when using Gopt.

• 2Θ(log2(1
1−δ

)), when using GDopt.

• p̃log(1
1−δ

), when using Gexplicit.

Thus, we beat the Zyablov bound for much smaller alphabet size.

2.2 Error correcting codes with explicit decoding

The construction G ◦ C above gives codes with arbitrarily large relative distance δ, having

rate Ω(1 − δ) for large alphabets. It is not clear, however, how to decode such codes. Denoting

ε = 1 − δ, [8] give an efficient decoding procedure for an error correcting code G ◦ C of relative

distance 1−ε, having rate Ω(ε). The decoding is achieved by taking C to be a list decodable code,

and G to be a balanced expanding graph with strong mixing property. We show that replacing

the balanced graph with an unbalanced extractor the alphabet size is improved. Specifically, we

have:

Theorem 5 For any 1
8

> ε > 0 there is an explicitly specified code family with rate Ω(ε), relative

distance at least (1− ε) and alphabet size |Σ| as listed in Table 2.2.

9

Extractor Used |Σ| Ref

Balanced Ramanujan Graph 2O(1
ε
) [8] Theorem 8

GEopt 2O(log2(1
ε
)) Section 6.1

Gexplicit p̃log(1
ε
) Section 6.1

Table 2.2: The alphabet size of the uniquely decodable asymptotically good error correcting codes.

Thus, we dramatically decrease the alphabet size with respect to [8]. We remark that if one

could explicitly construct an optimal extractor the alphabet size could be improved to (1
ε
)O(1).

The full details of the proof, including encoding, decoding and construction times are given in the

appendix (section 6.1).

2.3 High noise list decodable codes

[8] and [7] give three different constructions of high noise list decodable codes with varying

trade-off between rate and decoding list size, as described in Table 2.3. All constructions are of

the form G ◦ C, differing only in the code C used.

In high noise list decoding we let the relative number of errors be (1 − ε), where ε > 0 is

arbitrarily small, and present the other parameters: rate r, alphabet size q and decoding list size

L as a function of ε and the block length of the code N . A simple fact is that for high noise list

decodable codes r = O(ε), L = Ω(1
ε
), and q = Ω(1

ε
).

The first variant we consider has optimal rate of Ω(ε), but suffers a sub exponential decoding

list size. This construction is from [8] and takes C to be a list recoverable code with constant rate

and sub exponential decoding list size. The exact parameters, including encoding, decoding and

construction times are given in the appendix (section 6.2, theorem 9).

The second variant from [7], which takes C to be a list recoverable code from arbitrary size, has

an almost optimal rate of Ω(ε

logO(1)(1
ε
)
) and still suffers sub exponential decoding list size. However,

this construction shows that if one could construct better extractors for low min–entropies (or

list recoverable codes from arbitrary size with short decoding lists), then one could get an almost

10

optimal rate with small decoding list size. The exact parameters including construction times are

given in the appendix (section 6.4, theorem 11).

The third variant has sub optimal rate, but has the merit of optimal decoding list size. In this

construction from [8], C is taken to be a list recoverable code with rate Ω(ε) and O(1
ε
) decoding list

size, trading a shorter decoding list with a worse rate. The exact parameters, including encoding,

decoding and construction times are given in the appendix (section 6.3, theorem 10).

In all cases, we show how replacing the balanced expander with various unbalanced dispersers

improve on the alphabet size of these constructions, as shown in Table 2.3.

2.4 Summary

Amplification using expanding graphs is a widely used technique in both coding and complexity

theory. Our technical contribution is noting that for the case of error amplification of codes the

expanding graph needed is actually an unbalanced disperser (or extractor) and that its entropy loss

is a key parameter in analyzing such codes constructions. The results above show that when using

such unbalanced dispersers with optimal entropy loss, the resulting alphabet size, and sometimes

the rate can be improved.

Two recent works fall into the range of parameters of list decodable codes that we consider in

this work. One is the optimal rate construction of [18] who give a polynomial time constructible

family of (1 − ε, O(1
ε
)) list decodable codes having rate r = Ω(ε) and alphabet size 2O(ε−3 log(1

ε
)).

Thus, [18] improve on the decoding list size appearing in Table 2.3, but worsen the alphabet size.

The other work [17] is an almost optimal rate construction of (1− ε, (1
ε
)O(log log(1

ε
))) list decodable

codes having rate Ω(ε
log2(1

ε
)
), and alphabet size of 2O(log2(1

ε
)). This construction has a natural

representation, which is computable in expected polynomial time.

In section 3 we give the necessary coding and expanding graphs background, elaborating on

the Zig-Zag graph construction, which we use for constructing good dispersers. In section 3.6 we

explain the inherent loss in the rate of the almost optimal rate construction from Table 2.3. We

11

show that this loss with respect to the optimal rate construction stems from the fact that each

construction uses a different flavor of a list recoverable code. In section 4 we give the general

structure of the various G ◦ C constructions, and in sections 5, 6 we give the detailed parameter

analysis of each construction.

12

rate Decoding list size alphabet size Ref
Lower bound

ε 1
ε

1
ε

Optimal rate list decodable codes

ε 2Nγ log(1
ε
)

2ε−1 log(1
ε
)

2log2(1
ε
)

2log3(1
ε
)

p̃log(1
ε
)

[8]
Section 6.2
Section 6.2
Section 6.2

Almost optimal rate list decodable codes - Using explicit extractors

ε

logO(1)(1
ε
)

2
√

g(ε)·N log(g(ε)·N)

2ε−1 log(1
ε
)

2log2(1
ε
)

2log3(1
ε
)

p̃log(1
ε
)

[7]
Section 6.4
Section 6.4
Section 6.4

Almost optimal rate list decodable codes - Assuming optimal extractors

ε
log(1

ε
)

1
ε

2ε−1 log(1
ε
)

2log2(1
ε
)

2log3(1
ε
)

p̃log(1
ε
)

[7]
Section 6.4
Section 6.4
Section 6.4

Sub optimal rate list decodable codes

ε2 1
ε

2ε−1 log(1
ε
)

2log2(1
ε
)

2log3(1
ε
)

p̃log(1
ε
)

[8]
Section 6.3
Section 6.3
Section 6.3

Table 2.3: The list decoding parameters and the alphabet size improvements. For each construction
we list the improvements achieved whe using Gopt, GDopt and Gexplicit. O(·), Ω(·) notations were
omitted for readability. All codes admit combinatorial list decoding from (1 − ε) relative fraction
of errors. N is the block length of the code and g(ε) is a function dependent only on ε. The value

γ is in the interval (0, 1]. p̃log(x) stands for 22polyloglog(x)
.

13

Chapter 3

Preliminaries

We give the necessary background on codes and expanding graphs we use.

3.1 Codes

Error correcting codes were built to deal with the task of correcting errors in transmission over

noisy channels. Formally, an (N, n, d)q error correcting code over alphabet Σ, where |Σ| = q, is a

subset C ⊆ ΣN of cardinality qn in which every two elements are distinct in at least d coordinates.

n is called the dimension of the code, N the block length of the code, and d the distance of the

code. If C is a linear subspace of [Fq]
N , where Σ is associated with some finite field Fq we say that

C is a linear code, and denote it [N,n, d]q code. From the definition we see that one can uniquely

identify a codeword in which at most d−1
2

errors occurred during transmission. Moreover, since

two codewords from ΣN can differ in at most N coordinates, the largest number of errors from

which unique decoding is possible is N/2.

This motivates the list decoding problem, first defined in [4]. In list decoding we give up unique

decoding, allowing potentially more than N/2 errors, and require that there are only few possible

codewords having some modest agreement with any received word. Formally, we say that an

(N, n)q code C is (p,K)-list decodable, if for every w ∈ ΣN , |{c ∈ C|∆(w, c) ≤ pN}| ≤ K, where

∆(x, y) is the number of coordinates in which x and y differ. That is, the number of codewords

which agree with w on at least (1 − p)N coordinates is smaller than K. We call the ratio n/N

the rate of the code, and p the error rate.

In the high noise regime we let p = 1 − ε, for ε > 0 being very small. A simple probabilistic

argument shows that (1 − ε, O(1
ε
))-list decodable codes with rate = Ω(ε), and |Σ| = O(1

ε2
) exist.

Also the rate must be O(ε), and |Σ| = Ω(1
ε
).

The notion of list decodable codes can be generalized to that of list recoverable codes, where

14

for each coordinate i ∈ [N] there is some subset of |Σ| of possibilities for explaining the received

symbol in the ith coordinate. Formally, we say that a code C ⊂ ΣN , is (δ, α|Σ|, L)-list recoverable

if for every S1, . . . , SN ⊂ Σ of size α|Σ| each, there are at most L codewords w ∈ C, having at

least δN coordinates wi ∈ Si. List decoding is list recovering having α|Σ| = 1.

After discussing extractors in section 3.4 we will further generalize the notion of list recovering

to that of list recovering from arbitrary size. As we will see this notion is equivalent to extractors.

List decodable codes, list recoverable codes and list recoverable codes from arbitrary size (de-

fined in section 3.5) are used as the code C in the constructions G ◦ C we discuss in this work.

Finally, we say that a code is explicit if a codeword of the code can be computed in time

polynomial in the code length.

3.2 Justesen code

The construction G ◦ C of [1] uses Justesen code as the code C. A Justesen code has the

advantage of a good relationship between relative distance and rate, while still being explicit.

This is achieved by concatenating a Reed-Solomon code of appropriate rate with a Wozencraft

ensemble of codes. Before stating the parameters of Justesen code we need the definition of the

entropy function:

Definition 3 For every 0 ≤ x ≤ 1, the binary entropy function, denoted H2(x), is defined as:

H2(x) = x log2

(
1

x

)
+ (1− x) log2

(
1

1− x

)

Moreover, H2(0), H2(1) are defined to be 0 at these points as limx→0 H2(x) = limx→1 H2(x) = 0.

For every 0 ≤ x ≤ 1− 1
q
, we define:

Hq(x) = x logq

(
1

x

)
+ (1− x) logq

(
1

1− x

)
+ x logq(q − 1) (3.1)

Again, limx→0 Hq(x) = 0, and so we define Hq(0) = 0. It can be easily verified that Hq(1− 1
q
) = 1,

15

and that it is concave and monotonically increasing in [0, 1− 1
q
].

Theorem 6 [9] For every δ0 < 1
2
, and alphabet size q0, large enough such that H−1

q (1
2
) > δ0, there

exists an explicit family of codes with relative distance δ0 over alphabet of size q0, and rate:

RJus(δ0, q0) =
1

2

(
1− δ0

H−1
q0

(1/2)

)
(3.2)

For further analysis we get rid of the inverse entropy function appearing in the rate above. We

begin by bounding the inverse entropy function H−1
q (1

2
):

Claim 1

H−1
q

(
1

2

)
≥ 1

2
− 1

log2 q
(3.3)

Proof: (3.1) can be rewritten as:

Hq(x) =
H2(x)

log2 q
+ x logq(q − 1) ≤

≤ 1

log2 q
+ x

Letting x = 1
2
− 1

log2 q
, we thus have, Hq(x) ≤ 1

2
. Since Hq(x) is monotonically increasing the claim

follows. We remark that this bound is almost tight. It can be easily shown that:

H−1
q

(
1

2

)
≤ 1

2
− 1

4 log2 q

Substituting (3.3) in (3.2) we get:

Corollary 1 If CJus is a Justesen code over alphabet of size q0, and relative distance δ0, then:

RJus(δ0, q0) >
1

2
− δ0 − 2δ0

log2 q0 − 2
(3.4)

16

3.3 A general decoding scheme

We now give a description of a decoding procedure for constructions of the form G ◦C , which

is common to all the decoding procedures we consider later on. This decoding procedure was used

in the various constructions of [8], [7]. The procedure interprets the ith symbol of a received word

- a symbol from the alphabet of G ◦ C - as a list of ’votes’ saying what i thinks are the symbols

from the smaller alphabet of C, in the coordinates neighboring to i in G.

Formally, let G be an expanding graph G : [L] × [T] → [N] and C ⊂ ΣN . The decoding

procedure for G ◦ C takes a word w ∈ (ΣT)L, and constructs N subsets of Σ: S1, . . . , SN in the

following way: for each ` ∈ [L], and each t ∈ [T] we add to SG(`,t), the symbol w`,t. See figure 3.1A.

We refer to this procedure as a voting procedure, as every coordinate of w on the right votes for

what it thinks are the symbols that should be in each of its neighbors on the left. A coordinate

i ∈ [N] having degree D, can get up to D different votes. Had the word w been a legitimate

codeword of G ◦C, all votes were identical. See figure 3.1B. Different decoding strategies use the

N sets in slightly different ways, as described in section 4.

We now analyze the complexity it takes to perform the encoding and decoding of the amplifi-

cation procedure. Let G be a [L]× [T] → [N] disperser. Assume that given x ∈ [L], and y ∈ [T],

computing G(x, y) takes time t. For the encoding procedure, we need to iterate over all elements

in [L] and for each element to find all its [T] neighbors. Thus, the encoding time is LT · t. For

the decoding procedure described above, we need again LT · t time. We mention that in order to

keep all sets S1, . . . , SN we need also LT log q space, where q is the alphabet size of the code C,

used in G ◦ C. The exact resources needed for the various dispersers we use are given below.

3.4 Expanding graphs

Expanding graphs are highly connected graphs, but nevertheless sparse. There are two major

ways to define the expansion property of these graphs. The weaker property of expansion states

that every subset of the vertices X is expanded by some factor C > 1, meaning the size of the

17

[L]

Sn1={…,wl,i,…}

T wl=(wl,1 ,…,wl,T)
T

[N]

Sn2={...,wl,j,…}

Sn3={...,wl,k,…}

A. The Voting Procedure

B. Different Votes

D wb=(wb,1 ,…, wb,T)
T

[L][N]

wa=(wa,1 ,…, wa,T)
T

wc=(wb,1 ,…, wb,T)
T

iwa,i,wb,j,wc,k Si

Figure 3.1: A. The Voting Procedure. w` ∈ ΣT , is the `th coordinate of some word w ∈ (ΣT)L.
If n1 ∈ [N] is the ith neighbor of ` ∈ [L], Sn1 contains the symbol w`,i. Similarly, n2, n3 are
the jth, and kth neighbors of `, adding the ’votes’ w`,j, and w`,k to Sn2, Sn3 accordingly. B.
Different Votes. a, b, c ∈ [L] are all neighbors of i, thus contributing their votes to Si. Had wa, wb,
and wc been coordinates of a legitimate codeword of G ◦ C, the votes were consistent, meaning
wa,i = wb,j = wc,k.

neighbor set of X is at least C|X|. This property assures that if we start with a small subset X

then after not too many expansion steps, we will visit almost all the vertices. This property is

similar1 to the property of dispersers defined below. The stronger property of mixing (see, [2],

Chap 9) states that the number of edges between any two subsets of vertices is close to the relative

number of edges leaving these subsets. This property assures that if we start with a small subset of

vertices X then after not too many steps where in each step we proceed from X to its neighboring

set, not only we visit almost all vertices, but each vertex is visited more or less the same number

of times. This property is similar to the property of extractors defined below. Thinking of our

graphs as bipartite graphs with regular left degree, we turn to the weaker definition of dispersers:

Definition 4 (Dispersers) G : [L]× [T] → [N] is a (K, ε)-disperser if for every X ⊆ [L], |X| ≥ K

we have |ΓG(X)| ≥ (1 − ε)N . The entropy loss of the disperser is ΛG = KT
N

. The disperser is

1Expanders assure the expansion of every small enough set whereas dispersers assure the expansion every large
enough set.

18

explicit if G(x, y) can be computed in time polynomial in the input length, i.e., polynomial in

log L + log T .

Thus, the disperser assures that each small subset of [L] sees almost all [N]. K is referred to as

the min–entropy for which the disperser assures the required expansion. K vertices have at most

KT neighbors, while the expansion property assures almost N neighbors. Thus, the entropy loss

ΛG = KT
N

gives some measurement of the quality of the disperser’s expansion. It is useful to note

that the expansion property of dispersers works for both sides, as demonstrated in the following

lemma:

Lemma 2 (Reverse expansion) If G : [L] × [T] → [N] is a (K, ε)-disperser then for any subset

Y ⊂ [N], |Y | ≥ εN , we have |ΓG(Y)| ≥ L−K.

Proof: Any X ⊂ [L], |X| ≥ K has |ΓG(X)| ≥ (1− ε)N . This implies that for any subset Y ∈ [N],

|Y | ≥ εN there can be a set of size at most K in [L] missed by Y . Thus, |ΓG(Y)| ≥ L−K

For the stronger definition of extractors, we need the following: A probability distribution D on

Ω is a function D : Ω → [0, 1], satisfying Σx∈ΩD(x) = 1. For an integer M we define UM as the

uniform distribution over [M], meaning UM(x) = 1
M

for every x ∈ [M]. The statistical distance

between two distributions D1, D2, denoted |D1 −D2| is:

1

2
Σx∈Ω|D1(x)−D2(x)| = max

S⊂Ω
|D1(S)−D2(S)|

We say that D1 and D2 are ε-close if |D1 −D2| < ε. We are now ready for the extractor definition:

Definition 5 (Extractors) E : [L]×[T] → [N] is a (K, ε)-extractor if for every X ⊆ [L], |X| ≥ K,

the distribution of E(x, y), is ε-close to UN , where x is taken uniformly at random from X and

y is taken uniformly at random from [T]. The entropy loss of the extractor is KT
N

. ε is called the

extractor error. An extractor is explicit if E(x, y) can be computed in time polynomial in the input

length, i.e., polynomial in log L + log T .

19

As opposed to the definition of dispersers the condition E(x, y) is ε-close to UM states that not

only every element in [M] is sampled, but all elements in [M] are sampled about the same number

of times. Thus, any extractor is also a disperser having the exact same parameters. K is called

the min–entropy of the extractor. A stronger definition of extractors demands that the output

distribution stays close to uniform even if the random value of y is revealed.

Definition 6 (Strong Extractors) E : [L] × [T] → [N] is a (K, ε)-strong extractor if for every

X ⊆ [L], |X| ≥ K, the distribution y ◦ E(x, y) is ε-close to U[T]×[N], where x is taken uniformly

at random from X and y is taken uniformly at random from [T]. The entropy loss of the strong

extractor is K
N

. The extractor is explicit if E(x, y) can be computed in time polynomial in the input

length, i.e., polynomial in log L + log T .

As mentioned before the property of extractors is closely related to that of mixing. It is immediate

from the definition of extractors that:

Fact 1 (Extractors mixing property) If E : [L] × [T] → [N] is a (K, ε)-extractor, then for every

S ⊆ [N], and every X ⊂ [L], |X| ≥ K, we have:

∣∣∣∣
|ΓE(X) ∩ S|

|X|T − |S|
N

∣∣∣∣ < ε

where

ΓE(X) = {E(x, i)|x ∈ X, i ∈ [T]}

If E above is strong we get for every S ⊆ [T]× [N], and every X ⊂ [L], |X| ≥ K

∣∣∣∣
|ΓE(X) ∩ S|

|X|T − |S|
T ·N

∣∣∣∣ < ε

where

ΓE(X) = {(i, E(x, i)|x ∈ X, i ∈ [T]}

Another way to write the mixing property of strong extractors is: For every S ⊂ [T]× [N], there

20

are at most 2K elements x ∈ [L], for which:

∣∣∣∣
|ΓE(x) ∩ S|

T
− |S|

TN

∣∣∣∣ > ε (3.5)

Just as with the reverse expansion of dispersers, extractors have reverse mixing, as demonstrated

in the next lemma from [11]:

Lemma 3 (Reverse Mixing) if E : [L] × [T] → [N] is a (K, ε)-extractor then for every C > 2,

and for every X ⊂ [L], |X| ≥ K there are at most 4N
C

elements y ∈ [N] for which:

∣∣∣∣
|ΓE(y) ∩X|

dy

− |X|
L

∣∣∣∣ > εC · |X|
L

where dy is the degree of y in E

Proof: By the mixing property of extractors we have: ∀S ⊆ [N], ∀X ⊆ [L], |X| ≥ K it holds

that: ∣∣∣∣
|ΓE(X) ∩ S|

T |X| − |S|
N

∣∣∣∣ < ε

Multiplying and dividing by Q|S|
T |X| , and noting that |ΓE(X) ∩ S| = |ΓE(S) ∩X| we get:

Q|S|
T |X| ·

∣∣∣∣
|ΓE(S) ∩X|

Q|S| − T |X|
QN

∣∣∣∣ < ε

Substituting Q = LT
N

the lemma follows.

Finally, we mention that [11] give the following lower bounds, which have matching upper bound

for extractors and strong extractors: if E : [L]× [T] → [N] is a (K, ε)-(strong) extractor, then:

T = Ω

(
1

ε2
log

L

K

)
(3.6)

entropy loss:

ΛG = Ω(
1

ε2
) (3.7)

21

3.5 Extractors and list recoverability from arbitrary size

We now further generalize the notion of list recovering to that of list recovering from arbitrary

size. Recall that a code C of block length N is (δ, α|Σ|, L)-list recoverable if for every S1, . . . , SN ⊂
Σ of size α|Σ| each, there are at most L codewords w ∈ C, having at least δN coordinates wi ∈ Si.

We say that the ith coordinate of a codeword C(x) agrees with some Si ⊂ Σ of arbitrary size, if

C(x)i ∈ Si. Denoting S =
⋃

i{Si, i}, (where {Si, i} = {(x, i)|x ∈ Si}) we say that the agreement of

C(x) with S, is the number of coordinates i having agreement with Si. The list recovering property

can be now thought of as having a small number of codewords having some fixed agreement (δN)

with a set S ⊂ Σ× [N].

In list recovering from arbitrary size we demand that for each S ⊂ Σ×[N] there is a small number

of codewords having relative agreement with S which is slightly more than the proportional size

of S. Formally, A code C ⊂ [Σ]N is (L, ε) list recoverable from arbitrary size if for every S ⊆ Σ×N ,

there are at most L codewords C(x), for which AS(x) > (|S|
N |Σ|+ε)N , where AS(x) = {i|(xi, i) ∈ S}.

[15] have shown that the notion of list recoverability from arbitrary size is equivalent to that of

a strong extractor. Intuitively, and using the notations of extractors and codes above, the mixing

property for strong extractors states that for every subset S ⊆ [T] × [M] there are few vertices

having relative number of neighbors in S larger than the relative size of S. In list recovering from

arbitrary size there are few codewords having relative agreement with S ⊆ Σ × [N] larger than

the relative size of S. Formally, [15] show:

Theorem 7 If E : [N]× [D] → [M] is a (L, ε)-strong extractor, then the code CE : [N] → [M]D

defined by ∀x ∈ [N], C(x) = (E(x, 1), . . . , E(x,D)) is (L, ε)-list recoverable from arbitrary size.

Conversely, if CE is (ε, L) list recoverable from arbitrary size then E is a (L
ε
, 2ε)-strong extractor.

We can thus derive an upper bound on the rate of a list recoverable code from arbitrary size from

the degree lower bound of strong extractors:

Lemma 4 For every ε > 0 if CE : [N] → [q]D is a (ε, L)-list recoverable code from arbitrary size

22

and L does not depend in N , then the rate of the code rCE
satisfies:

rCE
=

log2 N

D log q
= O

(
ε2

log q

)

Proof: Theorem 7 implies that CE is a (L
ε
, 2ε)-strong extractor E : [N] × [D] → [M]. By the

degree lower bound of strong extractors (3.6) we have D = Ω(1
ε2

log(εN
L

)). L is independent of N

and the lemma follows.

3.6 A note on the non-optimality of the construction

Looking at Table 2.3, we see that the almost optimal rate list decodable code construction suffers

sub optimal rate even when using an optimal extractor. To see why we loose on the rate, we observe

that the optimal rate construction uses a list recoverable code whereas the almost optimal rate

construction uses a list recoverable code from arbitrary size, which is a stronger notion. We now

demonstrate that achieving the stronger notion of list recoverability from arbitrary size, implies

loosing on the rate. A simple probabilistic argument shows that:

Lemma 5 If α < 1
4

is an arbitrary constant then for every 0 < δ < α, there exists a family of

(α, 1
δ
, O(1

δ
))-list recoverable codes over an alphabet size q = O(1

δ2) having rate Ω(α).

On the other hand by Lemma 4 a family of (O(1
δ
), α)-list recoverable codes from arbitrary size

have rate O(α2

log(1
δ
)
). Looking at Table 2.3 we see that the factor differentiating between the optimal

and sub optimal constructions is 1
log(1

δ
)
.

3.7 The dispersers and extractors parameters

We now elaborate on the exact parameters of the dispersers and extractors surveyed in section

1.3. The extractors and dispersers we mention are used as G in the various G ◦ C constructions

appearing later on. In all cases we consider a (K, ε)-disperser/extractor G : [L]× [T] → [N].

23

We also summarize in Table 3.1 the parameters of the relevant graphs below using slightly

different notations, which comply with the notations of [1] for ease of presentation.

3.7.1 The optimal disperser Gopt

Ta-Shma and Radhakrishnan [11] show that any disperser with parameters as above must have

degree:

T = Ω

(
1

ε
log

L

K

)
(3.8)

and entropy loss:

KT

N
= Ω

(
log

1

ε

)
(3.9)

Probabilistically, [11] show a disperser with:

T =
2

ε

(
ln

L

K
+ 1

)
(3.10)

and with entropy loss:

KT

N
= 2

(
ln

(
1

ε

)
+ 1

)
(3.11)

The disperser we refer to as Gopt has degree and entropy loss, as in (3.10), (3.11). Gopt is used in

all constructions (except the explicit decoding of [1] in section 2.2, where an optimal extractor is

needed).

3.7.2 The balanced disperser Gbalanced

We compare all constructions to those using Gbalanced (where L = N), based on Ramanujan

graphs, having the parameters (see e.g. [1], section 3):

T ≥ 4
(

1
ε
− 1

)
K
L

(3.12)

Λ =
KT

N
= 4

(
1

ε
− 1

)
(3.13)

24

3.7.3 The Zig-Zag based constructions GDopt
, GEopt

and Gexplicit

As mentioned above the graphs G in the G ◦ C constructions are dispersers/extractors for the

high min–entropy range. Such graphs can be constructed using the recent zig-zag product scheme

of [13] tailored for this range.

Zig-Zag preliminaries: We begin with the definition of min–entropy. A random variable X

distributed over {0, 1}n is said to have k ≤ n bits of min–entropy, denoted H∞(X) = k, if for

every x ∈ {0, 1}n, Pr[X = x] ≤ 2−k. Min–entropy is thus a measurement of the amount of

randomness in a weak source which is not uniformly distributed. Two random variables (X1, X2)

form a (k1, k2)-block source [3], if X1 has k1 min–entropy, and for every possible value x1 of X1,

the distribution of X2 conditioned on X1 = x1 has k2 min–entropy.

An extractor is a function which takes a weak random source X having some min–entropy

k < n and transforms it to almost purely (ideally k) random bits. Formally (using min–entropy

term):

Definition 7 A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for every X

distributed over {0, 1}n, having k min–entropy, Ext(X, Ud) is ε-close to Um.

[14] have shown that no deterministic function can perform such an extraction. Thus, the extrac-

tors we consider take as input (apart form the weak source) an additional random seed of pure

randomness to perform the extraction. Let us recall that for the application of codes, we consider

agreement sets of size εL out of L, where ε > 0 is some constant independent of L. In terms

of min–entropy this is like having a source with k = log L − log(1
ε
) bits of min–entropy out of

n = log L. Defining ∆ = n − k = log(1
ε
), we say that the source has ∆ min–entropy deficiency.

Thus, for the error amplification of codes we need an extractor for sources with constant min–

entropy deficiency. As pointed out by [5] any source X of length n having ∆ deficiency can be

thought of two ’almost independent’ sources each having ∆ deficiency. Formally, [5] show:

Lemma 6 Let X be a random source distributed over {0, 1}n, having ∆ deficiency. For every

25

ε > 0 and every n1, n2, such that n1 + n2 = n, X is ε-close to a (n1 −∆, n2 −∆− 2 log(1
ε
)) block

source X1 ◦ X2 (◦ denotes string concatenation), where X1 is distributed over {0, 1}n1, and X2

over {0, 1}n2.

[10] give a simple extractor for block sources. The idea is to take a relatively short truly random

seed, which is used to extract the randomness from X2. The extracted randomness is then used

to extract the randomness from X1. The smaller ∆ is, the smaller the truly random seed can be.

However, this idea looses ∆ min–entropy ’by definition’. The zig-zag scheme of [13], overcomes

this loss. We now sketch the zig-zag scheme, see figure 3.2.

Let X be a source distributed over {0, 1}n, having ∆ min-entropy deficiency. Let ε > 0,

n1 + n2 = n, with X1, X2 as in the lemma above. Let E2 : {0, 1}n2 × {0, 1}d2 → {0, 1}m2 , be a

(n2−∆− 2 log(1
ε
), ε) extractor. E2 uses d2 truly random bits to extract m2 random bits from X2.

Let E1 : {0, 1}n1 ×{0, 1}m2 → {0, 1}m1 , be a (n1−∆, ε) extractor, having the following property:

E1 can be extended to a pair of functions 〈E1, C1〉 : {0, 1}n1×{0, 1}m2 → {0, 1}m1×{0, 1}n1+m2−m1 ,

such that 〈E1, C1〉 is a 1− to−1 mapping. E1 uses the m2 output bits of E2 to extract m1 random

bits from X1.

Let us denote by Z1, Z2 the corresponding random variables of 〈E1, C1〉(X1, E2(X2, Y)) (see

figure 3.2), where Y = Ud2 . Z1 is distributed over {0, 1}m1 , and Z2 over {0, 1}n1+m2−m1 . Since

〈E1, C1〉 is a 1− to− 1 mapping we actually have that the mapping:

Z1 ◦ Z2 ◦X2 ◦ Y
.
= 〈E1, C1〉(X1, E2(X2, Y)) ◦X2 ◦ Y (3.14)

is 1 − to − 1. Now, on one hand Z1 is close to uniform and on the other Z1 ◦ Z2 ◦ X2 ◦ Y is

1 − to − 1, thus given the m1 random bits of Z1 extracted from X1, Z2 ◦ X2 ◦ Y are close to

uniform. Stated otherwise, there are still almost n − ∆ + d2 − m1 random bits in Z2 ◦ X2 ◦ Y .

Thus, we apply a third extractor using fresh random bits on Z2◦X2◦Y . This extractor needs to be

a ((n−∆+d2−m1), ε)-extractor E3 : {0, 1}(n1+m2−m1)+n2+d2×{0, 1}d3 → {0, 1}m3 . Thus, the total

amount of random bits used is d2 + d3. As for the entropy loss we have ’invested’ n−∆ + d2 + d3

26

bits of entropy, and extracted m1 + m3 bits, giving entropy loss of n−∆ + d2 + d3 − (m1 + m3),

which is exactly the entropy loss of E3.

Figure 3.2: The zig-zag scheme

The Zig-Zag disperser: For most of our applications we only need a disperser with optimal

entropy loss. We thus take E3 to be a disperser2. The above argument is identical, only we

’extract’ the n−∆ + d2 −m1 bits of min–entropy from Z2 ◦X2 ◦ Y in a ’disperser manner’. This

yields Z3 which is not close to uniform but close to have full support. This is exactly what we

need as we want a disperser and not an extractor. Taking E3 to be a disperser, the entropy loss

2Seemingly we could also take E1, E2 to be disperses, reducing both the amount of randomness needed and the
entropy loss. However, if for example we take E2 to be a disperser then E2(X2, Y) is ε-close to have full support
rather than ε-close to uniform. As such it is not suitable for extracting the randomness from X1 even in a disperser
manner.

27

of the scheme above will be the entropy loss of a disperser which is much better than that of an

extractor. Also d3 can be much smaller for a disperser.

The parameters: We now give the exact parameters of the zig-zag based constructions which

we use. In all three constructions E1 is the extractor of [5] based on an expander random walk:

Theorem 8 For any ε > 0 and 0 < k < n there exists an explicit (n − ∆, ε)-extractor E :

{0, 1}n × {0, 1}d → {0, 1}n, where d = ∆ + 2 log(1
ε
) + 2

Using an appropriate expander for the construction of E1 (e.g. a Caley graph), it can be easily

extended to be a 1− to− 1 mapping 〈E1, C1〉 : {0, 1}n × {0, 1}d → {0, 1}n × {0, 1}d.

For GDopt we take E2 to be an optimal extractor and E3 to be an optimal disperser. This

construction actually appears in [13] lemma 6.13 only with E3 being an optimal extractor.

Lemma 7 ([13] corollary 6.13, replacing E3 with an optimal disperser) For any 1 ≤ K ≤ N and

ε > 0, there exists a (K, ε)-Disperser G : [L]× [T] → [N] with

T = O

(
1

ε

)3 (
log

(
L

K

)
+ log

(
1

ε

))2

(3.15)

Λ = 2

(
ln

(
4

ε

)
+ 1

)
(3.16)

Given x ∈ [L], and y ∈ [T] computing G(x, y) takes O(log2 L) time. The construction time of the

disperser is 2(L
K

)O(1) · poly log L, and it can be represented in O((L
K

+ log(1
ε
))2) space.

For GEopt we take E2 and E3 to be optimal extractors, this construction is given in [13] lemma

6.13.

Lemma 8 ([13] corollary 6.13) For any 1 ≤ K ≤ N and ε > 0, there exists a (K, ε)-Extractor

E : [L]× [T] → [N] with

T = O

(
1

ε

)4 (
log

(
L

K

)
+ log

(
1

ε

))2

(3.17)

28

Λ = O

(
1

ε

)2

(3.18)

Given x ∈ [L], and y ∈ [T] computing G(x, y) takes O(log2 L) time. The construction time of the

disperser is 2(L
K

)O(1) · poly log L, and it can be represented in O((L
K

+ log(1
ε
))2) space.

We emphasize that although GDopt and GEopt use optimal subcomponents these subcomponents

are small enough so that the construction time is exponential in L
K

. Recall that for our applications

L
K

= 1
ε
, where 1−ε is a constant representing the decoding radius/minimum distance of the codes.

For Gexplicit we take E2 and E3 to be the optimal entropy loss extractors of [12]. This construc-

tion is explicit, however its entropy loss and degree are inferior to previous constructions. Gexplicit

is used throughout all the constructions we consider.

Lemma 9 ([13] Theorem 6.12 using the explicit extractors of [12] Theorem 4) For any 1 ≤ K ≤ L

and ε > 0, there exists a (K, ε)-Extractor E : [L]× [T] → [N] with degree:

T = 2O(log3(1
ε

log(L
K))) (3.19)

and entropy loss:

Λ = O

(
1

ε2

)
(3.20)

Given x ∈ [L], and y ∈ [T] computing E(x, y) takes O(log2 L) + O((log(L
K

) + log(1
ε
))3) time. The

construction time of the extractor is poly((1
ε
)(L

K
))

29

Graph Λ T Ref
Gopt 2(ln(1

δ0
) + 1) 2

δ0
(ln(1

1−δ
) + 1) [11]

GDopt 2(ln(4
δ0

) + 1) O(1
δ0

)3(log(1
1−δ

) + log(1
δ0

))2 [13]

Gexplicit O(1
δ0

)2 2
O(log3(1

δ0
log(1

1−δ
)))

[13]

Gbalanced 4(1
δ0
− 1)

4(1
δ0
−1)

1−δ
[1]

Table 3.1: The dispersers’ and extractor’s parameters we use. The parameters are quoted for
G : [L] × [T] → [N], which is a ((1 − δ)L, δ0)-disperser/extractor. δ is the relative distance of
G ◦ C. δ0 is relative distance of C and N is the block length of C.

30

Chapter 4

The internal structure of the different constructions

In this section we summarize the various ways in which we use the G ◦ C construction. In

section 1 we give the example where C is a linear code, as in [1]. For the constructions in sections

2.2, 2.3 we need to take C either as a list decodable code or as a list recoverable code or as a list

recoverable code from arbitrary size. As shown below, the choice of C determines the internal

structure of the proof regarding the list decodability of the overall construction.

4.1 Taking C to be a linear code

For the asymptotically good error correcting codes [1] take C to be a linear code. The parameters

of G ◦ C where C is a linear code are given in lemma 1. We now give the proof.

Lemma 1 If G : [L] × [T] → [N] is a (εL, δ)- disperser with entropy loss Λ, and if C is a

[N, rN, δN]q code then G ◦ C is a [L, r·ε
Λ

L, (1− ε)L]qT code

Proof: The alphabet size of G◦C is immediate from the composition definition. By the composition

definition the rate of G ◦ C is:

r · N log q

L log(qT)
= r · N

LT
=

r · ε
Λ

(4.1)

For the relative distance, let C(x) be a non-zero codeword of C. C is linear with relative distance

δ, and so there are at least δN coordinates which are not zero in C(x). By the reverse expansion

of dispersers (Lemma 2), these δN coordinates have at least (1 − ε)L neighbors in G, yielding

(1− ε)L coordinates different from zero in G ◦C(x). Thus, every non-zero codeword of G ◦C has

weight at least (1− ε)L and G ◦ C has relative distance (1− ε).

31

4.2 Taking C to be a list decodable code

For the unique decoding of asymptotically good error correcting codes mentioned in section 2.2,

[8] take C to be a list decodable code.

Lemma 10 Assuming:

• for every α > 0, there exists [N, rN, 1
2
N]q(α) code C, which can be list decoded from (1− α)

fraction of errors.

• for every ε > 0, there exists (εL, 1
16

) extractor G : [L]× [T] → [N].

Then for every 0 < δ ≤ 1
2
, ε < δ, the code G ◦ C is [L, rε

Λ
L, (1− ε)L]q(δ

4
)T code, for which there is

a list decoding procedure from a fraction of (1 − δ) errors, implying a unique decoding procedure

from 1−ε
2

fraction of errors.

The proof follows exactly the lines of [8]:

Proof: Let δ > 0, ε < δ. Let C be the code from the first assumption using α = 1
4
δ, and G the

extractor from the second assumption. Exactly as in lemma 1, G ◦C has the stated rate, relative

distance, and alphabet size. We now show the decoding procedure for G ◦C. Let es ∈ [qT]L, be a

word which agrees with some codeword G ◦ C(x) on at least δL coordinates. Denote by X ⊆ [L]

the coordinates in agreement. |X| ≥ δL > εL. We now perform the decoding procedure described

in section 3.3, only, instead of taking all votes to the sets S1, . . . , SN , we take only the t most

popular votes1, for t to be determined later. We now claim:

Claim 2 If for some i ∈ [N], having degree di, C(x)i /∈ Si, then in G there are at most di

t+1
edges

between X and i.

Proof: All edges from X to i vote for the same symbol, as X contains coordinates of a legitimate

codeword. Thus, if this symbol didn’t make it to the t most popular votes, it means that there

1We do this to save on decoding time, as explained in the remark below.

32

are t other symbols, each having more than di

t+1
votes, implying that there are at least t · di

t+1
edges

originated in i which do not fall in X. Thus, there are at most di

t+1
additional edges between X

and i.

Stated otherwise, if C(x)i /∈ Si then

|ΓE(i) ∩X|
di

<
1

t + 1

Applying the the reverse mixing lemma (Lemma 3) to G above with |X| > δL, we have that

for every C > 2, there are at most 4N
C

elements i ∈ [N] for which:

∣∣∣∣
|ΓE(i) ∩X|

di

− δ

∣∣∣∣ >
1

16
C · δ

and so even less elements satisfy:

|ΓE(i) ∩X|
di

< (1− 1

16
C) · δ

Taking C = 8, and t, such that t + 1 = p2
δq there can be at most N

2
elements i ∈ [N] for which:

|ΓE(i) ∩X|
di

<
1

t + 1

Thus, by the above claim and the reverse mixing lemma there can be at most N
2

elements i ∈ [N],

for which C(x)i /∈ Si.

We now use the sets S1, . . . , SN to construct t strings w1, . . . , wt. For each 1 ≤ j ≤ t, and

1 ≤ i ≤ N define (wj)i be the jth symbol of Si.

Claim 3 At least one of the words w1, . . . , wt has αN = δ
4
N agreement with C(x).

Proof: More than half of the sets Si contain the symbol C(x)i. Averaging over the t words

wj, there is at least one such word with at least N
2t

coordinates from C(x). By the choice of t,

N
2t
≥ 1

4
δN = αN .

33

Thus, using the decoding procedure of C on w1, . . . , wt, gives a list L, which contains x. Going

over all words in L we find the single word within distance at most 1−ε
2

from the given word es.

Remark 1 One could argue that we don’t need the t popular votes for the sets Si, and we can

actually do with all possible votes. However, this might have a time cost. Recall that the size of

the sets Si is a factor in the time needed perform the above decoding. In the above scheme we took

t ≈ 1
δ

votes. On the other hand the average size of a set Si is LT
N

= O(1
ε
). Now, if ε << δ, then

this average size O(1
ε
) >> 1

δ
≈ t, and the time factor increases dramatically.

4.3 Taking C to be a list recoverable code

For the optimal rate list decodable code construction and the optimal decoding list size list

decodable code construction mentioned in 2.3, [8] take C to be a list recoverable code. The next

lemma gives the parameters and decoding scheme for composing a list recoverable code with a

disperser.

Lemma 11 Assuming that for every ε > 0:

• There exists (εL, 1
2
− 1

10
) disperser G : [L]× [T] → [N] with entropy loss Λ, and average right

degree Q = LT
N

= Λ
ε

• There exists (N, rN)q=O((1
ε
)2) code C which is (1

2
, 10Q, M)-list recoverable code

Then for every ε > 0, G ◦ C is a (L, rε
Λ
L)

O((1
ε
)2)

T code which is (1− ε, M)-list decodable.

We follow the lines of [16] ”Reduction of list decoding to list recoverability using expanders”.

Proof: Let ε > 0. Let C, and G be as above. The block length, rate and alphabet size of G ◦ C

follow exactly as in lemma 1. We now show the list decodability parameters. Let es ∈ [qT]L, be a

word which agrees with some codeword G ◦ C(x) on at least εL coordinates. Denote by X ⊆ [L]

the coordinates in agreement. |X| ≥ εL. We now perform the decoding procedure described

in section 3.3, yielding S1, . . . , SN . At least 1 − 1
10

of the sets are of size at most 10Q. By the

34

expansion property of G, there are at least (1
2
+ 1

10
)N sets Si, for which C(x)i ∈ Si. Thus, at least

1
2

of the sets Si satisfy |Si| < 10Q, and C(x)i ∈ Si. Thus, performing the decoding procedure of

C we get a decoding list of size M .

4.4 Taking C to be a list recoverable code from arbitrary size

For the almost optimal rate list decodable code construction mentioned in 2.3, [7] takes C to

be a list recoverable code from arbitrary size2 to construct an almost optimal rate list decodable

code. The next lemma analyzes the parameters and decoding scheme.

Lemma 12 Let C ⊂ [M]D be a code of rate rC, which is (L, ζC) list recoverable code from

arbitrary size. Let G : [N] × [T] → [D] be a (εN, ζG)-disperser, with entropy loss ΛG = εNT
D

.

if M ·D ≥ N ·T
1−ζC−ζG

, then G ◦ C has the following properties:

1. It has rate rC · ε
ΛG

, and is defined over an alphabet of size MT .

2. It is a (1− ε, L)-list decodable code.

Proof: Let C and G be as above. The rate and alphabet size follow immediately as in lemma 1.

We now show the list decodability parameters. Let es ∈ [MT]N , be a word which agrees with some

codeword G ◦C(x) on at least εN coordinates. Denote by X ⊆ [N] the coordinates in agreement.

|X| ≥ εN . We now perform the decoding procedure described in section 3.3, yielding S1, . . . , SD.

We think of each element s ∈ Si, as an ordered pair (s, i) ∈ [M] × [D]. Thus, S =
⋃

i Si can be

thought of a subset of [M]× [D]. Since X is the set of coordinates in agreement, then for all the

neighbors G(x, j) ∈ [D] (j ∈ [T]) of x ∈ X, we have:

(esx)j = C(x)G(x,j)

2In the terminology of [7] C is a strong extractor.

35

More specifically we have:

((esx)j, G(x, j)) = (C(x)G(x,j), G(x, j)) (4.2)

By the expansion property of G, there are at least (1 − ζG)D indices G(x, j) ∈ [D] for which

(4.2) holds. Thus, denoting AS(x) = {i|(C(x)i, i) ∈ S}, we have that |AS(x)| ≥ (1− ζG)D. Now,

|S| ≤ NT , and by the assumption M ·D ≥ N ·T
1−ζC−ζG

, and so:

(
|S|

MD
+ ζC)D ≤ (

NT

MD
+ ζC)D ≤ (1− ζG)D ≤ AS(x).

Thus, by the list recoverability from arbitrary size property of C, there are at most L codewords

having |As(x)| agreement with C(x), or in other words at most L codewords having εN agreement

with G ◦ C(x).

36

Chapter 5

Asymptotically good error correcting codes over large alphabets

Section 1.2 shows that when taking the construction of CJus ◦G, where CJus is a Justesen code

and G is a balanced disperser, the alphabet size, as well as the rate can be improved by replacing

the balanced expander with an unbalanced one, while keeping all other parameters the same1. In

this section we formally prove this (Theorems 1-4).

5.1 Improving the alphabet size (Theorem 1)

The proof is straight forward from lemma 1:

Proof: Let δ < 1. Take C to be a [N, rJusN, δJusN]qJus
Justesen code having constant rate,

constant relative distance and constant alphabet size. Take G : [L] × [T] → [N] to be a ((1 −
δ)L, δJus)-disperser. By the above lemma the resulting code G◦C is a [L, rJus·(1−δ)

Λ
L, δL]qT

Jus
code.

Plugging in the degree and entropy loss of the dispersers Gbalanced, Gopt, GDopt and Gexplicit gives

the claimed rate and alphabet size.

5.2 Approaching the singleton bound (Theorems 2, 3)

We first see how the rate function of G◦CJus behaves for prescribed alphabet size q and relative

distance δ < 1. The analysis below follows that of [1], only we represent the rate function using

the entropy loss of the disperser G as implied by (4.1):

RateG◦CJus
(δ, q) = RJus(δ0, q0) · (1− δ)

Λ
(5.1)

Where, q, δ < 1 are the prescribed alphabet size and relative distance of the construction and δ0,

q0 = q
1
T are the relative distance and alphabet size of CJus. Writing the rate function as above it

1This is true when using Gopt or GDopt . For the explicit extractor Gexplicit the alphabet size is improved, but
the rate is inferior to that of [1] due to the larger entropy loss of Gexplicit.

37

is immediate to see the improvement in the rate when using an unbalanced disperser with optimal

entropy loss:

1. The smaller the entropy loss is, the larger the rate is.

2. The alphabet size of the Justesen code is q
1
T , where T is the degree of the disperser used.

Since unbalanced dispersers have smaller degree the alphabet size of the Justesen code can

be larger. The rate function of Justesen code (3.2) is increasing in the alphabet size and so

we get a better rate for the Justesen code, and thus a better rate for the overall code.

We now turn to the analysis. Substituting the Justesen code lower bound (3.4) in (5.1) we have

that:

RateG◦CJus
(δ, q) ≥ E0(1− δ)− E1 · T · (1− δ)

2 log2 q − 2T
(5.2)

where:

E0 =
1− 2δ0

2Λ
(5.3)

E1 =
2δ0

Λ
(5.4)

We now split the analysis for the balanced and unbalanced cases:

Claim 4 For the balanced disperser Gbalanced, the following holds:

1. E0 is of the form f(δ0)
µ(δ)

, where µ(δ) > 1 and limδ→1 µ(δ) = 1.

2. E1 · T · (1− δ) is a constant which depends only on δ0.

Thus, for the balanced case (5.2) can be rewritten as:

RateG◦CJus
(δ, q) ≥ f(δ0)

µ(δ)
(1− δ)− g(δ0)

2 log2 q − 2T

Let γ1 > g(δ0). Let γ0 < f(δ0). By the property of µ(δ) above there exists δmin(γ0) such that

for any δ > δmin, γ0 < f(δ0)
µ(δ)

. Since T is increasing in δ, for every δ > δmin, there exists qmin such

38

that for every q > qmin log2 q > 2T . Altogether, there exists positive constants γ0, γ1, such that

for every δ > δmin(γ0), there exists qmin(δ), such that for every q > qmin the rate function of the

construction satisfies (2.5) proving theorem 2.

Claim 5 For Gopt and GDopt the following holds:

1. Λ depends only on δ0 and limδ→1 T · (1− δ) = 0.

2. E0 depends only on δ0.

Thus, (5.2) can be rewritten as:

RateG◦CJus
(δ, q) ≥ f ′(δ0)(1− δ)− g′(δ)

2 log2 q − 2T

where limδ→1 g′(δ) = 0. Let γ0 = f ′(δ0). Let γ1 > 0. Since limδ→1 g′(δ) = 0 there is δmin(γ1),

such that for every δ > δmin, γ1 > g′(δ). Again, since T is increasing in δ, for every δ > δmin,

there exists qmin such that for every q > qmin, log2 q > 2T . Altogether, there exists a positive

constant γ0, such that for every γ1 > 0, there is δmin(γ1) such that for every δ > δmin, there exists

qmin(δ), such that for every q > qmin the rate function of the construction satisfies (2.5). This

proves theorem 3.

We now turn to prove claims 4, 5 and estimate the exact values γ0 can attain in each case. We

note that by lemma 1, the disperser we need is a ((1 − δ)L, δ0)-disperser G : [L] × [T] → [N],

where N , δ0 are the block length and relative distance of the Justesen code used in G ◦CJus, and

δ is the relative distance of G ◦ CJus. We refer the reader to Table 3.1 for the disperser graphs

parameters T and Λ used in the proofs below.

Proof:(Claim 4) The degree T of Gbalanced satisfies:

µ(δ)
4(1

δ0
− 1)

(1− δ)
≥ T ≥ 4(1

δ0
− 1)

(1− δ)
(5.5)

39

where limδ→1 µ(δ) = 1, µ > 1 (see [1] section 3). The entropy loss of Gbalanced satisfies:

Λ = (1− δ)T

Substituting the above in (5.3) we get:

E0 =
(1− 2δ0)

8µ(1
δ0
− 1)

Obviously, E0 is of the form f(δ0)
µ(δ)

as claimed above. Substituting the degree and entropy loss

above in (5.4) we have:

E1 · T · (1− δ) ≥ 2δ0.

Thus, we can take γ0 < (1−2δ0)

8(1
δ0
−1)

, and γ1 > 2δ0. The maximum value of γ0 is attained at δ0 ≈ 0.29,

and is ≈ 0.021.

Proof:(Claim 5) For Gopt substituting its entropy loss in (5.3) we get:

E0 =
(1− 2δ0)

2(ln(1
δ0

) + 1)

Obviously, E0 depends only on δ0. Also Λ is dependent only on δ0, and by the degree of Gopt we

have limδ→1 T · (1− δ) = 0 as claimed above. By E0 above, we can take γ0 = (1−2δ0)

2(ln(1
δ0

)+1)
. γ0 attains

its maximum value of 0.0605 at δ0 ≈ 0.1.

For GDopt substituting its entropy loss in (5.3) we get:

E0 =
(1− 2δ0)

2(ln(4
δ0

) + 1)

Again, E0 and Λ depend only on δ0. Also limδ→1 T · (1− δ) = 0 as claimed above. By E0 above,

we can take γ0 = (1−2δ0)

2(ln(4
δ0

)+1)
. γ0 attains its maximum value of 0.0427, at δ0 ≈ 0.0855.

40

5.3 Beating the Zyablov bound (Theorem 4)

[1] show that for large enough alphabet size q, the rate function of G ◦ CJus beats the Zyablov

bound. We show that the alphabet size needed to beat this bound can be much smaller when

using an unbalanced disperser G. For the analysis we need the following lemma implicit in [1].

Lemma 13 Let RZyablov(δ) be the Zyablov rate function given in (2.4). Let G ◦ CJus be a code

with rate function of the form (5.2). If q is large enough such that:

log2 q >
E1T

2(E0 − 1)
+ T (5.6)

where E0, E1 are as in (5.3),(5.4), then RateG◦CJus
(δ, q) > RZyablov(δ, q)

Proof: By the Gilbert-Varshmov bound RGV (δ) ≥ (1−Hq(δ)). By the Singleton bound for every

q, R(δ) < (1− δ). Thus, we have:

(1− δ) > (1−Hq(δ)) (5.7)

Substituting (5.7) in (2.4), we get:

RZyablov(δ) < max
µ≥0

(1− µ)(1− δ

µ
)

The maximum is achieved when µ =
√

δ, giving:

RZyablov(δ) < (1−
√

δ)2

Using (5.2) we need q satisfying:

E0(1− δ)− E1 · T · (1− δ)

2 log2 q − 2T
> (1−

√
δ)2

41

Rearranging the above, we get:

log2 q >
E1T

2(E0 − 1−
√

δ
1+
√

δ
)

+ T

Noting that 1−
√

δ
1+
√

δ
< 1, the lemma follows.

Corollary 2 For Gbalanced, Gopt, GDopt, and Gexplicit in order to beat the Zyablov bound it is

enough to take q, satisfying

log2 q = Θ(T) (5.8)

where T is the disperser’s degree.

Proof: Looking at (5.3) and (5.4), and using the fact that the entropy loss of Gbalanced, Gopt, GDopt

and Gexplicit is dependent only on δ0, (5.6) implies that we need q satisfying log2 q > f(δ0) · T ,

where f is some function dependent only on δ0. Since δ0 is a constant the corollary follows.

Plugging the degree of Gbalanced, Gopt, GDopt , and Gexplicit in (5.8) Theorem 4 follows.

42

REFERENCES

[1] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptotically good, low-

rate error-correcting codes through pseudo-random graphs, IEEE Transactions on Information

Theory 38 (1992), 509–516.

[2] N. Alon, J. H. Spencer, and P. Erdős, The Probabilistic Method, Wiley–Interscience Series,

John Wiley & Sons, Inc., New York, 1992.

[3] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic

communication complexity, SIAM Journal on Computing 17 (1988), no. 2, 230–261.

[4] P. Elias, List decoding for noisy channels, 1957-IRE WESCON Convention Record, Pt. 2,

1957, pp. 94–104.

[5] O. Goldreich and A. Wigderson, Tiny families of families with random properties: A quality-

size trade-off for hashing, Random Structures and Algorithms 11 (1997), 315–343.

[6] V. Guruswami and P. Indyk, Near-optimal linear-time codes for unique decoding and new list

decodable codes over smaller alphabets, Proceedings of the 34th Annual ACM Symposium on

Theory of Computing, 2002.

[7] Venkatesan Guruswami, Better extractors for better codes?, Proceedings of the 36th Annual

ACM Symposium on Theory of Computing, ACM Press, 2004, pp. 436–444.

[8] Venkatesan Guruswami and Piotr Indyk, Expander-based constructions of efficiently decod-

able codes, Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer

Science, 2001, pp. 658–667.

[9] J. Justesen, A class of constructive asymptotically good algebraic codes, IEEE Transactions

on Information Theory 18 (1972), 652–656.

43

[10] N. Nisan and D. Zuckerman, Randomness is linear in space, Journal of Computer and System

Sciences 52 (1996), no. 1, 43–52.

[11] J. Radhakrishnan and A. Ta-Shma, Bounds for dispersers, extractors, and depth-two super-

concentrators, SIAM Journal on Discrete Mathematics 13 (2000), no. 1, 2–24.

[12] R. Raz, O. Reingold, and S. Vadhan, Extracting all the randomness and reducing the error

in Trevisan’s extractors, Proceedings of the 31st Annual ACM Symposium on Theory of

Computing, 1999, pp. 149–158.

[13] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag product, and new

constant-degree expanders and extractors, Proceedings of the 41st Annual IEEE Symposium

on Foundations of Computer Science, 2000.

[14] M. Santha and U. V. Vazirani, Generating quasi-random sequences from semi-random sources,

Journal of Computer and System Sciences 33 (1986), 75–87.

[15] A. Ta-Shma and D. Zuckerman, Extractor codes, Proceedings of the 33rd Annual ACM

Symposium on Theory of Computing, 2001, pp. 193–199.

[16] Venkatesan Guruswami, List decoding of error-correcting codes, Ph.D. thesis, Massachusetts

Institute of Technology, August 2001.

[17] , Algebraic-geometric generalizations of the parvaresh-vardy codes, Tech. Report TR05-

132, 2005.

[18] Venkatesan Guruswami and Arti Rudra, Explicit capacity-achieving list-decodable codes,

Tech. Report TR05-133, 2005.

44

Chapter 6

Appendix

We now give the proofs of theorems 5, 9, 10, and 11. The proofs below are mainly technical

calculations repeating previous works, and thus appear in the appendix.

6.1 Asymptotically good error correcting codes with explicit decoding

procedure (Theorem 5)

Theorem 5 For any β > 0 ,1
2
≥ δ > 0 there is a constant B > 1 such that for all δ

4
> ε > 0 there

is an explicitly specified code family with rate (ε
B

), relative distance at least (1 − ε) and alphabet

size f(ε). A code of block length N in the family can be list decoded in time d(ε,N) from up to a

(1− δ) errors, and can be encoded in e(ε,N) time. where:

• f(ε) is given by:

Extractor Used f(ε) Ref

Balanced Ramanujan Graph 2O(1
ε
) [8] Theorem 8

GEopt 2O(log2(1
ε
)) Section 6.1

Gexplicit p̃log(1
ε
) Section 6.1

• For the balanced graph,([8] Theorem 8):

ebalanced(ε,N) = O(N logO(1) N)

dbalanced(ε,N) = O(N1+β)

• For GEopt:

e(ε,N) = ebalanced(ε, O(ε log2(1
ε
))N) + O(log2(1

ε
)N log2 N)

d(ε,N) = dbalanced(ε, O(ε log2(1
ε
))N) + O(log2(1

ε
)N log2 N)

there is an overhead of 2(1
ε
)O(1) · poly log N time to construct GEopt.

45

• For Gexplicit:

e(ε,N) = ebalanced(ε, O(ε2polyloglog(1
ε
)N) + O(2polyloglog(1

ε
)N log2 N)

d(ε,N) = dbalanced(ε, O(ε2polyloglog(1
ε
)N) + O(2polyloglog(1

ε
)N log2 N)

The encoding and decoding times are as in the original construction except:

1. Replacing N with εNT
Λ

, where Λ, T are the entropy loss and degree of the extractor used.

This is because we use an unbalanced extractor, implying that the block length of the code

G ◦ C, is longer than block length of the code C used.

2. Adding NT · tG time, where tG is the time it takes to find a neighbor in G.

Recall that in section 4.2 we gave a general lemma stating the parameters and decoding scheme

for a construction of the form G ◦C, where C is a list decodable code and G is an extractor. For

theorem 5, [8] use the list decodable code from lemma 14 below, with a balanced Ramajuan graph

having a large degree to assure the reverse mixing property.

Lemma 14 ([16] Lemma 11.1) For every α > 0 there exists a prime power q = qα of order

O(1
α2), which may be assumed to be a power of 2, such that for all β > 0, the following holds.

There is an explicitly specified code family C with constant rate rα,β > 0 and relative distance at

least 1
2

over an alphabet of size q with the property that a code of block length N in the family

can be list decoded from up to (1− α) fraction of errors in O(N1+β) time, and can be encoded in

O(N logO(1) N)

We now prove the theorem:

Proof: Let δ = 1
4
, β > 0, 1

4
> ε > 0, and α = δ

4
= 1

16
. Let C, be the (N, rα,βN, 1

2
N)q(1

16
) code

from lemma 14. Taking a (εL, 1
16

)-extractor G : [L]× [T] → [N] lemma 10 implies that the code

GEopt ◦C is (L, rε
Λ
L, (1− ε)L)O(1)T , and is list decodable from 3

4
L errors. We now split the analysis

to three: using balanced expanding graph with the required mixing property, GEopt and Gexplicit.

46

For the balanced graph we have:

Λ = O(1)

T = O(
1

ε
)

By (3.18), (3.17), the degree and entropy loss of GEopt we have:

Λ = O(1)

T = 2O(log2(1
ε
))

and by (3.19), (3.20), the degree and entropy loss of Gexplicit we have:

Λ = O(1)

T = 2O(log3log(1
ε
))

giving the stated rate and alphabet size. For the encoding and decoding times we note that:

1. The block length of G ◦ C is L, whereas the block length of C is N = εLT
ΛG

. Thus, the times

appearing in lemma 14 should be taken accordingly.

2. To encode we first need to encode using C (O(N logO(1) N)), and then perform the amplifi-

cation (LT · tG), where tG is the time for computing a neighbor in G.

3. To decode, we first need to perform the decoding scheme (LT · tG), and then perform the

decoding of C for 1
δ

strings (O(N1+β)).

4. For the balanced expanding graph, the encoding/decoding time overhead of LT · tG needed

for the composition is dominated by the encoding and decoding times of the code C. Thus,

the times ebalanced and dbalanced are similar to the encoding and decoding times of C.

47

Substituting the degree, entropy loss and tG for GEopt and Gexplicit in the above, the theorem

follows. We mention that in the case of GEopt there is an additional overhead of 2(1
ε
)O(1) ·poly log N

construction time as implied from lemma 8.

We remark that had we known how to explicitly construct an optimal extractor with degree

T = O(log (1
ε
)), the resulting code would have alphabet of size (1

ε
)O(1).

6.2 List decodable codes with optimal rate

Theorem 9 For every ε > 0, every constant γ > 0 there exists a code family with rate Ω(2−O(γ2)ε),

which can be list decoded from a fraction of (1− ε) errors, and have alphabet size f(ε). A code of

block length N in the family can be found with high probability in time cp(N, ε, γ) or determinis-

tically in time cd(N, ε, γ). Moreover, the code can be encoded in e(N, ε, γ) time, and list decoded

in d(N, ε, γ). Where,

• f(ε) is given by:

Disperser used f(ε) Ref

Gbalanced 2O(1
ε

log 1
ε
) [8] Theorem 6

Gopt 2O(log2(1
ε
)) This paper

GDopt 2O(log3(1
ε
)) This paper

Gexplicit p̃log(1
ε
) This paper

• cpbalanced(N, ε, γ) = O(N2(1−γ) log(1
ε
),

cdbalanced(N, ε, γ) = 2O(N(1−γ)(1
ε
) log(1

ε
)),

ebalanced(N, ε, γ) = O(N2(1−γ) log2 N logO(1)(1
ε
)),

dbalanced(N, ε, γ) = 2O(Nγ log(1
ε
))

are the construction, encoding and decoding times achieved in [8].

• cpDopt(N, ε, γ) = cpbalanced(ε log2(1
ε
) ·N, ε, γ) + 2(1

ε
)O(1)

plog(N),

cdDopt(N, ε, γ) = cdbalanced(ε log2(1
ε
) ·N, ε, γ) + 2(1

ε
)O(1)

plog(N),

48

eDopt(N, ε, γ) = ebalanced(ε log2(1
ε
) ·N, ε, γ) + O(log2(1

ε
)N log2 N),

dDopt(N, ε, γ) = dbalanced(ε log2(1
ε
) ·N, ε, γ) + O(log2(1

ε
)N log2 N)

are the construction, encoding and decoding times when using the disperser GDopt.

• cpzig−zag−ext(N, ε, γ) = cpbalanced(ε log3(1
ε
) ·N, ε, γ),

cdzig−zag−ext(N, ε, γ) = cdbalanced(ε log3(1
ε
) ·N, ε, γ),

GEopt(N, ε, γ) = ebalanced(ε log3(1
ε
) ·N, ε, γ) + N2polyloglog(1

ε
)(log2 N + log3(1

ε
)),

dzig−zag−ext(N, ε, γ) = dbalanced(ε log3(1
ε
) ·N, ε, γ) + N2polyloglog(1

ε
)(log2 N + log3(1

ε
))

are the construction, encoding and decoding times when using the extractor Gexplicit.

The encoding and decoding times are as in the original construction except:

1. Replacing N with εNT
Λ

, where Λ, T are the entropy loss and degree of the disperser used.

Using an unbalanced disperser implies that the block length of the code G◦C is longer than

block length of the code C used.

2. Adding NT · tG time, where tG is the time it takes to find a neighbor in G. This is the time

it takes to perform the composition/decoding scheme.

Recall that in section 4.3 we gave a general lemma stating the parameters and decoding scheme

for a construction of the form G ◦ C, where C is a list recoverable code and G is a disperser.

For theorem 9, [8] use the list recoverable code from lemma 15 below, with a balanced Ramajuan

graph.

Lemma 15 (implicit in [16] Theorem 9.16) For every 0 < γ ≤ 1
2

and every ε > 0, there exist a

code family with the following properties:

1. The family has rate 2
−O(1

γ2)
and is defined over an alphabet of size O(1

ε2
).

2. Any code of block length N in the family is (1
2
, O(1

ε
), 2O(Nγ log(1

ε
)))-list recoverable. Such list

recovering can be accomplished in 2O(Nγ log(1
ε
)) time.

49

3. A code of block length N in the family can be constructed in deterministic 2O(N1−γ 1
ε

log(1
ε
))

time, or probabilistically in O(N2(1−γ) log(1
ε
)) time. Also, encoding can be performed in

O(N2(1−γ) log2 N logO(1)(1
ε
)) time .

Remark 2 As implied by lemma 11 from section 4.3, the size of the voting sets is O(Λ
ε
). The list

recoverable code above can deal with sets of size O(1
ε
). The constant in the O(·) can be adjusted

by picking appropriate γ. This will only affect the constants in the rate and the decoding list size

of the code C. The exact details can be found in [16] Lemma 9.15 and Theorem 9.16.

Proof: The proof of the theorem follows immediately from plugging in lemma 11 the code from

lemma 15, together with Gopt, GDopt , and Gexplicit which are taken to be (εL, 1
2
− 1

10
)-dispersers

G : [L]× [T] → [N]. For completeness we recall the following:

1. The above Gopt, has O(1) entropy loss and degree O(log(1
ε
)), giving the required rate and

alphabet size.

2. The above GDopt , has O(1) entropy loss and degree O(log2(1
ε
)), giving the required rate and

alphabet size. With these degree and entropy loss we have that N = εLT
Λ

= O(ε log2(1
ε
)L),

and it takes O(log2 L) to compute a neighbor in GDopt . The construction time of GDopt is

2(1
ε
)polylogL.

3. The above Gexplicit, has O(1) entropy loss and degree O(log3(1
ε
)), giving the required rate

and alphabet size. With these degree and entropy loss we have that N = O(ε log3(1
ε
)L),

and it takes O(log2 L + log3(1
ε
)) to compute a neighbor in Gexplicit. The construction time

of Gexplicit is poly(1
ε
).

6.3 List decodable codes with optimal list size

Theorem 10 For every ε > 0, there exists a code family with rate Ω(ε2), which can be list decoded

from a fraction of (1 − ε) errors, and have alphabet size f(ε). A code of block length N in the

50

family can be found with high probability in time cp(N, ε) or deterministically in time cd(N, ε).

Moreover the code can be encoded in e(N, ε) time, and list decoded in d(N, ε). Where,

• f(ε) is exactly as in Theorem 9.

• cpbalanced(N, ε) = O((1
ε
) log(1

ε
) log2 N),

cdbalanced(N, ε) = NO((1
ε
) log(1

ε
)),

ebalanced(N, ε) = O(N log N),

dbalanced(N, ε) = O((1
ε
)O(1)N2 log N)

are the construction, encoding and decoding times achieved in [8].

• The construction, encoding and decoding times of GDopt,

Gexplicit are computed from the times above in the exact manner described in 6.2.

The construction used to obtain these codes is exactly as the one used in 6.2, the only change

is the list recoverable code used:

Lemma 16 (Implicit in [16] Theorem 9.14) For every ε > 0 there exists a code family with the

following properties:

1. It has rate Θ(ε), and is defined over an alphabet of size q = O(1
ε2

).

2. each code in the family is (1
2
, O(1

ε
), O(1

ε
))-list recoverable.Such list recovering can be accom-

plished in O((1
ε
)O(1)N2 log N) time.

3. A code if block length N in the family can be constructed in deterministic NO(1
ε

log(1
ε
)) time, or

probabilistically in O((1
ε
) log(1

ε
) log2 N) time. Also, encoding can be performed in O(N log N)

time.

The above code is a concatenation of a Reed-Solomon code with a Pseudolinear code. More details

can be found in [16] section 9.3 on Pseudolinear codes.

Theorem 10 now follows by plugging the above code with Gopt, GDopt , and Gexplicit in lemma 11.

51

6.4 Almost optimal rate list decodable codes

Theorem 11 For every ε > 0

1. There exists a family of codes constructible in time t(N, ε) having rate Ω(ε
logO(1)(1

ε
)
), which

can be list decoded from a fraction of (1− ε) errors, and have alphabet size f(ε). A code of

block length N in the family has a decoding list size of 2
√

g(ε)·N log(g(ε)·N), where f(ε) is as in

Theorem 9 and t(ε, N), g(ε,N) are given by:

Disperser used g(ε) t(ε,N) Ref

Gbalanced
1

logO(1)(1
ε
)

poly(N, 1
ε
) [7]

GDopt

ε

logO(1)(1
ε
)

2
1
ε polylog(N) This paper

Gexplicit
ε2polyloglog(1

ε)

logO(1)(1
ε
)

poly(N, 1
ε
) This paper

2. There exists a family of codes having rate Ω(ε
log(1

ε
)
). Each code in the family is a (1−ε, O(1

ε
))-

list decodable code.

In section 4.4 we gave a general lemma giving the parameters and decoding scheme for a

construction of the form G ◦ C, where C is a list recoverable code from arbitrary size and G is a

disperser. For theorem 11, [7] use the following list recoverable code from arbitrary size, which is

based on strong extractors from Reed-Muller codes from [15] Theorem 1.

Lemma 17 For every ε > 0 and every β ≥ 2 there is an explicit family of codes having rate

Ω(1

logO(1) β·logO(1)(1
ε
)
) over an alphabet of size β 1

ε
. A code of block length D is the family is a (L, 1

4
)-

list recoverable from arbitrary size, where L = 2O(
√

D·g′(ε) log(D·g′(ε))) and g′(ε) = Θ(1

logO(1) β·logO(1)(1
ε
)
)

Also, the existence of optimal strong extractors imply the following in terms of list recoverability

from arbitrary size.

Lemma 18 For every ε > 0 and every β ≥ 2, there exists a family of codes having rate

Ω(1
log β+log(1

ε
)
) over an alphabet of size β 1

ε
. A code of block length D is the family is a (O(β 1

ε
), 1

4
)-list

recoverable from arbitrary size.

52

We now prove Theorem 11. Let ε > 0. Let G : [N] × [T] → [D] be a (εN, 1
4
)-disperser with

entropy loss ΛG. We let β = 2ΛG.

For the explicit part of the theorem, we pick the code C to be as in lemma 17, of block length

D, with the above ε, and alphabet size M = β · (1
ε
). By the choice of β, we have:

M ·D = β(
1

ε
)D = 2

ΛG

ε
D ≥ 2NT

and so by lemma 12, G ◦ C has rate rC · ε
ΛG

, alphabet size MT , and is (1 − ε, L). The degree

T of the various dispersers give the alphabet size as given by f(ε) in the Theorem. Having G

with a constant error of 1
4
, implies that for all of the dispersers used ΛG = O(1), thus β = O(1),

and for all dispersers we get the stated rate of Ω(ε
logO(1)(1

ε
)
). By lemma 17 the decoding list

size L = 2O(
√

D·g′(ε) log(D·g′(ε))) and g′(ε) = Θ(1

logO(1)(1
ε
)
). Having O(1) entropy loss, we have that

D = Θ(εNT), yielding

L = 2O(
√

εNT ·g′(ε) log(εNT ·g′(ε))) (6.1)

Substituting the degree T of Gbalanced, GDopt and Gexplicit in the above, gives L, and g(ε) as stated

in the theorem.

Finally, the construction time of the various dispersers gives t(N, ε) as in the Theorem.

For the second part of the theorem, we note that the existence of optimal strong extractors,

which implies lemma 18 plugged in lemma 12 together with Gopt yields the stated parameters.

53

