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Abstract

In probabilistic computations, random bits are viewed as a resource. An important goal is to

consume as little of it as possible. We study functions, which decrease the number of random bits

needed by an algorithms.

Loss-less condensers take as input a low entropy source, and output a source, which is statisti-

cally close to a high entropy source. This closeness is referred to as the error of the condenser. We

show a general error reduction for loss-less condensers, building on the error reduction technique

of Raz, Reingold and Vadhan [42].

Families of k-wise almost independent permutations, permute their input in a way that looks

random, to any party, which inspects only k values of the output. We give a new method for

reducing the number of random bits needed to sample a permutation from such a family. Our

method relies on a pseudorandom walk generator, implied by Reingold’s log-space algorithm for

undirected connectivity [45, 47]. We obtain families of k-wise almost independent permutations,

with an optimal number of random bits.
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Chapter 1

Introduction

1.1 Background

1.1.1 Probabilistic computations

In computational complexity we measure computational tasks according to the resources they

consume. The classical resources are time and space. The notion of probabilistic algorithms has

revolutionized computational complexity. Probabilistic algorithms use random bits, to perform a

computation. Using random bits often simplifies the algorithm, and can save time resources.

The downside of probabilistic algorithms, is that they require truly random bits. In theory,

this is a resource, similar to time and space. In practice, it is hard to find a distribution of

truly random bits. Some physical sources are believed to be ”somewhat random”, but it is often

impractical to use them [53].

The sources we often have in reality, are ”weak” random sources, which have various definitions,

but in general these distributions have less entropy than a uniform distribution. One simple

definition is this: A weak random source on n bits, is a source with entropy k for some k < n.

An example of such a source, is the set of all n bit strings which have the last n− k bits set to 0.

The entropy of this source is k. With respect to this definition, a truly random source is a source

on n bits with entropy n. Further examples of weak sources are given in [53].

A great deal of study concerns turning a weak random source into a truly random source. This

operation can be formulated as follows. A transformer is a function T : {0, 1}n×{0, 1}d → {0, 1}m.

The first parameter x ∈ {0, 1}n is called the input of T , where x is sampled from a weak random

source. The second parameter y ∈ {0, 1}d is called the seed, where y is sampled from a truly

random source. The output is a string of m bits. We can place various requirements over the

output of T . For instance, if we demand that the output of T is distributed uniformly, then T

transform a weak random source into a truly random source. This is explained in Section 1.1.2.
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The seed in the above definition is necessary: It can be shown, that a deterministic function

which receives a weak source, cannot output even one truly random bit (since it is fixed on at

least half of the inputs, it is fixed on a weak source with k = n− 1 defined over these inputs).

In this work we studied two problems. One problem concerns a certain type of transformers,

called loss-less condensers. We show how to improve current constructions of loss-less condensers.

The necessary background and an overview of our result is given in Section 1.1.2.

The other problem concerns families of permutations, with certain pseudorandom properties.

We show how to optimize the size of such families. This is further described in Section 1.1.3.

1.1.2 Extractors

We now consider a special type of transformers. If we require the output of the transformer

T to be ε close (in statistical distance) to a truly random source on m bits, then T transforms

weak random sources into (almost) truly random sources, in the following sense: If X is a weak

source, then the distribution of T (X, U) is ε close to a truly random source on m bits, where U

is the uniform distribution. The distance ε from uniform, is referred to as the error of T . Such

transformers are called extractors, and are formally defined below.

Extractors were first defined by Nisan and Zuckerman [34]. Extractors may also be thought of

as pseudorandom generators, that are secured against any (powerful) party. We now define three

variants of extractors, that will be used here. For a survey on extractors, refer to [53].

Let T : {0, 1}n×{0, 1}d → {0, 1}m be a transformer, and X a distribution with min-entropy at

least k.

• If for any X, the output of T (X,Ud) is ε close to Um, then T is a (k, ε) extractor.

• If for any X, the size of the image of T (X, Ud) is at least (1 − ε)2m, then T is a (k, ε)

disperser.

• If for any X, the size of the image of T (X, Ud) is ε close to 2k, then T is a (k, ε) condenser.
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Note that the difference between these objects is in the restriction over the outputs. The outputs

of an extractor are spread evenly over the output bits, while the outputs of a disperser only cover

most of the output bits. Finally, the condenser is a 1 − 1 function on a small fraction (roughly

2k−m) of the output bits.

Extractors have found many applications, including deterministic amplification, hardness of

approximation and Ramsey graphs. For a more detailed description, refer to [12, 53].

There is a ”strong” variant to each of the above objects. In this variant, the output of the

transformer is augmented with the seed. The transformer is required to maintain the properties

of the output, even when the seed is exposed.

We will focus in our result on the strong version for condensers, which is defined as follows. Let

T : {0, 1}n×{0, 1}d → {0, 1}m be a transformer. If for any input distribution X with min-entropy

h, h ≤ k, the distribution Ud ◦ T (X,Ud) is ε close to a distribution Ud ◦D, where for all y ∈ Ud,

the distribution D|(Ud = y) has at least h min-entropy, then T is a (k, ε) loss-less condenser.

Condensers were first defined by Raz and Reingold [41]. Since then, they have been studied and

used in various works, including [41, 46, 58, 48, 12, 5, 6]. The (non-explicit) existence of loss-less

condensers may be derived using the probabilistic method. A standard calculation shows that for

all n, k, m and ε > 0, a (k, ε) loss-less condenser C : {0, 1}n × {0, 1}d → {0, 1}m, with roughly

d = log( n−k
m−k

) + log(1
ε
) + O(1) exists (see Section 2.4). This is almost tight given the lower bound

of Capalbo et al. ([12], Lemma B.2).

In building any of the above variants, we are given the input length n, the min-entropy k and

the error ε, and our goal is to maximize the output length, and minimize the seed length. The

construction should work for any values of k and ε.

The reason for maximizing the output length, is that the longer the output is, the more truly

random bits we get. This enables us to derandomize algorithms which need more random bits,

for instance, or if we are using random bits as a private key in a cryptographic setting, it will

increase the security of our scheme.

A shorter seed length is useful, for a few reasons. In a derandomization of an algorithm using
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a transformer, we iterate over all seeds of the transformer, for each seed calculate the output

of the transformer, and use this output as a random input for the algorithm. Thus, a shorter

seed means less impact of the derandomization over the running time. Another reason, is when

using the transformer to build expander graphs. Here, the length of the seed corresponds to the

(logarithm of the) degree of the graph.

Error reduction for transformers

An error reduction for a transformer T with an error ε is an explicit algorithm, which takes T

as input, and outputs a transformer T ′, with an error ε′ < ε. T ′ might differ from T in its output

length and seed length, but not in the input length.

Motivation

There are only few explicit constructions of loss-less condensers. Ta-Shma, Umans and Zuck-

erman [58] show that any extractor whose correctness proof relies on a reconstructive algorithm

(e.g. Trevisan’s extractor [61]), and uses a short advice string, yields a loss-less condenser. The

condenser is the advice string. In this way, they managed to construct, for every k, and error

ε > 0, a (k, ε) loss-less condenser whose output length is poly(k/ε), with a logarithmic seed length.

While for a constant error parameter ε, this output length is optimal up to a polynomial factor,

for a smaller error, e.g. error of order 1/n, this is of no use (since a trivial condenser would simply

leave the input unchanged).

Our purpose is to construct loss-less condensers with a better dependency of the output length

on the error. For every source with entropy k, and error ε > 0, we construct a loss-less condenser

whose output length is poly(k) · polylog(1
ε
) + log n, and seed length is O(log n

ε
) (Corollary 2.3.2).

Our technique and main results

We improve the output length of loss-less condensers, by showing an error reduction, namely,
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Theorem 1.1.1 Suppose there exists an explicit (k, ε0) loss-less condenser C : {0, 1}n×{0, 1}m →
{0, 1}d for some constant ε0. Then, for every ε > 0, there exists an explicit (k, ε) loss-less con-

denser

C̃ : {0, 1}n × {0, 1}d̃ → {0, 1}m̃ with

• d̃ = d + log n + O(log(1
ε
)), and,

• m̃ = m · polylog(1
ε
) + log n.

Error reduction was done for extractors by Raz, Reingold and Vadhan [42], and for dispersers

by Gradwohl et al. [19]. Our reduction follows that of [42], but we simplify it using an idea from

the second construction of [19].

The extractor error reduction of Raz, Reingold and Vadhan [42] works by repeating the following

two steps. First, they concatenate two applications of the original extractor, using two dependent

seeds. This gives a condenser with error parameter ε2, and a source that is close to having entropy

rate half. Since their aim is an extractor, they need to keep the output length short, so in the

second step they apply a high min-entropy extractor on the output. These two steps are now

repeated recursively, each time squaring the error.

We are interested in building condensers, and so we modify the above approach as follows. One

way to go is repeating the derandomized squaring procedure, without the intermediate compres-

sion steps. However, a simpler way to go is to have only a single step, where the original condenser

is run many times on dependent seeds that are chosen in a derandomized way. We do that by

selecting a random input z for a disperser, and taking as our set of seeds the neighbors of z in the

disperser. I.e., if Γ(z) is the set of neighbors of z, then the new condenser basically outputs the

concatenation of C(x, y) for all y ∈ Γg(z) (for the exact construction see Section 2.2.1). A similar

seed derandomization was used in the disperser error reduction of Gradwohl et al. [19].
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1.1.3 Families of k-wise functions

A family G of functions is k-wise independent, if a function g chosen at random from G is

completely indistinguishable from a function f chosen at random from the set of all functions, for

any process that receives the value of either f or g at any k points. We can relax the requirement

and talk about almost k-wise independence by requiring that the advantage of a distinguisher be

limited by some δ.

Families of functions that are k-wise independent (or almost independent) were constructed

and applied extensively in the computer science literature (see [3, 31]). There is a rather natural

construction that is optimal in terms of size: Let G consist of all polynomials of degree k − 1

over GF [2n]. Then the description of each f ∈ F is kn-bit long. It is easy to see that this is the

minimum number of bits needed.

We are interested in constructing a permutation, i.e. a 1-1 function g : {0, 1}n → {0, 1}n,

which is indistinguishable from a random permutation for a process that examines at most k

points (a variant also allows examining the inverse). In other words, we are interested in families

of permutations such that restricted to k inputs their output is identical (or statistically close,

up to distance δ), to that of a random permutation. For k = 2 the set of linear permutations

(ax + b where a 6= 0) over GF [2n] constitutes such a family. For k > 3 no explicit (non-trivial)

construction is known for k-wise exactly independent permutations.

Once we settle on k-wise almost independent permutations, with error parameter δ, then we

can hope for permutations with description length O(kn + log(1
δ
)) 1; this is what a random (non-

explicit) construction gives (see Section 3.2.2). There are a number of proposals in the literature

of constructing k-wise almost independent permutations (see Section 3.3), but the description

length they obtain is in general significantly higher than this asymptotically optimal value. This

paper obtains the first construction of k-wise almost independent permutations, with description

length O(kn + log(1
δ
)), for every value of k.

1The lower bound of kn trivially follows as in the case of functions (simply since the output of a random
permutation on k fixed inputs has entropy close to kn).
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Motivation

Given the simplicity of the question, and given how fundamental k-wise independent functions

are, we feel that it is well motivated in its own right. Indeed, k-wise independent permutations

have been receiving a growing amount of attention with various motivations and applications in

mind (e.g. [20, 32]).

We give a method for “derandomizing” essentially all previous constructions of k-wise almost

independent permutations. It is most effective, and easiest to describe for permutation families

obtained by composition of simpler permutations. As most previous constructions fall into this

category, this is a rather general method. In particular, based on any one of a few previous

constructions, we obtain k-wise almost independent permutations with optimal description length,

up to a constant factor.

Our technique and main results

Consider a family of permutations F , with a rather small description length s. We denote by

F t the family of permutations obtained by composing any t permutations f1, f2, . . . , ft in F . Now

assume that F t is a family of k-wise almost independent permutations. The description length of

F t is t · s as we need to describe t independent permutations from F . We will argue that such

constructions can be derandomized in the sense that it is sufficient to consider a subset of the

t-tuples of F functions. This will naturally reduce the overall description length.

A permutations family is closely associated with a certain type of graph, which we call the com-

panion graph. This graph has a vertex for each k-tuple of distinct n-bit strings. There is an edge

between vertices u = (x1, x2, . . . xk) and v = (y1, y2, . . . yk), labelled with a permutation f from F ,

if f(xi) = yi for i = 1, 2, . . . , k. Evaluating a random permutation from F on inputs x1, x2, . . . xk

is equivalent to a step on the graph, starting from the vertex corresponding to x1, x2, . . . xk, and

picking a random edge. This way, evaluating t random permutations from F is equivalent to

taking a random walk of length t on the graph.

7



We use pseudorandom generators for walks on graphs. Such a generator outputs a sequence

of labels. This sequence, when interpreted as a walk on a graph, has the following property:

For any ’consistently labelled’ undirected graph, and any start vertex, the distribution over the

end vertices obtained by taking the walk, is statistically close to uniform. Such generators with

sufficiently good parameters are implied by the proof that undirected connectivity is in logspace

of Reingold [45], and made explicit by Reingold, Trevisan and Vadhan [47].

The generator will be used, to generate a sequence of permutations from F (the labels will

be interpreted as permutations). We will compose these permutations, instead of choosing truly

random permutations from F .

By our assumption on F t, a random walk of length t on the companion graph of F lands on

a uniformly distributed vertex. This means that the graph has some ’expansion properties’, and

we say that it is a good expander (essentially, it is highly connected). The quality of the graph

effects the parameters of the generator. For good expanders, the generator will produce a walk

of length t′ which is slightly longer than t, but will use less than t · s random bits to generate it.

Thus we manage to use less random bits for the walk. The description length will be the number

of random bits used by the generator.

Now consider g′ which is the composition of t′ permutations f ′1, f
′
2, . . . , f

′
t′ in F , selected using

the pseudorandom walk generator. Assume that the distribution on g′ is not k-wise almost inde-

pendent. This means that there are k evaluation points x1, x2, . . . xk such that the distribution

g′(x1), g
′(x2), . . . g

′(xk) is not close enough to uniform. That is, there exists a test T that dis-

tinguishes g′(x1), g
′(x2), . . . g

′(xk) from uniform. This test distinguishes between a random walk

and a walk generated by the pseudorandom walk generator, thus violating the security of the

generator.

Related work

There are several lines of constructions that are of particular relevance to our work. We describe

them in more detail in Section 3.3. The information is summarized in Table 1.1.
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Table 1.1: Summary of Results and Previous Work on k-wise δ-dependent Permutations.
Family Description Length Range of Queries

Feistel4 (Luby Rackoff) nk + O(n) k < 2
n
4
−O(1), δ = k2

2n/2

O(nk · log δ
δ0

) k < 2
n
4
−O(1),any δ,

δ0 = k2

2n/2

Simple 3-Bit Permutations [10, 18, 20] O(n2k(nk + lg(1
δ
)) lg(n)) k ≤ 2n − 2

Thorp Shuffle [30, 32, 50] O(n45k log(1
δ
)) k ≤ 2n

Non-Explicit Construction (Thm. 3.2.1) O(nk + log(1
δ
)) k ≤ 2n

This Work (Theorem 3.4.5) O(nk + log(1
δ
)) k ≤ 2n

1.2 Context of this work

This work can be viewed as a particular derandomization of random objects. The original use

of the term derandomization, is in the context of probabilistic algorithms. To derandomize an

algorithm, is to execute it with less random bits (preferably none). Tools for derandomization of

space bounded algorithms include the pseudorandom generators of Nisan [33], and of Nisan and

Zuckerman [34].

A stronger tool is the extractor, which allows a derandomization of an arbitrary class of al-

gorithms, as it is secured against any strong distinguisher (this is the advantage of a statistical

closeness between distributions). It has found many usages, for example a derandomization of

BPP [14, 63].

The notion of extractors has developed and found many applications. For some applications,

weaker notions were defined (e.g. disperser, which is sufficient for derandomization).

We deal with loss-less condensers and permutations. Loss-less condensers are a particular

instance of extractors. Permutations are entropy preserving functions.

In both cases, we use derandomization to reduce the resources of the objects. For loss-less

condensers, we reduce the output length. For permutation families, we reduce the description

length. As in a derandomization of an arbitrary algorithm, the tradeoff is in execution time.

4The first row is based on 4 rounds with the first and last being pair-wise independent [32]. Analysis of related
constructions [28, 36, 37] approaches k = 2n/2, but does not go beyond. It is possible to obtain any δ′ ≤ δ by the
composition of independent permutations (which adds a log δ

δ′ multiplicative factor.)

9



Indeed, the running time of our objects increases (in the case of permutation families, this impact

is more evident, refer to Section 3.5).

1.3 Thesis organization

The rest of this work is organized as follows. In Chapter 2 we show an error reduction tech-

nique for loss-less condensers. In Chapter 3 we describe how to reduce the size of families of

permutations.
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Chapter 2

Error Reduction for Loss-Less Condensers

2.1 Preliminaries

A probability distribution D on a finite set Ω is a function D : Ω → [0, 1] such that
∑

x∈Ω D(x) =

1. Un is the uniform distribution on {0, 1}n. We measure distance between distributions by the

statistical variation distance.

Definition 1 (statistical distance) Let D1, D2 be distributions over a finite set Ω. The variation

distance between D1 and D2 is

‖D1 −D2‖ =
1

2

∑
ω∈Ω

|D1(ω)−D2(ω)| = max
S⊆Ω

|D1(S)−D2(S)|.

We say that D1 and D2 are ε close if ‖D1 −D2‖ ≤ ε.

Note that if two distributions are ε close then there is no distinguisher (not even an inefficient

one) that can distinguish the distributions with advantage better than ε.

The support of a distribution D is the set of all x’s for which D(x) 6= 0. A distribution D is

flat over its support A ⊆ Ω if D(a) = 1
|A| for all a ∈ A.

Suppose D is a distribution over A×B. We denote D = D1 ◦D2, where D1 is the distribution

D induces on A and D2 the distribution induced on B. We denote (D2|D1 = a) the distribution

D induces on B given that D1 = a.

We now define block-wise sources, lossy condensers and loss-less condensers:

Definition 2 (block-wise source) A distribution B = B1 ◦B2 is a

((n1, k1), (n2, k2)) block source, if Bi is a distribution over {0, 1}ni,

H∞(B1) ≥ k1, and for all prefixes b1, H∞(B2|B1 = b1) ≥ k2.
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Definition 3 (condenser and entropy loss) Let

C : {0, 1}n×{0, 1}d → {0, 1}m be a function. We say that C is a (k, ε) condenser with entropy loss

∆, if for any flat distribution X over {0, 1}n such that H∞(X) = h ≤ k we have that Ud◦C(X, Ud)

is ε close to a ((d, d), (m,h−∆)) block source. If ∆ = 0 we say C is a loss-less condenser.

We cite a simple concatenation lemma that can be found, e.g., in [57] (Lemma 1).

Lemma 2.1.1 (concatenation of condensers) Let

C1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 be a (k, ε1) condenser, with entropy loss ∆1. Let C2 : {0, 1}n ×
{0, 1}d2 → {0, 1}m2 be a (∆1, ε2) condenser, with entropy loss ∆2. Define C1 ◦ C2 : {0, 1}n ×
{0, 1}d1+d2 → {0, 1}m1+m2 by

C1 ◦ C2(x; r1, r2) = C1(x; r1) ◦ C2(x; r2).

Then, C1 ◦ C2 is a (k, ε1 + ε2) condenser, with entropy loss ∆2.

We also need a loss-less condenser for low min-entropies. Such condensers were used in many

previous works (e.g., [41]) and can be obtained using, for example, error correcting codes. We use

Reed-Solomon codes. We interpret x ∈ {0, 1}n as a degree p polynomial x̂ : Fq → Fq (and so we

need p log(q) ≥ n so that two different inputs are interpreted as two different polynomials). We

have:

Lemma 2.1.2 For every k ≤ n, ε > 0, let q = n22k

ε
and p ≥ n

log q
. Define CRS(x; α) = x̂(α)

for α ∈ Fq. Then, CRS : {0, 1}n × {0, 1}dRS → {0, 1}dRS is a (k, ε) loss-less condenser and

dRS = log(n) + 2k + log(1
ε
).

Proof: Fix any set X ⊆ {0, 1}n of cardinality 2k. Any two different inputs are interpreted as

two different low-degree polynomials, and the probability they collide at α is at most p
q
. Thus,
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the probability that for α there is any collision between two elements in X is at most 22k · p
q
≤ ε,

and CRS is a loss-less condenser.

We also need dispersers:

Definition 4 (disperser) D : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) disperser, if for any distribu-

tion X over {0, 1}n with H∞(X) ≥ k, the support of D(X, Ud) is of size at least (1− ε)2m.

2.2 Error reduction

2.2.1 The construction

Consider a loss-less condenser C with a constant error ε0. Our goal is to construct a new

loss-less condenser with arbitrarily small error. We use two components in our construction: a

disperser and the low min-entropy loss-less condenser CRS of Lemma 2.1.2.

Our construction follows in two steps. Assume that we have an input x. First, we use a disperser

D to select a set of seeds for the condenser. This will be performed by selecting a random input

z for the disperser, then taking as our set of seeds the neighbors of z in D, denoted by Γ(z). For

each neighbor y ∈ Γ(z), we view y as a seed of C, and output C(x, y). The concatenation of

C(x, y) for all y ∈ Γg(z) composes the first part of the output.

13



Construction of function CD:

Input : A (k, ε0) loss-less condenser C : {0, 1}n × {0, 1}d → {0, 1}m and an error parameter

ε < ε0.

Auxiliary function : D : {0, 1}d+clog( 1
ε
) × {0, 1}d′ → {0, 1}d a (d, 1 − 2ε0) disperser, for some

constant c ≥ 1 that will be picked later.

Output : We define:

CD(x; z) = C(x, y1) ◦ C(x, y2) ◦ . . . ◦ C(x, yl)

where Γ(z) = {y1, . . . , yl}.

We claim that:

Theorem 2.2.1 Let C : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε0) loss-less condenser. Then for

any ε < ε0, CD : {0, 1}n × {0, 1}d+clog( 1
ε
) → {0, 1}m′=m·2d′

is a (k, 2ε) condenser with entropy loss

∆1 = log(1
ε
) + 1.

Having that, we augment CD with the output of the low min-entropy loss-less condenser CRS

which we apply on x and on a new random seed. I.e.,

CD,CRS
(x; z, α) = CD(x; z) ◦ CRS(x; α).

By Lemma 2.1.1 (the concatenation lemma) we see that CD,CRS
is a (k, 3ε) loss-less condenser.
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2.2.2 High-level proof

Let us see why this construction works. Fix some flat distribution X with min-entropy h. We

first claim that because C is a constant-error loss-less condenser, for most of its seeds y, most of

the images are obtained with roughly about the same probability 1
|X| = 2−h.

Definition 5 We say a seed-image pair (y, b) ∈ {0, 1}d × {0, 1}m is

t-heavy, if Pr[C(X, y) = b] ≥ (2t + 1) · 2−h, and we say it is good otherwise.

Let B denote the set of all seed-image pairs that are t = log(1
ε
) heavy. By counting, and because

C is a constant-error loss-less condenser, we see that |B| ≤ 2d+hεε0 (for the proof see Claim 2.2.3

in Section 2.2.3).

We say that a seed y is bad for x, if (y, C(x, y)) ∈ B. For an input x, let Bx be the set of seeds

bad for it. We say x is bad if more than 2ε0 fraction of the seeds are bad for it, i.e., if |Bx| ≥ 2ε02
d.

A main observation (already in [42]) is that only an ε fraction of the x’s are bad, and the rest are

good. The intuitive reason for that is that C is a good constant-error condenser for Bx. For the

proof see Claim 2.2.4 in Section 2.2.3. From now on we ignore the bad x’s.

We are left with good x’s, where at most 2ε0 fraction of the seeds are bad for x. What we do

now, is amplifying the success probability by trying many seeds over the same x, and choosing

these seeds in a derandomized way using the disperser D. We say that z is bad for x, if Γ(z) ⊆ Bx,

i.e., all the seeds {y1, . . . , y`} chosen, are bad for x. As D is a good disperser, it easily follows

that for every good x we have that Prz[z is bad for x] ≤ ε. For the proof see Claim 2.2.5 in

Section 2.2.3. From now on we ignore bad z’s, and concentrate on the good ones. We claim:

Claim 2.2.2 For every good x, and z which is good for x, we have

PrX [CD(X, z) = CD(x, z)] ≤ 2−(h−log( 1
ε
)−1).

Proof: Fix a good x and z that is good for x. Then, there exists a seed yi ∈ Γ(z) that is good

for x, and so, in particular,
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PrX [CD(X, z) = CD(x, z)] ≤ PrX [C(X, yi) = C(x, yi)] ≤ 2−(h−log( 1
ε
)−1), where the last inequality

is because yi is good for x.

Altogether, we see that Ud◦C(X, Ud) is 2ε close to a distribution with h−log(1
ε
)−1 min-entropy,

as desired.

2.2.3 Low-level lemmas

Claim 2.2.3 |B| < 2d+h · ε · ε0.

Proof: Let Bt be the set of all seed-image pairs that are t-heavy. On the one hand, Pr[Ud ◦
C(X,Ud) ∈ Bt] ≥ |Bt|2−(d+h)(2t + 1) because each element in Bt is heavy. On the other hand,

Ud ◦ C(X,Ud) is ε0 close to a distribution C ′ where Pr[C ′ ∈ Bt] = |Bt|2−(d+h) (because C is ε0

close to a loss-less condenser). Together, we see that |Bt| ≤ 2d+h−tε0. Plugging t = log(1
ε
) gives

the desired result.

Claim 2.2.4 Prx∈X [x is bad] < ε.

Proof:

Let X ′ be the flat distribution over all bad x’s, and assume |X ′| ≥ ε|X| and so H∞(X ′) ≥
h − log(1

ε
). Clearly, H∞(X ′) ≤ H∞(X) = h ≤ k. It follows that Ud ◦ C(X ′, Ud) is ε0 close to a

((d, d), (m,h− log(1
ε
))) block source C ′.

Now, on the one hand, Pr[Ud ◦ C(X ′, Ud) ∈ B] is at least 2ε0 (because for every bad x, with

probability 2ε0 a random seed y is bad for it, and (y, C(x, y)) ∈ B). On the other hand for C ′,

Pr[C ′ ∈ B] ≤ |B|2−(d+h−log( 1
ε
)) and so Pr[Ud◦C(X ′, Ud) ∈ B] ≤ ε0+|B|2−(d+h−log( 1

ε
)). Rearranging,

we see that |B| ≥ 2d+hεε0 contradicting Claim 2.2.3.

Claim 2.2.5 Let x be a good input. Then Prz[Γ(z) ⊆ Bx] ≤ ε.

Proof: Fix any good input x. Let Z be the set of all bad z’s for x. By the disperser defini-

tion it then follows that |Z| ≤ 2d, and hence the probability such a bad z is picked is at most

2d/2d+clog( 1
ε
) ≤ ε (c ≥ 1).
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2.2.4 Plugging parameters

We now choose the disperser D we plug into the construction of CD,CRS
. The simplest choice

is the disperser of Ta-Shma, Umans and Zuckerman [58] which has O(log n) seed length, O(log n)

entropy loss and a constant error. Thus, we may take c = 1 in the construction of Section 2.2.1

and d′ = O(log(d + log(1
ε
))) and this gives in Theorem 1.1.1 d̃ = d + log n + O(log(1

ε
)) and

m̃ = m · poly(d + log(1
ε
)) + log n.

For a large ε ≥ 2−d, we can improve on that by using the extractors of Capalbo et al. [12],

which have seed length that is logarithmic in the entropy deficiency rather than the input length.

Formally, Capalbo et. al prove:

Theorem 2.2.6 [12] Let α > 0 be an arbitrarily small constant. For all

0 ≤ ∆ ≤ (1−α)n, and γ > 0 constant, there exists a (n−∆, γ) extractor E : {0, 1}n×{0, 1}d →
{0, 1}m, with d = O(log ∆), and m ≥ n− (1 + α)∆.

Using c = 2 in the construction of Section 2.2.1 we get the result stated in Theorem 1.1.1.

2.3 Applications

We now demonstrate that our error reduction technique can be applied to the loss-less con-

densers of Ta-Shma, Umans and Zuckerman [58].

Theorem 2.3.1 [58] For all ε ∈ (0, 1
2
) constant, and all k ≤ n, there exists an explicit (k, ε)

loss-less condenser C : {0, 1}n × {0, 1}d → {0, 1}m, for the following choices of d and m:

• d = poly log(n), m = O(k).

• For all α > 0 constant, d = O(log n), m = O(k1+α).

Where the implicit constants depend on ε.

Applying Theorem 1.1.1 we establish:
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Corollary 2.3.2 For all ε > 0 and k ≤ n, there exists an explicit (k, ε) loss-less condenser

C : {0, 1}n × {0, 1}d → {0, 1}m, for the following choices of d and m:

• d = poly log(n) + O(log(1
ε
)), m = O(k) · polylog(1

ε
) + log n.

• For all α > 0 constant, d = O(log n
ε
), m = O(k1+α) · polylog(1

ε
) + log n.

2.4 An upper bound

Capalbo et al. [12] showed (by a reduction to an extractors lower bound) the following lower

bound for loss-less condensers:

Theorem 2.4.1 [12] Let k, m, n, ε be such that k + O(1) < m < n and ε ≤ 1
4
. If C : {0, 1}n ×

{0, 1}d → {0, 1}m is a (k, ε) loss-less condenser, then

d ≥ max{log( n−k
m−k

), log(1
ε
)}+ O(1).

We augment this with a matching non-explicit upper bound.

Lemma 2.4.2 For every k ≤ m ≤ n and ε > 0, there exists a (k, ε) loss-less condenser C :

{0, 1}n × {0, 1}d → {0, 1}m with

d ≤ log(
n−k+log( 1

ε
)+O(1)

m−k+ε
) + log(1

ε
).

Proof: Ta-Shma, Umans and Zuckerman [58] showed that a (k, ε) loss-less condenser C :

{0, 1}n × {0, 1}d → {0, 1}m is equivalent to a

([N = 2n], [MD = 2m2d]) bipartite graph, which is a (K = 2k, (1− ε)2d) expander. Define a graph

G = (V1 = [N ], V2 = [DM ], E) with left degree D, by choosing for each v ∈ N , D random neigh-

bors {m1, . . . ,mD} from [M ], and connecting v to the vertices (1, m1), . . . , (D,mD) ∈ [DM ]. By

the discussion above, it is sufficient to prove that with a positive probability, G is a (K, (1− ε)D)

bipartite expander.

Let X ⊆ N be a set of cardinality H = 2h for some 1 ≤ h ≤ k. Observe that
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Pr[|Γ(X)| < (1− ε)DH] ≤
(

DH

εDH

)
·
(

(1− ε)H

M

)εDH

because if |Γ(X)| < (1 − ε)DH then there exists a set X ′ ⊆ X of cardinality ε|X| such that

Γ(X ′) ⊆ Γ(X \X ′).

By a union bound, over all such subsets X of size 2h,

(
N

H

)(
DH

εDH

)(
(1− ε)H

M

)εDH

≤
[

eN

H

e

ε

(
(1− ε)H

M

)εD
]H

Choosing D = 1
ε

n−h+log( 1
ε
)+O(1)

m−h+ε
this quantity is at most 2−H (we have used 1− ε ≤ e−ε). Notice

that if D is good for h (i.e., D ≥ 1
ε

n−h+log( 1
ε
)+O(1)

m−h+ε
) then D is also good for h− 1 because a

b
≥ a+1

b+1

for a ≥ b. Thus, summing over all possible h and subsets H, we get a geometric sum whose total

is less than 1, hence a good graph exists.

2.5 Further work

The dependency of the seed length in our construction on the input length and error is O(log n
ε
),

while the correct dependency is roughly d = log( n−k
m−k

) + log(1
ε
) + O(1). For linear min-entropy,

this difference is notable: By our non-constructive argument, there are loss-less condensers with a

degree which depends only on the error - O(log(1
ε
)) (i.e. take m = n/2, k = n/4). For a constant

error, this is constant. However, our construction (as well as all other constructions known to

us) fails to achieve a constant degree. An interesting question is what causes this barrier, and of

course, how it can be broken.
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Chapter 3

Derandomized Constructions of k-Wise (Almost) Independent

Permutations

3.1 Preliminaries

We denote by Pn the set of all permutations over {0, 1}n. For any f, g ∈ Pn denote by f ◦ g

their composition (i.e., f ◦ g(x) = f(g(x))). For x, y ∈ {0, 1}n, x ⊕ y denotes their bit-by-bit

exclusive-or. Denote by [Nk] the set of all k-tuples of distinct n-bit strings.

3.1.1 Random walks

A random walk on a graph starting at a vertex v is a sequence of vertices, u0, u1, . . . where

u0 = v and for i > 0 the vertex ui is obtained by selecting an edge (ui−1, ui), uniformly from the

edges leaving ui−1. Regular, undirected graphs, with self-loops, have the property that a random

walk on the graph (starting at an arbitrary vertex) converges to the uniform distribution on the

vertices. The rate of convergence is governed by the second largest (in absolute value) eigenvalue

of the graph. Below we formalize these notions.

Definition 6 (Spectral Gap) Let G = (V,E) be a connected, d-regular undirected graph on n

vertices. The normalized adjacency matrix of G is its adjacency matrix divided by d. Denote this

matrix by M ∈ Mn(R). Denote by 1 = λ1 ≥ λ2 ≥ . . . ≥ λn its eigenvalues. We denote by λ(G)

the second eigenvalue in absolute value. Namely, λ(G)=̇ max{|λ2|, |λn|}. The spectral gap of G,

is defined by gap(G)=̇1− λ(G).

Definition 7 (Mixing Time) Let G = (V, E) be a connected, regular, undirected graph with self-

loops, on n vertices. Let M ∈ Mn(R) be the normalized adjacency matrix of G. A random walk on

this graph is an ergodic Markov chain, whose transition matrix is M . Its stationary distribution π

is the uniform distribution on the vertices. For x ∈ V , define the mixing time of the walk starting
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from x, by τx(ε) = min{n|‖Mn1x − π‖ ≤ ε}, where 1x is the distribution concentrated on x. The

mixing time of the walk is defined by τ(ε) = maxx∈V τx(ε).

We have the following theorems, relating the mixing time of a walk with the spectral gap of

the graph.

Theorem 3.1.1 [55] Let G = (V,E), M , π be as in Definition 7. Let ε > 0. Let λ be the second

largest eigenvalue of G. Then

1

2

λ

1− λ
ln(

1

2ε
) ≤ τ(ε) ≤ 1

1− λ
ln(
|V |
ε

).

Usually, such a claim is used to bound the mixing time. However, we will be using constructions

with a proven mixing time. The construction itself may also provide a bound on the spectral gap.

In case it does not, we will be able to use Theorem 3.1.1, to bound the gap of the graph from

below. A simple calculation using Theorem 3.1.1, shows that

gap(G) = Ω(
ln( 1

2ε
)

τ(ε)
).

The following theorem will be useful for us. It shows, that the distance of a distribution induced

by a random walk, from its stationary distribution, is a sub-multiplicative function of the time.

We will use this result, to obtain a composition theorem for families of permutations. Namely, if

selecting one permutation from a family of permutations, induces a distribution, which is δ-close

to uniform, then composing two such permutations, yields a distribution which is roughly δ2-close

to uniform.

Theorem 3.1.2 ([2] Chapter 2, Lemma 20) Let G = (V,E), M , π be as in Definition 7. Define

d(t) = maxx∈V ‖M t1x − π‖. Then for all s, t ≥ 0, d(s + t) ≤ 2d(s)d(t).
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3.2 The Existence of k-Wise δ-Dependent Permutations

In this section we define k-wise δ-dependent permutations, discuss their existence, and show

that the distance parameter δ is reduced by the composition of such permutations.

3.2.1 Definitions

Definition 8 Let n, k ∈ N, and let F ⊆ Pn be a family of permutations. Let δ ≥ 0. The family F
is k-wise δ-dependent if for every k-tuple of distinct elements (x1, . . . , xk) ∈ [Nk], the distribution

(f(x1), f(x2), . . . , f(xk)), for f ∈ F chosen uniformly at random is δ-close to U[Nk]. We refer to

a k-wise 0-dependent family of permutations as k-wise independent.

We are mostly interested in explicit families of permutations, meaning that both sampling

uniformly at random from F and evaluating permutations from F can be done in polynomial

time. The parameters we will be interested in analyzing are the following:

Description Length The description length of a family F is the number of random bits, used

by the algorithm for sampling permutations uniformly at random from F . Alternatively,

we may consider the size of F , which is the number of permutations in F , denoted |F|. In

all of our applications, the description length of a family F equals O(log(|F|)). By allowing

F to be a multi-set we can assume without loss of generality that the description length is

exactly log(|F|).

Time Complexity The time complexity of a family F is the running time of the algorithm for

evaluating permutations from F .

Our main goal would be to reduce the description length of constructions of k-wise δ-dependent

permutations. Still, we would take care to keep time complexity as efficient as possible. See

additional discussion in Section 3.5.
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3.2.2 Non-explicit construction

We note the following non-explicit families of permutations. Our goal would be to obtain

families of size which is as close as possible to that obtained by the non-explicit argument below.

The following theorem follows by the approximation method of Azar, Motwani and Naor [4].

They provide a general way, to approximate an arbitrary distribution, over a finite abelian group.

More specifically, Azar, Motwani and Naor prove ([4] Theorems 3.2, 3.5) that for any proba-

bility distribution F defined over a finite abelian group G, and ε > 0, there exists a probability

distribution F ′ over some sample space Ω, of support size O( lg |G|
ε2

), such that ‖F ′ − F‖ ≤ |G| ε
2
.

Here, the group is the set of n bit strings, and we set ε = 2δ
2nk . We have:

Theorem 3.2.1 (Existence of k-wise δ-dependent Distribution) Let

n ∈ N. For all 1 ≤ k ≤ 2n and δ > 0, there exists a distribution, that is

δ-close to a family F ⊆ Pn of k-wise permutations, of support size O(22nknk
δ2 ).

3.2.3 Composition of permutations

Some of the permutations families we will inspect, require several compositions, to get a dis-

tribution close to uniform. In fact, as we argue below, composing permutations is an effective

method for reducing the distance parameter δ. This motivates the following definition.

Definition 9 Let F ⊆ Pn. The t’th power of F , denoted by F t ⊆ Pn, is { f1 ◦ . . . ◦ ft |
f1, . . . , ft ∈ F }.

Remark 1 Let F ⊆ Pn. Observe that |F t| = |F|t, and that the time complexity of F t is essen-

tially t times the time complexity of F .

As we will see, starting with a family F which is δ-dependent results in F t which is only

O(δ)t-dependent. Increasing the description length and time complexity linearly, pays off in an

exponential decay of the error.

We now state our composition theorem.

23



Theorem 3.2.2 Let F be a k-wise δ-dependent family. Then, F2 is a k-wise 2δ2-dependent

family.

The proof of Theorem 3.2.2 uses the companion graph of the permutations family F , described

in Subsection 1.1.3 (for the exact definition, refer to Subsection 3.4.1). Observe, that a step on

the companion graph is equivalent to computing a permutation from F .

Proof: Let F be a k-wise δ-dependent family. This means, that after taking one random step on

its companion graph, the distance from a uniform distribution is δ. Let d(t) be as in Theorem 3.1.2.

Then d(1) = δ, and since by Theorem 3.1.2, d(2) ≤ 2d(1)2 = 2δ2, we conclude that F2 is a k-wise

2δ2-dependent family.

Theorem 3.2.2 has the following corollary, which follows by a simple induction.

Corollary 3.2.3 Let F be a k-wise δ-dependent family. Then, for any ` ∈ N, F ` is a k-wise

(1
2
(2δ)`)-dependent family.

3.3 Short Survey of Explicit Constructions

As mentioned in the introduction, for k = 2 the set of linear permutations is a good construction

(see also [32]).There are no known k-wise exactly independent permutations, whether algebraic or

not. The rest of our discussion will therefore focus on k-wise almost independent permutations.

We now survey some known constructions yielding k-wise almost independent permutations with

reasonable parameters.

3.3.1 Feistel based constructions

In their famed work Luby and Rackoff [26] showed how to construct pseudorandom permutations

from pseudorandom functions. The construction is based on the Feistel Permutation: For any

function f ∈ {0, 1}n/2 → {0, 1}n/2 the Feistel Permutation is defined by (L, R) → (R, L⊕ f(R)),

where |L| = |R| = n/2. The construction uses a composition of several such permutations.
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Naor and Reingold [32] construct a family of k-wise δ-dependent permutations, where the

description of each permutation is kn + O(n) bits with δ = k2/2n/2 (note that the size is optimal

up to the additive O(n) term). The analysis is useless when k is larger than 2n/4.

There are Feistel constructions of k-wise δ-dependent permutations, for k up to 2n/2 (see Naor

and Reingold [32], Patarin [35, 36, 37], and Maurer and Pietrzak [27]).

Feistel permutations approach yields succinct k-wise δ-dependent permutation as long as k is

not too large and δ is not too small, and is probably the method of choice for this range. To

reduce the dependency δ one can use Theorem 3.2.2 and obtain a permutation with description

size O(kn log(1/δ) (or even O(k log(1/δ)) for certain ranges of k and δ). The Feistel method is

not known to be useful for k larger than 2n/2.

3.3.2 Card shuffling

Consider a process for shuffling cards. Each round (shuffle) in such a procedure selects a

permutation on the locations of the N = 2n cards of a deck (selected from some collection of basic

permutations). Starting at an arbitrary ordering of the cards, we are interested at how long does

it take to get the deck into a (close to) random position. In other words, a card shuffling defines

a Markov chain on the state of the deck, and the goal is to bound its mixing time.

The riffle shuffle models one of the most common “real life” shuffling techniques. Loosely, in

each shuffle, the deck is split roughly in the middle, into two sides. Then, cards are dropped

sequentially, from both sides, and form a new deck. The mathematical model for this shuffle is

due to Gilbert, Shannon and Reeds. Aldous and Diaconis [1] provide a convenient implementation

which we shall now describe. Let us view the deck of cards as the set of n bit strings, where each

card is a string in {0, 1}n. One round of the shuffle consists of two stages: Assign and reorder.

In the assign stage, each of the N = 2n cards is assigned a random bit 0 or 1. In the reorder

stage, the cards assigned with 0 are placed at the top, while preserving their internal order. After

O(log N) = O(n) such rounds, the deck is close to uniform, see [1].

The random bits cost of this procedure is quite high. We would need 2n bits per round, total of
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O(n2n) bits. Observe, that this is of the order of the number of bits needed to select a permutation,

uniformly at random (and certainly much more than desired for k-wise independent permutations).

An even more troubling difficulty with using this shuffle, is that it is not “oblivious” in the sense

that the location of each card is determined by looking at many random bits. For instance, if the

ith card is assigned a value of 0, it can still be in any of the first i position after the reorder stage,

depending on how many of the first i− 1 cards are also assigned a 0. As we shall see below, this

does not completely preclude the applicability of such a process for generating k-wise independent

permutations, but a more straightforward idea is to use an oblivious shuffle.

3.3.3 Oblivious card shuffling

An “old” proposal by Naor [50, page 17], [32] for the construction of k-wise almost independent

permutations was to utilize “oblivious” card shuffling procedure. Briefly, a shuffle is oblivious if

the location of a card, after each round, is easy to trace and is determined by only a few random

bits, say O(1). An excellent example is the Thorp Shuffle [60]. Here the deck is divided into two

halves, and these two halves are interleaved in a more local manner than in the riffle shuffle. In

the Thorp shuffle, each time we pick one card from each half. With equal probability, the card

from the first half is dropped first, and otherwise the card from the second half is dropped first.

This means, that the location of a card, after one round, depends on a single bit. It is therefore

oblivious, in the sense described above. It was conjectured in [1] that the mixing time of the

Thorp Shuffle is O(n2), but the problem remained open for many years. Recently Morris [30]

provided the first poly(n) bound on its mixing time.

Definition 10 (Thorp Shuffle) Let n ∈ N. Given a deck of 2n cards, one stage of the shuffle is

determined by 2n−1 bits that we will view as a random function g : {0, 1}n−1 → {0, 1}. View the

location of each card as an n-bit string according to the lexical order. Card at location (σ, x) where

σ ∈ {0, 1} and x ∈ {0, 1}n−1 moves to location (x, σ ⊕ g(x)).

Theorem 3.3.1 [30] The mixing time for the Thorp shuffle is O(n44).
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The idea of Naor [50, page 17], [32] is the following: When using such a card shuffle to construct

a k-wise almost independent permutation, all we care for is the final locations of k cards. If we

replace the random function g by a k-wise independent function, then this will not change the

distribution on the k final locations.

3.3.4 Simple 3-bit permutations

A very intriguing method for generating k-wise δ-dependent permutation was explored first by

Gowers [18] and then (with some variation) by Hoory et al. [20] and Brodsky and Hoory [10].

The idea is to pick a few bit positions (actually 3) and chose a permutation on the resulting small

cube. In the Hoory et al. variation only a single bit is changed as a function of the other bits.

This is reminiscent of a shuffle, but there is no chance that the shuffle will converge in reasonable

time (as we invest too few bits in each shuffle). This approach is treated more formally in the

Section 3.4.4 and it works very well with the derandomized walk approach, since the underlying set

of permutations considered is the simplest and hence the description length of simple permutations

is quite short. What this line of research shows is that a composition of not too many simple

permutations yields a k-wise almost independent permutation.

3.4 Main results

In this section we give a method for reducing the description length of previous constructions

of k-wise δ-dependent permutations. As discussed in the introduction, this method is particularly

suited to constructions based on composition of permutations. We apply this method to the simple

3-bit permutations of [10, 18, 20] to obtain k-wise δ-dependent permutations with description

length O(nk + log(1
δ
)), for all k ≤ 2n − 2. To obtain our results for all k ≤ 2n, we apply this

method to the Thorp Shuffle [60].
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3.4.1 Permutation families and random walks on graphs

We associate with a family F of permutations a graph as follows:

Definition 11 (Companion Graph) Let F ⊆ Pn be a family of permutations. For k ∈ N, define

the companion (multi-)graph of F , GF ,k = (V, E) by:

• V = [Nk].

• E = { (i, σ(i)) | i ∈ [Nk], σ ∈ F }.

• Each edge (i, σ(i)) ∈ E is labelled by σ.

Remark 2 For an element x = (x1, . . . , xk) ∈ [Nk], and a permutation σ ∈ F , we abbreviate

σ(x) for (σ(x1), . . . , σ(xk)).

All of our families of permutations of Section 3.3 closed under taking an inverse of a permutation

and always include the identity permutation. We summarize the properties of the companion

graph in the following proposition:

Proposition 1 Let F ⊆ Pn be a family of permutations, which is closed under taking an inverse

and contains the identity permutation. Let k ∈ N. Then, the companion graph GF ,k, is an

undirected, |F|-regular, consistently labelled graph, with self-loops.

Remark 3 A consistently labelled graph has the property that for any vertex w, any two incoming

edges to w are labelled with different labels.

Assume that F is such that F t is a family of k-wise δ-dependent permutations. This means that

the distribution over the vertices we reach, by taking a walk of length t, starting at any vertex of

GF ,k, is δ-close to uniform. Simply, traversing an edge is the same as applying the permutation

that is the label of this edge. Taking t random edges is the same as applying the composition of

t randomly chosen permutations.
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Derandomizing the family F t will mean that instead of composing independently chosen per-

mutations from F , we will select the permutations with some dependencies. Equivalently, we will

take a pseudorandom walk instead of a random one. We will use a pseudorandom generator, to

generate this walk. We will require that the seed of the generator be sufficiently small and that

the number of labels the generator outputs will not be too large (hopefully, not much larger than

t). Such a generator was given by Reingold, Trevisan and Vadhan [45, 47].

3.4.2 Pseudorandom walk generators

We now discuss generators for pseudorandom walks on graphs. We will refer to graphs with

the following parameters:

Definition 12 (Parameters for a Graph) Let G = (V,E) be a connected, undirected d-regular

graph, on m vertices. Then G is an (m, d, λ)-graph if λ ≤ λ(G).

Definition 13 (Pseudorandom Walk) Let G = (V, E) be a d-regular graph where each node labels

its adjacent edges in [d]. Let A be a distribution over

~a = a1, a2, . . . a` ∈ [d]`.

We say that A is δ-pseudorandom for G, if for every u ∈ V , the distribution on the possible end

vertices of a walk in G, which starts from u, and follows the edge labels in ~a is δ-close to uniform

when ~a is distributed according to A.

Note that if G is an (m, d, λ) graph, λ is sufficiently smaller than 1 and the walk is sufficiently

long, then we expect a (truly) random walk to end in vertex that is close to being uniformly

distributed no matter where the walk started. We are now ready to state the parameters of the

best known construction of pseudorandom walk generators.

Theorem 3.4.1 [45, 47][Pseudorandom Walk Generator] For every m, d ∈ N, δ, ε > 0, there is
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a pseudorandom walk generator PRG where

PRGm,d,δ,ε : {0, 1}r → [d]`, with the following parameters:

• Seed length r = O(log(md/εδ)).

• Walk length ` = poly(1/ε) · log(md/δ).

• Computable in space O(log(md/εδ)) and time poly(1/ε, log(md/δ)).

such that for every consistently labelled (m, d, 1 − ε)-graph G, the output of PRG(Ur) is δ-

pseudorandom for G, where Ur is the uniform distribution on {0, 1}r.

Remark 4 The generator of [47] is more general as it also applies to certain types of directed

graphs (with in-degree of each vertex equals its out-degree). Here, only undirected regular graphs

are relevant. Furthermore, the time-complexity of the generator is only implicit in [47].

3.4.3 Derandomizing compositions of permutation families

By Proposition 1, the companion graph GF ,k, is regular and consistently labelled. As argued

above, if F t (for t not too large) is k-wise almost independent then the random walk on GF ,k has

small mixing time. By Theorem 3.1.1, this implies a bound on the eigenvalue gap ε. Therefore,

Theorem 3.4.1 gives a way to generate a pseudorandom walk for GF ,k with PRGm,d,δ,ε with m =

|[N ]k| and d = |F|. The idea is to use each seed s ∈ {0, 1}r of the pseudorandom generator PRG,

to define a new permutation σs, which is the composition of permutations from F . Theorem 3.4.2

formalizes this approach. For simplicity, we assume that the bound on the eigenvalue gap is given,

rather than deducing it by Theorem 3.1.1 (as in the discussion above).

An advantage we have, which affects the parameters of our results (especially the description

length), is that the efficiency of the generator of [47] depends on the spectral gap of the initial

graph. Since we are using families of permutations for which the companion graph is known to

be of good expansion, we manage to achieve non-trivial parameters in the families we construct.

The following theorem describes the family of permutations we achieve.
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Theorem 3.4.2 Let F ⊆ Pn be a family of size d = |F|, and GF ,k be its companion graph.

Suppose that gap(GF ,k) = ε, where ε may be a function of n and k. Then, there exists F ′ ⊆ Pn,

such that F ′ is a k-wise δ-dependent family, with following properties.

• The description length of F ′ is O(nk + log( d
εδ

)).

• If the time complexity of any permutation in F is bounded by ξ(n, k), then the time complexity

of F ′ is poly(1/ε, n, k, log(d
δ
)) · ξ(n, k).

Proof:

We apply Theorem 3.4.1 on the companion graph of F . Following Proposition 1 we know that

GF ,k fits the requirements there. Let r = O(log(2nk·d
εδ

)) and ` = poly(1/ε) · log(2nk·d
δ

) be as in

Theorem 3.4.1. For a string s ∈ {0, 1}r, we define σs ∈ Pn as follows. Let ~w = PRG2nk,d,δ,ε(s) ∈
[d]`. Then ~w = τ1, τ2, . . . , τ`, where for all 1 ≤ i ≤ `, τi ∈ F . We let σs = τ` ◦ . . . ◦ τ1.

Next define a permutations family F ′ ⊆ Pn by

F ′ = {σs | s ∈ {0, 1}r }.

We now show that F ′ is a k-wise δ-dependent family. By Theorem 3.4.1, for any starting vertex

u ∈ V (GF ,k), the pseudorandom walk starting at u and following the labels of PRG2nk,d,δ,ε(Ur)

reaches a vertex that is δ-close to uniform. Observe that picking a random σs ∈ F ′ and applying

it to any value A ∈ V (GF ,k) = [Nk] is exactly as taking a random walk on GF ,k according to the

output of PRG2nk,d,δ,ε with a random seed s. Therefore, the output of a uniform σs on any such

A ∈ [Nk], is δ-close to uniform. We can conclude that F ′ is k-wise δ-dependent.

The description length of F ′ is |r| = O(log(2nkd
εδ

)) = O(nk + log( d
εδ

)). The time complexity of

F ′ depends on the time complexity of running the generator, and of running permutations from

F . This can be bounded by poly(1/ε, n, k, log(d
δ
)) · ξ(n, k).
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3.4.4 Particular Derandomization – 3-bit Permutations

We now provide a formal definition and analysis of simple 3-bit permutations, mentioned in

Section 3.3.4.

Definition 14 (Simple Permutations) [20] Let w ≤ n. For i ∈ [n], J = {j1, . . . , jw} ⊆
[n]r {i}, and a function f ∈ {0, 1}w → {0, 1}, denote by σi,J,f the permutation

σi,J,f (x1, . . . , xn)=̇(x1, . . . , xi−1, xi ⊕ f(xj1 , . . . , xjw), xi+1 . . . , xn)

The following simple permutation family Fw is defined by

Fw = {σi,J,f |i ∈ [n], J ⊆ [n]r {i}, |J | = w, f ∈ {0, 1}w → {0, 1}}.

We denote by F2 the simple permutations family Fw for w = 2.

Theorem 3.4.3 [10] For all 2 ≤ k ≤ 2n − 2, F2
t is k-wise δ-dependent , for t = O(n2k(nk +

log(1
δ
))). Furthermore, gap(GF ,k) = Ω( 1

n2k
).

Evaluating σi,J,f ∈ F2 takes O(n) time. The size of F2 is O(n3), and the size of F2
t is O(n3)t =

nO(n2k(nk+log( 1
δ
))). It follows that F2

t has description length O(n2k(nk + log(1
δ
)) log(n)), and time

complexity O(n3k(nk + log(1
δ
))).

Combining Theorems 3.4.3 and 3.4.2 we obtain the main result of this paper, for k ≤ 2n − 2.

Theorem 3.4.4 For all k ≤ 2n − 2, there exists F ⊆ Pn, such that F is k-wise δ-dependent. F
has description length O(nk + log(1

δ
)), and time complexity poly(n, k, log(1

δ
)).

Proof: Consider the permutations family F2. The size of F2 is d = O(n3), and the spectral gap

of its companion graph is ε = Ω( 1
n2k

). Applying Theorem 3.4.2 on F2, we get a permutations

family F ′, whose description length is O(nk + log( d
εδ

)) = O(nk + log(1
δ
)).

Since the time complexity of any permutation in F2 is O(n), it follows that the time complexity

of F ′ is poly(n, k, log(1
δ
)).
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3.4.5 Particular Derandomization – Thorp Shuffle

In order to obtain the main result of this paper, for all k ≤ 2n, we analyze the Thorp Shuffle

[60], described in Subsection 3.3.3.

Theorem 3.4.5 For all k ≤ 2n, there exists F ⊆ Pn, such that F is k-wise δ-dependent. F has

description length O(nk + log(1
δ
)), and time complexity poly(n, k, log(1

δ
)).

Proof: We denote by F the permutations family implementing the Thorp shuffle, as explained in

Definition 10. Let us analyze its size, and the spectral gap of its companion graph.

By the idea of Naor (explained following Theorem 3.3.1) the size of the permutations family

for the Thorp shuffle is d = O(2nk).

By Theorem 3.3.1, the mixing time of the Thorp shuffle for a constant error is O(n44). Using

Lemma 3.1.2, we see that the mixing time for error ζ, τ(ζ) = O(n44 lg 1
ζ
). As described in the

discussion following Theorem 3.1.1, gap(G) = Ω(
ln( 1

2ζ
)

τ(ζ)
), and so the spectral gap of the companion

graph is ε = gap(G) = Ω( 1
n44 ).

Applying Theorem 3.4.2 on F , we get a permutations family F ′, whose description length is

O(nk + log( d
εδ

)) = O(nk + log(1
δ
)).

Since the time complexity of any permutation in F is easily seen to be poly(n, k), it follows

that the time complexity of F ′ is poly(n, k, log(1
δ
)).

3.5 Further work

One issue that we have not resolved, is coming up with k-wise permutations where the time

complexity of evaluating at a given point is small. Note that even for k-wise independent functions

this issue is not completely resolved; the basic construction based on polynomials is expensive and

some lower and upper bounds are given by Siegel [54]. In general, the transformation we propose

via the random walks does not preserve the time complexity of evaluating permutations in F :

When the composed permutation is stored in its succinct form, we do not know how to evaluate
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it at a given point without first ‘decompressing’ and representing explicitly as a composition of `

permutations in F .

In order to maintain the complexity of evaluation, we need a generator with ‘random access’

properties. In such a generator, evaluating the ith bit of its output, does not entail computing

all bits up to i. The Nisan generator [33] has some aspects of this nature, but is sub-optimal in

other parameters.
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