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Abstract

In this thesis we study Locally Decodable Codes. A code C is said to be Locally Decodable
Code (LDC) with q queries if it is possible to recover any symbol xi of a message x by making
at most q queries to C(x), such that even if a constant fraction of C(x) is corrupted, the decoding
algorithm returns the correct answer with high probability.

LDCs are important not because of their obvious applications to data transmission and data
storage but because of their applications to complexity theory and cryptography.

Many important results in these fields rely on LDCs. LDCs are closely related to such
subjects as worst case – average case reductions, pseudo-random generators, hardness am-
plification, and private information retrieval schemes. Locally Decodable Codes also found
applications in data structures and fault tolerant computations.

Locally Decodable Codes implicitly appeared in the PCP literature already in the early
1990s, most notably in [2, 37]. However the first formal definition of LDCs was given by Katz
and Trevisan [29] in 2000. Since then LDCs became widely used. The first constructions of
LDCs [4, 29] were based on polynomial interpolation techniques. Later on more complicated
recursive constructions were discovered [5, 43]. All these constructions had exponential length.
The tight lower bound of 2Θ(n) codes were given in [19, 32] for two queries LDCs. For many
years it was conjectured (see [16, 17]) that LDCs should have an exponential dependence on
n for any constant number of queries, until Yekhanin’s breakthrough [45]. Yekhanin obtained
3-query LDCs with sub-exponential length. Yekhanin’s construction is based on an unproven
but a highly believable conjecture in number theory.

Our Results In this thesis we obtain the following results:

• In Chapter 2 we define a framework of matching vector codes which gives the first
unconditional construction of sub-exponential locally decodable codes. Formally S-
matching vectors are two sets {u1, . . . , uk} and {v1, . . . , vk} such that 〈ui, vi〉 = 0 and
〈ui, vj〉 ∈ S for i 6= j. We show how from matching vectors and a S-decoding polyno-
mial one can construct LDCs. Using this construction together with Grolmusz’s [23]
construction of matching vectors, we obtain the first unconditional sub-exponential
LDCs.

Most of the work on this chapter was done while I was in Bar-Ilan University and Weiz-
mann Institute under the supervision of Ely Porat and Omer Reingold . This chapter is
based on paper [12].

• In Chapter 3 we show the connection between locally decodable codes and irreducible
representations. More precisely we show that if there exists an irreducible representation
(ρ, V ) ofG and q elements g1, g2, . . . , gq inG such that there exists a linear combination
of matrices ρ(gi) that is of rank one, then we can construct a q-query Locally Decodable
Code C : V → FG.



We show that this approach captures sub-exponential constructions of MVC and Reed-
Muller codes.

This chapter is based on paper [13].

• In Chapter 4 we show how to amplify error-tolerance of locally decodable codes. Specif-
ically, this shows how to transform a locally decodable code that can tolerate a constant
fraction of errors to a locally decodable code that can recover from a much higher error-
rate, and how to transform such locally decodable codes to locally list-decodable codes.
This chapter is based on the paper [7].



Contents

1 Introduction 1
1.1 Matching Vector Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 LDCs from irreducible representations . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Noise tolerance of LDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Collaborators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Matching Vector Codes 8
2.1 Definitions and Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Locally Decodable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Matching Sets of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 S-Decoding Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Matching Vector Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 A Simple Construction of S-Matching Vectors . . . . . . . . . . . . . . . . . . 13
2.4 Binary Locally Decodable Codes . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Locally Decodable Codes from Irreducible Representations 18
3.1 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Locally Decodable Codes . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Locally Decodable Codes from Irreducible Representations . . . . . . . . . . . 22
3.2.1 Example: Two Query LDC from Representations of Sn . . . . . . . . . 24
3.2.2 Embedding to the Regular Representation . . . . . . . . . . . . . . . . 25
3.2.3 Alphabet Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Matching Vector Codes and Abelian Invariant Codes . . . . . . . . . . . . . . 28
3.4 Is Irreducibility Essential? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Yes! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 No! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 G-Invariant Codes and Representations of G . . . . . . . . . . . . . . . . . . . 33

4 Amplifying the Error-Tolerance of Locally Decodable Codes 35
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Composition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



5 Open Problems 39
5.1 Locally Decodable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Self Correctable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41



Chapter 1

Introduction

Everything New Is Actually Well-Forgotten Old

In this thesis we study Locally Decodable Codes. A Locally Decodable Codes is a code that
allows the retrieval of any symbol of a message by reading only a constant number of symbols
from its codeword, even if a large fraction of the codeword is adversarially corrupted. Formally,
a code C is said to be locally decodable with parameters (q, δ, ε) if for every message x and for
all indices i it is possible to recover any symbol xi of message x by making at most q queries to
C(x), such that even if a δ fraction of C(x) is adversarially corrupted, the decoding algorithm
returns the correct answer with probability at least 1− ε.

LDCs have an obvious application for data transmission and data storage. However the
importance of LDCs comes not from these applications but from their applications in theoret-
ical computer science and cryptography. LDCs were first used in the context of worst case
– average case reductions and probabilistically checkable proofs. Later LDCs and their varia-
tions found their applications in many important results in pseudo-random generators, hardness
amplification, private information retrieval schemes. See the surveys [16, 40] for more details.

Locally decodable codes were first formally defined by Katz and Trevisan [29], although
this notion already appeared implicitly in previous works. When the number of queries is
poly log k, where k is the length of the message, Reed-Muller codes give polynomial length
LDCs. When the number of queries is kε, a variant of Reed-Muller [34] gives LDCs of rate ap-
proaching one. For a detailed survey on recent results in LDCs see the survey by Yekhanin [46].
We summarize the current results of lower and upper bounds in the Table 1.1

Hadamard and Reed-Muller Codes Before continuing the discussion on modern construc-
tions of LDCs, let us give two classical examples of LDCs: Hadamard codes and Reed-Muller
codes. The Hadamard code encodes k bits to 2k bits where each coordinate of the message
corresponds to some value in {0, 1}k. We encode a message m = (m1,m2, . . . ,mk) to the
inner product of this message with all coordinates, i.e., at the coordinate x ∈ {0, 1}k we write
〈m,x〉 ,

∑
mixi. In order to decode the ith bit of the message we pick a random y ∈ {0, 1}k

and return the xor of the coordinates y and y + ei (where ei is an element with 1 at ith coor-
dinate and zero elsewhere). Note that if our codeword is corrupted in at most δ < 1

4 fraction
of coordinates, then with probability at least 1 − 2δ both coordinates y and y + ei will not be
corrupted. In this case we have calculated 〈m, y〉+ 〈m, y+ ei〉 = 〈m, ei〉 = mi. Thus we will
return the correct answer with probability at least 1− 2δ.

1
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q Lower Bounds Upper Bounds

1 Do not exist [KT]

2 2n [GKST,KdW] 2n (Hadamard)

3 Ω(n3/2)[KT] exp(nε) [Y]
Ω( n2

log2 n
)[KdW] exp(exp( logn

log logn))∗[Y]

Ω( n2

logn) [W] *under number theoretic conjecture

exp(exp(O(
√

log n log logn)))

> 3 Ω
(
n1+1/(dq/2e−1)

logn

)
exp(exp(O( log q

√
log n log log n)))

polylog(n) poly(n)

nε (1 + ε)n [KSY]

Table 1.1: Lower and Upper Bounds on LDCs.

The second example is the Reed-Muller codes. The code has two parameters (d, n) and
it is defined over field |F| > d. The code sends a polynomial in n variables of total degree
d to its evaluation on all points in Fn. Now let us show that a Reed-Muller code is a d + 1-
query LDC. We make even a stronger claim: Reed-Muller is a self correctable code. A q-query
self correctable code is a code such that any coordinate of the code could be corrected with
high probability by reading at most q coordinates of the code even if a constant fraction of the
coordinates is corrupted. Note that linear self correctable codes are also LDCs since one can
always encode the message in the coordinates of the code. Now let us show that the Reed-
Muller code is self correctable. Note that if we restrict any multivariate polynomial p(~x) of
total degree d to any line ` = {~at+ b} by p`(t) = p(~at+ b) then we will get a polynomial of
total degree at most d. Assume that we want to recover a value of the code at point ~b. Pick at
random 0 6= ~a ∈ Fn and query the code at random d+ 1 points on the line ` = {~at+~b}, t 6= 0.
From these points reconstruct the polynomial p` of degree d. The value of this polynomial at
zero is p`(0) = p(~b). Note that since we pick ~a at random, each query is uniformly distributed.
Thus, if our code was corrupted in at most δ fraction of coordinates, all of our queries will be
uncorrupted with probability at least 1− (d+ 1)δ.

The Hadamard code is an example of a 2-query LDC of exponential length. A tight lower
bound of 2Θ(k) on the length of linear 2-query locally decodable codes was given in Goldreich
et al. [18] and was extended to general codes by Kerenidis and de Wolf [31]. When the number
of queries is constant and greater than two, much less is known. For an arbitrary constant
number of queries q, only weak super-linear lower bounds are known, see [29, 31, 41].

For many years it was conjectured (see [16, 17]) that LDCs should have an exponential
dependence on n for any constant number of queries, until Yekhanin’s breakthrough [45].
Yekhanin obtained 3-query LDCs with sub-exponential length. Yekhanin’s construction is
based on an unproven but a highly believable conjecture in number theory that there are in-
finitely many Mersenne primes.

The goal of this thesis is to understand what will allow us to construct good LDCs. We will
present two frameworks for the construction of LDCs:
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1.1 Matching Vector Codes

In [12] we develop a combinatorial framework matching vector codes (MVC) for a construction
of LDCs. The heart of this framework is a combinatorial object: matching vectors which
fortunately for us were highly investigated in combinatorics. This framework is a kind of a
generalization and simplification of Yekhanin’s result [45]. We extend Yekhanin’s construction
to work not only with prime but also with composite numbers. Fortunately Grolmusz [23] had
showed that there exists constructions of matching vectors over composite numbers with much
better parameters than over prime numbers. Using these matching vectors allows us to give an
unconditional construction of sub-exponential LDCs. LDCs implied from this framework also
have much better parameters. Let us summarize this in the following theorem:

Theorem 1.1.1 ([12]). For every r and for every k there exists q ≤ 2r query LDC C : Fk → Fn,
where n = exp(exp(O( r

√
log n(log log n)r−1))).

Number of queries in this theorem depends on the object called S-decoding polynomial.
A trivial construction of S-decoding polynomial leads to the bound 2r on number of queries.
When r = 2 we also show how to reduce the number of queries from 22 = 4 to 3. Later
in [28, 35] this construction was extended (under some number theoretic assumptions) to any
r. This reduced number of queries to 3r/2. Limits of this framework were also studied in the
consequence works [9, 11], where it was shown that for a restricted framework of MVC is
impossible to construct polynomial LDCs.

Although significant progress was made in understanding LDCs, the gap between lower
and upper bounds is still very large. While lower bounds are only slightly more than linear,
upper bounds are only sub-exponential. Today all known sub-exponential constructions of
LDCs with constant number of queries could be described in the framework of matching vector
codes (MVCs). It seems that in order to make a significant improvement in MVCs, we need
to improve matching vectors, where there was almost no progress in the last ten years. The
history of Matching Vectors is similar to the history of LDCs. It was conjectured for many
years that there must be a polynomial upper bound on the size of MV, until Grolmusz’s [23]
breakthrough. This construction is the basis for our subexponential constructions of LDCs.
For both MVs and LDCs, there is not even a conjecture today of what are their best possible
parameters.

1.2 LDCs from irreducible representations

Our second framework for construction MVCs is based on representation theory. Although
the framework of MVCs is pretty simple, it still does not explain the real nature of LDCs.
This leads us to seek a new approach to understanding LDCs, which in turn leads us to start a
systematic study of LDCs from the point of view of representation theory. We present another
framework for the construction of LDCs and show that it captures two important classes of
LDCs: Reed Muller codes and MVCs. We believe that this is the real algebraic nature behind
LDCs.

Let us describe this framework in more details. LetG be a finite group. A representation of
the group G is a pair (ρ, V ) of a vector space V and a mapping ρ : G→ GL(V ) from G to the
group of invertible matrices over V which is a group homomorphism, i.e., for all g1, g2 ∈ G it
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holds that ρ(g1g2) = ρ(g1)ρ(g2). A subspace W ⊂ V is a sub-representation of (ρ, V ) if for
every g ∈ G the matrix ρ(g) maps W to W . A representation is called irreducible if it does
not have any non-trivial sub-representations. (See Section 3.1.1.2 for formal definitions.)

In this thesis we study the connection between the representations of finite groups and
LDCs. We show that if (ρ, V ) is an irreducible representation and there exists a small number
of elements g1, . . . , gq in G such that some linear combination of ρ(gi) is a rank one matrix,
then we can construct a q-query LDC of length |G| and dimension dimV .1

Theorem 1.2.1. (Informal) Let G be a finite group and let (ρ, V ) be an irreducible representa-
tion of G with g1, . . . , gq in G and c1, . . . , cq ∈ F such that Rank(

∑
ciρ(gi)) = 1. Then there

exists a (q, δ, qδ)-locally decodable code C : V → FG.

This gives a completely new approach to constructing LDCs. Now in order to construct an
LDC it is enough to construct irreducible representations with a sparse element of the group
algebra of rank one. This theorem gives what we believe is the real algebraic nature behind
LDCs.

Given this, we ask a natural question: When can one construct such a representation? We
show that in this framework we can achieve the parameters of the best known construction.
These construction leads to the same code as from MVCs.

On the connection between Matching Vectors and our approach: The question of when
do MV codes fall in the framework of irreducible representations is completely not obvious.
We say that MV are symmetric if they are an orbit of some group acting on Zhm. We show in
Section 3.3 that MV Codes can be explained in the framework of irreducible representations
for MV that are symmetric. Next we show that the construction given in [23] is symmetric.2

This gives a way to interpret the construction in [Efr09] as a construction of an irreducible rep-
resentation. The relationship between MV and LDCs is summarized in the following diagram:

Irreducible Representation ⇒ LDC

⇑ ⇑
Symmetric MV ⇒ MV

We want to mention that all MV codes can be constructed from very specific class of represen-
tations of a very specific class of groups. We do not see any reason why such representations
will give best possible LDCs although today we do not know how to construct representations
which will lead to better codes

Modular Representations and Reed-Muller Codes: One might wonder if the requirement
on the representation being irreducible is essential. Perhaps better locally decodable codes can
be constructed with reducible representations? We deal with this question in Section 3.4. We
distinguish two cases. The first is when the characteristic of the field does not divide the size
of the group. In this case we show that irreducibility is essential for our construction to lead
to locally decodable codes. The second case is when the characteristic of the field divides the

1In fact we prove a stronger statement. For details see Theorem 3.2.1.
2In fact, for sake of simplicity, we show it only for a slight modification of Grolmusz [23] construction. While

it is true for the Grolmusz construction as well.
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size of the group; this brings us to a slightly less familiar territory of representation theory
known as modular representation theory. We show that in this case, it is possible to construct
locally decodable codes based on reducible representations. We still don’t know, unfortunately,
if this can lead to improvements over the best known constructions of LDCs, although this is
definitely a promising direction. We illustrate this case by showing how one can view Reed-
Muller codes as a special case of our result for reducible modular representations.

1.3 Noise tolerance of LDCs

The main line of research regarding LDCs seeks to identify the shortest possible code length,
in terms of the message length n, while keeping the query complexity, the error-rate and the
success probability constant.

The decoding algorithm in all of the aforementioned constructions is smooth, i.e., each of
its queries is uniformly distributed. The analysis of the decoding algorithm relied on all of the
queried symbols being uncorrupted. Using the union bound, one could obtain a decoder with
success probability greater than half, only if the error-rate was below 1

2q .
Another line of research focused on improving the error-tolerance of LDCs. Woodruff [42]

showed how to increase the handled error-rate from 1
2q to 1

q over binary alphabets. Dvir,
Gopalan and Yekhanin [10], showed how to handle 1

4 fraction of errors for the codes of [12].
Ben-Aroya et al. [6] showed the same codes could recover from any error-rate below 1

2 . Gal
and Mills [15] obtained exponential lower bounds for 3-query LDCs that can tolerate a high
error-rate.

When the error-rate is above half of the code’s distance, the information in a corrupted
codeword is insufficient to uniquely identify the original (uncorrupted) codeword. Thus, in this
case, we have to consider list-decoding. A code C is said to be (1 − α,L)-list-decodable if
for every word, the number of codewords within relative distance 1 − α from that word is at
most L. The notion of list-decoding dates back to works by Elias [14] and Wozencraft [44] in
the 50s. Roughly speaking, a code C is locally list-decodable if it is (1− α,L)-list-decodable,
and given a corrupted word w, an index k ∈ [L] and a target bit j, the decoder returns the j’th
message bit of the k’th codeword that is close to w. As expected, there are some subtleties in
the definition. The main issue is guaranteeing that for a fixed k, all answers for inputs (k, j)

correspond to the same codeword. More formally, a local list-decoding algorithm generates
L machines {Mk}, such that the machine Mk locally decodes one codeword that is close to
w, and the machines {Mk} together cover all the codewords that are close to w (for a formal
definition, see Section 4.1).

The notion of local list-decoding is central in theoretical computer science. It first implicitly
appeared in the celebrated Goldreich-Levin result [20], that can be interpreted as a local list-
decoding algorithm for the Hadamard code. Later on, many local list-decoding algorithms were
studied, especially for Reed-Muller codes [1, 21, 22, 38], direct product and XOR codes [24,
25, 27] and low-rate random codes [30, 33]. In [6] it was shown how to locally list-decode the
subexponential-length codes of [12] with only a constant number of queries.

Our Result. In this thesis we show a generic, simple transformation that takes a locally
decodable code C that can tolerate a low error-rate, and results in a code C′ that can tolerate a
much higher fraction of errors. The construction also works in the list-decoding regime, i.e.,
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it can transform any LDC C to a code C′ which is locally list-decodable from an error-rate of
1 − γ, for any γ > 0. Furthermore, the list-decoder for the new code outputs only a constant
number of codewords.

The transformation was suggested previously by Trevisan [39], who used it to construct
list-decodable codes. We observe that this transformation, when used with a locally-decodable
code, results in a locally list-decodable code. While the observation is trivial, it appears to have
been unnoticed previously.

The transformation is based on the following idea. An error correcting code with relative
distance α is a function C : Σn → Σn̄ that maps any two different strings, to two strings that
differ in at least an α fraction of the coordinates. The decoding algorithm can therefore map
any string c̃ with more than (1 − α/2)n agreement with a codeword c = C(λ), to the correct
message λ. We can view this as an α/2 to 0 error reduction: given a codeword with some α/2
fraction of errors, one can correctly recover the original message.3.

Similarly, one can define a related notion of codes that only amplify the error-tolerance,
without completely correcting the corrupted word. That is, one can design a code C : Σn →
Σn̄, such that given access to a corrupted word c̃ with γn agreement with some codeword
c = C(λ), one can compute a message λ̃ with some larger β > γ agreement with λ. We call
such a code an approximately locally decodable code. When γ is small, several codewords
can be γ-close to c̃ and one has to resort to list-decoding. In this case, the code is called an
approximately locally list-decodable code. Such codes naturally arise in hardness amplification
(see, e.g., [26]). For a formal definition see Section 4.1.

Now, let us return to the problem of finding a good locally list-decodable code. Our ap-
proach is to compose a locally decodable code (handling the α/2 to 0 error reduction) with
an approximately locally list-decodable code (handling the 1

2 − ε to α/2 error reduction, for
binary codes). Namely, we first encode a message λ with a locally-decodable code C and then
encode the result with an approximately locally list-decodable code to get the code C′. To see
that it works, assume we are given a word with 1

2 + ε agreement with some codeword of C′. We
first apply the approximate local list-decoder and get a list of words, each with 1− α/2 agree-
ment with some codeword of C. We then (uniquely) locally decode each of these corrupted
codewords to get λi, the i’th symbol of the message λ.

In fact, the local list-decoders of Reed-Muller codes [1, 21, 22, 38] and the Hadamard
code [20], also have this two-step structure, combining an error-reduction step (that does not
completely correct the corrupted word) with another unique decoding step. The main difference
is that Reed-Muller and Hadamard codes are locally correctable, i.e., the first error-reduction
step returns a close codeword, instead of close message. Therefore, these two steps can be
done implicitly without the use of any general approximate list-decoding mechanism. In our
case we present a generic transformation that may work with LDCs that are not known to be
locally correctable (e.g., the code of [12]) and we therefore need to compose the code with an
approximately locally list-decodable code.

Composing the locally decodable binary codes of [12, 35] with the binary approximately
locally list-decodable codes of [26] we get:

3For a treatment of the related notion of worst-case to average-case reduction and its relationship to error cor-
recting codes see for example [26].
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Theorem 1.3.1. For every r ≥ 2 there exists a binary code of length

exp(exp(O( r
√

log n(log log n)r−1))),

which is locally list-decodable from an error-rate of 1/2 − α. The list-decoding algorithm
outputs a list of size O( 1

α2 ) and uses at most O( r+log(1/ε)
α3 · 2r) queries.

A locally list-decodable code of similar length was given in [6]. However, the list size in the
list-decoding algorithm of [6] was poly(n), while in Theorem 1.3.1 it is constant. The query
complexity of the list-decoding algorithm of [6] was also worse than that of Theorem 1.3.1.
On the other hand, the result in [6] shows the code of [12] is locally list-decodable, while
Theorem 1.3.1 only shows that some other (related) code is locally list-decodable, and does
not state anything about the original code of [12].

1.4 Collaborators

Chapter 4 is based on paper [7] written in a collaboration with Avi Ben-Aroya and Amnon
Ta-Shma. Paper [6] is not included in the thesis and is also written in a collaboration with Avi
Ben-Aroya and Amnon Ta-Shma. I would also like to thank Danny Gutfreund who participated
and contributed to this work at its early stages.



Chapter 2

Matching Vector Codes

2.1 Definitions and Basic Facts

We will use the following standard mathematical notation:

• [s] = {1, . . . , s};

• Fq = GF (q) is a finite field of q elements;

• F∗ is a multiplicative group of a field;

• Zm = Z/mZ is the set of integers modulo m;

• ∆(~x, ~y) denotes the Hamming distance between vectors ~x, ~y ∈ Fn, i.e., the number of
indices where xi 6= yi.

• êi ∈ Fn is the ith unit vector i.e., êi = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0 . . . , 0).

Definition 2.1.1. A code C : Fn 7→ FN is said to be (q, δ, ε) locally decodable if there exists
a randomized decoding algorithm Dw with an oracle access to the received word w such that
the following holds:

1. For every message ~x = (x1, x2, . . . , xn) ∈ Fn and for every ~w ∈ FN such that
∆(C(~x), ~w) ≤ δN it holds that Pr(Dw(i) = xi) ≥ 1 − ε; i.e., the decoding algo-
rithm is able to recover the relevant symbol even if up to δ fraction of the codeword
symbols are corrupted.

2. The algorithm Dw(i) makes at most q queries to w.

A code C is called linear if C is a linear transformation over F. A locally decodable code
is called nonadaptive if D makes all its queries simultaneously. Our constructions of locally
decodable codes are linear and nonadaptive.

Definition 2.1.2. A code C is said to have a perfectly smooth decoder if DC(~x)(i) = xi for
every ~x, and each query of D(i) is uniformly distributed over [N ].

Fact 2.1.3 (from [40]). Any code with a perfectly smooth decoder which makes q queries is
also (q, δ, qδ) locally decodable.

8
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We want to mention that these codes are interesting when δ < |F|−1
q|F| . Therefore if we want

to handle constant fraction of noise we can use this theorem only when q is constant.

Proof. Note that if the decoding algorithmD queriesw in non-corrupted places thenD outputs
the correct answer. The probability that any specific query will be corrupted is at most δ. By
union bound, the probability that some query will be corrupted is at most qδ. Therefore, the
decoder outputs the correct answer with the probability of at least 1− qδ.

We will also use the following fact:

Fact 2.1.4. For every m co-prime to p there exists a finite field F = GF (pt), where t ≤ m,
and an element γ ∈ F that is a generator of the multiplicative group of size m, i.e., γm = 1

and γi 6= 1 for i = 1, 2, . . . ,m− 1.

Proof. Since m is co-prime to p, we have that p ∈ Z∗m. Therefore, there exists t < m such that
pt ≡ 1 mod m. Let us set F = GF (pt). The size of the multiplicative group F∗ is pt − 1 and

therefore it is divisible by m. Let g be a generator of F∗. Then γ = g
pt−1
m is a generator of the

multiplicative group of size m.

2.2 Locally Decodable Codes

In our construction we follow Yekhanin’s general framework. The construction consists of two
parts: The first part is a construction of matching sets of vectors that correspond to “combina-
torially nice” sets used in [45]. The second part is a construction of an S-decoding polynomial
with a small number of monomials, which correspond to “algebraically nice” sets used in [45].
Let us fix some composite number m for our construction. We will describe a general scheme
for the construction of LDCs followed by a concrete example of a 3-query LDC.

2.2.1 Matching Sets of Vectors

Definition 2.2.1. Let x, y be any two elements in (Zm)h, where x = (x1, x2 . . . , xh), y =

(y1, y2, . . . , yh) with xi, yi ∈ Zm. The bracket product of x, y is: 〈x, y〉 =
∑h

i=1 xiyi.

Definition 2.2.2. For any set S ⊂ Zm\{0} a family of vectors {ui}ni=1 ⊆ (Zm)h is said to be
S-matching if the following conditions hold:

1. 〈ui, ui〉 = 0 for every i ∈ [n].

2. 〈ui, uj〉 ∈ S for every i 6= j.

The goal of this subsection is to construct a large S-matching family over a small domain
(Zm)h. The main advantage of working with composite numbers comes from the following
lemma:

Lemma 2.2.3 (Theorems 1.2 and 1.4 from [23]). Letm = p1p2 · · · pr be a product of r distinct
primes pi. Then there exists c = c(m) > 0, such that for every integer h > 0, there exists an
explicitly constructible set-system H over the universe of h elements (i.e H is a set of subsets
of [h]) and there is a set S ⊂ Zm \ {0} such that:
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1. |H| ≥ exp
(
c (log h)r

(log log h)r−1

)
;

2. Size of every set H in set-systemH is divisible by m i.e., |H| ≡ 0 mod m;

3. Let G,H be any two different sets in set-system H. Then the size of the intersection of
G and H modulo m is restricted to be in S. That is, ∀G,H ∈ H such that G 6= H . It
holds that |G ∩H| ∈ S mod m;

4. S is a set of size 2r − 1;

5. ∀s ∈ S it holds that s (mod pi) is 0 or 1 for all i = 1, 2, . . . , r.

For our construction we will only need the following simple corollary:

Corollary 2.2.4. For every h, r and integer m = p1p2 . . . pr there exists a set S of size 2r − 1

and a family of S-matching vectors {ui}ni=1 ⊆ (Zm)h such that n ≥ exp
(
c (log h)r

(log log h)r−1

)
.

Proof. Let us take set-system H as in Lemma 2.2.3. For each set H ∈ H, we will have one
vector uH ∈ (Zm)h which is the indicator vector ofH . Then it holds that 〈uH , uH〉 = |H| ≡ 0

mod m and 〈uH , uG〉 = |H ∩G| ∈ S mod m.

In Section 2.3 we will develop a simple construction of an S-matching set which is slightly
weaker than the construction of [23].

2.2.2 S-Decoding Polynomials

Let us fix some positive integer number m. For our construction we will need a γ which
generates a multiplicative subgroup of size m and let us take a field F which contains such a
γ. Recall from Fact 2.1.4 that if m is odd then we can take F = GF (2t) for some t. We will
first construct a linear code over the field F. In the next section we will show how to reduce the
alphabet size.
We will need the following definition:

Definition 2.2.5. For S ⊂ Zm\{0}, we call a polynomial P ∈ F[x] an S-decoding polynomial
if the following conditions hold:

• ∀s ∈ S : P (γs) = 0,

• P (γ0) = P (1) = 1.

Claim 2.2.6. For any S such that 0 /∈ S there exists an S-decoding polynomial P with at most
|S|+ 1 monomials.

Proof. Let us take P̃ =
∏
s∈S(x−γs). ThenP (x) = P̃ (x)/P̃ (1) is an S decoding polynomial.

The degree of P is |S|. Thus P has at most |S|+ 1 monomials.
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2.2.3 Matching Vector Codes

Now we are ready to present the construction of our locally decodable codes.
In order to construct our code we will need S-matching vectors {ui}ni=1and ui ∈ (Zm)h and
in order to construct a local decoder we will need an S-decoding polynomial P .

Definition 2.2.7 (Matching Vector Codes). The parameters of the Matching Vector Code C
are:

• S-matching vectors {ui}ni=1, ui ∈ (Zm)h

• γ ∈ F∗ is a generator of a multiplicative group of size m.

A linear code C : Fn 7→ Fmh is defined by:

C(êi)[x] , (γ<ui,x>)x∈(Zm)h ,

where we think of a codeword as a function from (Zm)h to F. By linearity:

C(c1, c2, . . . , cn)[x] ,
n∑
i=1

ciγ
〈ui,x〉.

We will now describe how to retrieve the i’th coordinate of the message.
Since P is an S-decoding polynomial and {ui} are S-matching vectors, 〈uj , ui〉 ∈ S for

i 6= j, and therefore it follows that P (γ<ui,ui>) = 1 and P (γ<uj ,ui>) = 0 for all i, j ∈
[n], i 6= j. Let P (x) = a0 + a1x

b1 + a2x
b2 + · · ·+ aq−1x

bq−1 .
Let us now define the decoding algorithm Dw(i), where w is a received word with up to δ
fraction corrupted coordinates and i is the required coordinate.

Input: Oracle access to the received word w and i index of the symbol to decode.

• Choose v ∈ (Zm)h at random.

• Query w(v), w(v + b1ui), . . . , w(v + bq−1ui).

• Output

ci = γ−<ui,v> (a0w(v) + a1w(v + b1ui) + · · ·+ aq−1w(v + bq−1ui)) . (2.2.1)

Algorithm 1: The Decoding Algorithm

Lemma 2.2.8. The decoding algorithm D is a Perfectly Smooth Decoder.

Proof. The algorithm D chooses v uniformly at random. Each of the queries v, v +

b1ui, . . . , v + bq−1ui is uniformly distributed. Therefore, in order to prove that D is a Per-
fectly Smooth Decoder it is enough to prove that D(C(x))(i) = xi. Note that Dw is a linear
mapping so it is enough to prove that DC(ei)(i) = 1 and DC(ei)(j) = 0 for j 6= i.

DC(ei)(i) = (γ−<ui,v>)(a0γ
<ui,v> + a1γ

<ui,v+b1ui> + · · ·+ aq−1γ
<ui,v+bq−1ui>).
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But 〈ui, v + cui〉 = 〈ui, v〉+ c〈ui, ui〉 = 〈ui, v〉. So we have,

DC(ei)(i) = γ−<ui,v>(a0γ
<ui,v> + a1γ

<ui,v> + · · ·+ aq−1γ
<ui,v>) =

= a0 + a1 + · · ·+ aq−1 = P (1) = 1.

Now let us prove that
∀i 6= j DC(ei)(j) = 0.

We need to show that

a0γ
<ui,v> + a1γ

<ui,v+b1uj> + · · ·+ aq−1γ
<ui,v+bq−1uj> = 0.

Recall that P (γ<ui,uj>) = 0. Therefore,

γ<ui,v>(a0 + a1γ
b1<ui,uj> + · · ·+ aq−1γ

bq−1<ui,uj>) = γ<ui,v>P (γ<ui,uj>) = 0.

The dimension of the code we have constructed is n which is the number of S-matching
vectors. The codeword length is

∣∣(Zm)h
∣∣ = mh and the number of queries is equal to the

number of monomials of P . Therefore, an immediate corollary of Lemma 2.2.8 is:

Theorem 2.2.9. For any S-matching vectors {ui}ni=1 ⊆ (Zm)h and any S-decoding polyno-
mial with q monomials there exists a (q, δ, qδ) locally decodable code C : Fn 7→ Fmh .

An immediate corollary from Corollary 2.2.4 and Claim 2.2.6 is that we can choose n ≥
exp(c (log h)r

(log log h)r−1 ) and an S-decoding polynomial with less than 2r monomials. Thus, we have
the following theorem:

Theorem 2.2.10. For any possitive integer r > 0 and for every n there exists a (q, δ, qδ) locally
decodable code C : Fn 7→ FN with codeword length

N = exp(exp(c(r)( r
√

log n(log log n)r−1))),

where c(r) is a constant that depends only on r and with a number of queries q ≤ 2r.

Proof. Let m = p1 . . . pr be the product of r primes. Fix h =

exp
((
O( r
√

log n(log log n)r−1)
))

. From Corollary 2.2.4 there exists a set S of size

2r − 1 and n = exp(c (log h)r

(log log h)r−1 ) S-matching vectors. Using the construction above we get

a code C with codeword length mh and a message length n. Fix m to be a constant. Then
mh = exp(O(h)). Therefore,

mh = exp(O(h)) = exp
(

exp
(
O
(
r
√

log n(log log n)r−1
)))

.

From Claim 2.2.6 there exists an S-decoding polynomial with q ≤ 2r monomials. Using
this polynomial for our decoding algorithm we get from Lemma 2.2.8 that C has a Perfectly
Smooth Decoder which makes q queries. Thus, from Fact 2.1.3 we have that the code C is a
(q, δ, qδ)-LDC.
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The Claim 2.2.6 gives a trivial polynomial with 2r monomials. This allows us to construct
LDCs with 4 queries by setting r = 2. In order to construct 3 query LDCs we need to find a
polynomial with 3 monomials. Let us give a concrete example of an S-decoding polynomial
with 3 monomials. We found this example by an exhaustive search.

Example 2.2.11. Let m = 511 = 7 · 73 and let S = {1, 365, 147}. By Corollary 2.2.4 there
exists S-matching vectors {ui}ni=1, ui ∈ (Zm)h, where n ≥ exp(c (log h)2

log log h). Set

F = GF (29) = F2[γ]/(γ9 + γ4 + 1).

It can be verified that γ is a generator of F∗ and that the polynomial P (x) := γ423 · x65 +

γ257 · x12 + γ342 is an S decoding polynomial with 3 monomials.

An immediate corollary from this example and Theorem 2.2.10 is 3-query LDC.

Theorem 2.2.12. There exists a (3, δ, 3δ) locally decodable code C : Fn 7→ FN with N =

exp(exp(O(
√

log n log log n))).

We want to mention that in the subsequent work [28] Itoh and Suzuki showed a general
way to improve query complexity in Theorem 2.2.10 using sparse S decoding polynomials.
They showed how to improve query complexity from 2r to 3 · 2r−2 using a single example of
S decoding polynomial with 3 monomials. Later Chee at al in [35] showed how to construct
infinitely many such examples based on a number theoretic conjecture. Together with [28] in
this thesis we improves query complexity to 3dr/2e.

2.3 A Simple Construction of S-Matching Vectors

First for our construction we need to define tensor product.

Definition 2.3.1 (Tensor Product). Let R be a ring and let ~x, ~y ∈ Rn. The tensor product of
~x, ~y denoted by ~x⊗ ~y ∈ Rn2

, is defined by ~x⊗ ~y(i, j) , xi · yj , (where we identify [n2] with
[n]⊗ [n].) In the same way we define the `’th tensor power ~x⊗` ∈ Rn` by

~x⊗`(i1, i2, . . . , i`) ,
∏̀
j=1

xij . (2.3.1)

We will use only the following fact about tensor products:

Fact 2.3.2.
〈u⊗`, v⊗`〉 = 〈u, v〉`

Proof.

〈u⊗`, v⊗`〉 =
∑

1≤i1,i2,...,il≤m

∏̀
j=1

uij
∏̀
j=1

vij

 =

 ∑
1≤i1≤m

ui1vi1

 . . .

 ∑
1≤i`≤m

ui`vi`

 = 〈u, v〉`.

(2.3.2)
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Lemma 2.3.3. Let p1 < p2 < . . . < pr be any r primes and m = p1 · p2 · · · pr. Then for every
t, there exists a set S of size 2r − 1 and a family of S-matching vectors {ui}ni=1, ui ∈ (Zm)h

such that n =
(

t
m−1

)
and h = O(tpr−1).

Proof. Let us first construct a family of vectors {u′i}ni=1, u
′
i ∈ (Zm)t+1 such that:

1. 〈u′i, u′i〉 = 0 for i ∈ [n].

2. 〈u′i, u′j〉 6= 0 for i 6= j.

Identify the subsets of [t] = {1, 2, . . . , t} of size m− 1 with {1, . . . ,
(

t
m−1

)
}. For every subset

A ⊆ [t] of size m− 1, let u′i ∈ Ztm be the indicator vector of the set, i.e., u′i = (a1, a2, . . . , at),
where ai = 1 if i ∈ A and ai = 0 otherwise. In order to simplify the construction let us add an
additional coordinate which is always one i.e., u′i = (a1, a2, . . . , at, 1). Clearly 〈u′i, u′i〉 = 0

since u′i has exactly m ones and 〈u′i, u′j〉 = 1 + |Ai ∩Aj | 6= 0. Since intersection of two
different subsets of size m− 1 is always less than m− 1.

Now we want to change these vectors such that the inner product of two such vectors
will be in some small set S. By the Chinese reminder theorem Zm ≈ Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpr .
Therefore, any number x in Zm we can view as (x mod p1, x mod p2, . . . , x mod pr). The
set S is the set {0, 1}r\(0, 0, . . . , 0) i.e. a ∈ S iff a 6= 0 and for every k = 1, . . . , r holds (a

mod pk) ∈ {0, 1}.
By the Chinese reminder theorem there exist constants c1, c2, . . . , cr ∈ Zm such that:

1. ci ≡ 1 mod pi

2. ci ≡ 0 mod pj for i 6= j

Let us define ui by:

ui = (c1u
′⊗p1−1
i , c2u

′⊗p2−1
i , . . . , cru

′⊗pr−1
r ).

Now we need to prove that 〈ui, ui〉 ≡ 0:

〈ui, ui〉 = 〈(c1u
′⊗p1−1
i , c2u

′⊗p2−1
i , . . . , cru

′⊗pr−1
r ), (c1u

′⊗p1−1
i , c2u

′⊗p2−1
i , . . . , cru

′⊗pr−1
r )〉 =∑r

j=1 c
2
j 〈u
′⊗pj−1
i , u

′⊗pj−1
i 〉 =

∑r
j=1 c

2
j 〈u′i, u′i〉

pj−1,

where the last equation follows from Fact 2.3.2. Since 〈u′i, u′i〉 = 0 it follows that 〈ui, ui〉 = 0.
Now let us prove that 〈ui, uj〉 ∈ S for any i 6= j. In order to prove that 〈ui, uj〉 ∈ S we will
prove that 〈ui, uj〉 mod pk ∈ {0, 1} and 〈ui, uj〉 6= 0. Observe that

ui mod pk ≡ (0, 0, . . . , u
′⊗(pk−1)
i , 0, . . . , 0).

Thus it follows that:

〈ui, uj〉 mod pk ≡ 〈u′⊗pk−1
i , u′⊗pk−1

j 〉 ≡ 〈u′i, u′j〉
pk−1

By Fermat’s Little Theorem xpk−1 ≡ 0 or 1 mod pk for every k. Since 〈u′i, u′j〉 6= 0 mod m

for some k we have 〈u′i, u′j〉 6= 0 mod pk. Therefore 〈ui, uj〉 = 〈u′i, u′j〉
pk−1 6= 0 mod pk.

Therefore 〈ui, uj〉 6= 0 mod m.
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As a corollary we get:

Corollary 2.3.4. For every h, r there exists an integer m = p1p2 . . . pr and a set S ⊂ Zm\{0}
of size 2r − 1 and a family of S-matching vectors {ui}ni=1, ui ∈ (Zm)h such that n ≥
exp(c (log h)r

(log log h)r−1 ).

Note that the only difference between Corollary 2.3.4 and Corollary 2.2.4 is in order of
quantifiers i.e. Corollary 2.2.4 holds for every m while Corollary 2.3.4 holds for some specific
m.

Proof of Corollary 2.3.4. Let us take all primes of the same size (i.e. pi = pj + o(pi)) and t =

m2; then in Lemma 2.3.3 we will get that n ≥
(
m2

m−1

)
≥ mm = O(mpr) and h = O(m2pr).

Thus it follows that:

n ≥ exp(c
(log h)r

(log log h)r−1
).

2.4 Binary Locally Decodable Codes

In this section we will show how to reduce the alphabet size from pt to p. The cost of the
reduction will be factor q (q is the number of queries) in length of the code and factor p

p−1 in
smoothness. It will not depend on t. Thus, by taking p = 2 we will get binary codes.

For our reduction we need the following simple lemma:

Lemma 2.4.1. For every m,h there exists a linear functional L : Fpt 7→ Fp such that

∀i ∈ [n] Pr
v∈(Zm)h

(L(γ<ui,v>) 6= 0) ≥ 1− 1

p
.

Proof. Observe that for random v, 〈ui, v〉 is a random number in Zm, since the GCD of ui’s
coordinates is 1. Thus it is enough to find L such that

Pr
j∈Zm

(L(γj) 6= 0) ≥ 1− 1

p
.

For a constant j and a random L, Pr(L(γj) 6= 0) = 1 − 1
p thus, the expectation of

Prj∈Zm(L(γj) 6= 0) is 1− 1
p i.e.,

EL( Pr
j∈Zm

(L(γj) 6= 0)) = 1− 1

p
.

Therefore, there exists an L such that

Pr
j∈Zm

(L(γj) 6= 0) ≥ 1− 1

p
.

Let us describe the reduction formally: Choose L such that Prj∈Zm(L(γj) 6= 0) ≥ 1− 1
p .

Since m is a constant we can find it by an exhaustive search in constant time.
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1. Given a message (c1, c2, . . . , cn), encode it with the code from the previous section w =

C(c1, c2, . . . , cn).

2. Extend it to

w̃ , w̃0 ◦ w̃1 ◦ · · · ◦ w̃q−1 , a0w ◦ a1w ◦ · · · ◦ aq−1w.

3. Reduce the alphabet by applying L on every symbol of w̃ and return

w0 ◦ w1 ◦ · · · ◦ wq−1 , L(w̃0) ◦ L(w̃1) ◦ · · · ◦ L(w̃q−1).

Let us define the decoding algorithm Dw(i):

Input: Oracle access to the received word w and i index of the symbol to decode.

• Choose v ∈ (Zm)h at random conditioned on L(γ<ui,v>) 6= 0.

• Query w0(v), w1(v + b1ui), . . . , wq−1(v + bq−1ui).

• Output ci = L(γ<ui,v>)−1(w0(v) + w1(v + b1ui) + · · ·+ wq−1(v + bq−1ui)).

Algorithm 2: The Decoding Algorithm

Theorem 2.4.2. The binary code C defined above is (q, δ, p
p−1qδ) locally decodable.

Proof. We will prove it in two steps: First let us prove that if at most δ fraction of the codeword
w = w0 ◦w1 ◦ · · · ◦wq−1 is corrupted then we query a corrupted place with probability at most
p
p−1qδ. Let δi be a fraction of corrupted bits in wi so 1

q

∑
δi = δ. We chose L such that v is

distributed uniformly among p−1
p fraction of all possible values. Therefore, the probability that

query i will be corrupted is at most p
p−1δi. So the probability that one of the queries will be

corrupted is at most
∑ p

p−1δi = p
p−1qδ.

Next let us prove that if we query only non-corrupted places then we will return the correct
answer. As before, by linearity it is enough to prove that DC(ei)(i) = 1 and DC(ej)(i) = 0 for
i 6= j.

DC(ei)(i) = L(γ<ui,v>)−1(L(a0γ
<ui,v>) + L(a1γ

<ui,v+b1ui>) + · · ·+ L(aq−1γ
<ui,v+bq−1ui>))

= L(γ<ui,v>)−1L
(∑q−1

j=0 ajγ
<ui,v+bjui>

)
= L

(∑q−1
j=0 ajγ

<ui,v>
)

= L(γ<ui,v>)−1L(P (1)γ<ui,v>) = L(γ<ui,v>)−1L(γ<ui,v>) = 1.

In the same way we can prove that DC(ej)(i) = 0.

DC(ej)(i) = L(γ<ui,v>)−1(L(a0γ
<uj ,v>) + L(a1γ

<uj ,v+b1ui>) + · · ·+ L(aq−1γ
<uj ,v+bq−1ui>))

= L(γ<ui,v>)−1L
(
γ<uj ,v>

∑q−1
t=0 atγ

bt<uj ,ui>
)

= L(γ<ui,v>)−1L (P (γ<ui,uj>)γ<ui,v>)

= L(γ<ui,v>)−1L(0) = 0.
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2.5 Future Work

In this chapter we give a general construction of LDCs from any S-matching set and any S-
decoding polynomial. Any improvement in size of a set-system with restricted intersections
will immediately yield an improvement in the rate of LDCs. We hope that this thesis will give
motivation for future work on set-systems with restricted intersections.



Chapter 3

Locally Decodable Codes from
Irreducible Representations

3.1 Notation and Preliminaries

3.1.1 Representation Theory

In this section we give basic facts about representation theory. We do not give proofs here and
the interested reader is referred to any standard textbook on the subject such as [36].

3.1.1.1 Group Action

First let us start with the definition of the action of a group on a set.

Definition 3.1.1. We say that a groupG acts on a setX if there exists a mapping T : G×X →
X such that T (g2, T (g1, x)) = T (g2g1, x) and T (1, x) = x.

Usually the action is obvious from the context and then we write g · x instead of T (g, x).
Note that each g ∈ G defines a permutation on the set X .

Definition 3.1.2. We say thatG acts transitively on the setX iff for every x, y ∈ X there exists
g ∈ G such that gx = y. In this case we say that X is an orbit of G.

Let us assume that G acts on the set X . Then using this action we can define a new action
of the group G on ΣX . It is more convenient to view ΣX as the set of functions from X to Σ

rather than a string of symbols, i.e., we view f ∈ ΣX as f : X → Σ.

Definition 3.1.3. Suppose G acts on the set X . Define an action of G on ΣX by (gf)(x) =

f(g−1x). We call such an action a permutation action.

Note that we need to prove that this is indeed an action. That is, we need to check that
(g1 · (g2 · f)) = (g1 · g2) · f . Note also that if we view ΣX as a set of strings, then G acts on it
by permuting coordinates.

Definition 3.1.4. An order of the group G is a minimal number m such that for every g ∈ G it
holds that gm = 1.

18
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Definition 3.1.5. We say that the group H acts on the group N if it acts on it as a set and for
every h ∈ H,n1, n2 ∈ N it holds that

h · (n1n2) = (h · n1)(h · n2) . (3.1.1)

Note that action on the group in particular is an action on the set but the converse is not
true. Any group N has a natural action on itself as a set. Note that this action does not satisfy
Equation 3.1.1. Therefore N acts on itself as a set by not as a group.

Definition 3.1.6 (Semi-Direct Product of Groups). Let N be a group. Let H be a group acting
on the group N . Then the semi-direct product of N by H denoted by N oH is a sub-group of
permutations of N . Generated by the permutations defined by the actions of N on H and the
natural actions of N on itself.

3.1.1.2 Group Representations

Notation 3.1.1. We denote by Mat(V ) the set of all matrices on the vector space V . GL(V )

denotes the group of invertible matrices on the vector space V .

Definition 3.1.7 (Representation of a Group). A representation (ρ, V ) of a group G in a vector
space V is a group homomorphism ρ : G→ GL(V ), that is, for every g1, g2 ∈ G it holds that
ρ(g1) · ρ(g2) = ρ(g1 · g2).

We also can define a representation of group G as an action of G on the vector space as
follows:

Definition 3.1.8. Let V be a vector space over the field F. A representation of a group G in V
is an action of the group G on the set V which satisfies the following conditions:

• For any v1, v2 ∈ V it holds that g · (v1 + v2) = g · v1 + g · v2.

• For any λ ∈ F it holds that g · (λv) = λg · v.

• For any v ∈ V it holds that 1 · v = v.

Definition 3.1.9 (Sub-Representation). Let ρ be a representation of a groupG in a vector space
V . We say that U ⊂ V is a sub-representation of ρ if U is a linear subspace of V and U is
invariant under ρ, namely: for every g ∈ G it holds that ρ(g)U = U .

Definition 3.1.10 (Irreducible-Representation). Let ρ be a representation of a group G in a
vector space V . We say that ρ is an irreducible representation if it does not have any non
trivial sub-representations, else we say that ρ is reducible.

We need the following decomposition theorem:

Theorem 3.1.2 (Complete Reducibility). Let G be a group. Let V be a vector space over an
algebraically closed field F of characteristic co-prime to the size ofG. Let ρ be a representation
of the G in the vector space V . Then V = ⊕Vi where Vi are irreducible sub-representations of
ρ.

The following theorem says that any orbit of an irreducible representation spans the entire
space.
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Lemma 3.1.3. Let (ρ, V ) be an irreducible representation of G. Let v ∈ V be a non-zero
vector. Then the set {ρ(g)v|g ∈ G} spans V , and thus there exist g1, g2, . . . , gk ∈ G such that
{ρ(gi)v}ki=1 is a basis for V .

3.1.1.3 Homomorphisms between Representations

Definition 3.1.11. Let ρ1 be a representation of the group G in a vector space V and ρ2 be a
representation of the group G in a vector space W . We say that a linear mapping T : V →W

is a homomorphism from (ρ1, V ) to (ρ2,W ) iff ∀g ∈ G ρ2(g) ◦ T = T ◦ ρ1(g). Sometimes we
also say that T is a G-homomorphism.

Schematically a linear mapping T is a homomorphism between (ρ1, V ) and (ρ2,W ) if the
following diagram is commutative:

V
T−→ W

ρ1(g) ↓ ↓ ρ2(g)

V
T−→ W

We say that a homomorphism T from (ρ1, V ) to (ρ2,W ) is an embedding/isomorphism if
T is an embedding/isomorphism of the vector spaces V and W . Note also that kernel of
T is a sub-representation. Thus if (ρ1, V ) is irreducible then T is either embedding or zero
homomorphism.

Lemma 3.1.4. Let (ρ, V ) be a representation of G. Let {Vi}ki=1 be irreducible non-isomorphic
sub-representations of V . Then vector spaces {Vi}ki=1 are linearly independent.

3.1.1.4 Permutational Representation, Group Algebra

Assume that a group G acts on a set X . Consider the permutation action of G on FX . It is
easy to see that this action admits the properties of Definition 3.1.8. Thus we can define a rep-
resentation τ of the group G in FX . We call τ the permutational representation. Specifically:

(τ(g) · f)(x) = f(g−1x). (3.1.2)

For any f ∈ FX we define support of f by the number of non-zero entries of f : X → F i.e.,

supp(f) = |{x ∈ X|f(x) 6= 0}| .

For linear subspace U ⊂ FX , we define support as a union of supports of all vectors in U , i.e.,

supp(U) = |∪f∈U{x ∈ X|f(x) 6= 0}| .

Lemma 3.1.5. Let U be a vector subspace of FX of the full support and let |F| ≥ t. Then there
exist a vector u ∈ U such that supp(u) ≥ (1− 1

t )|X|.

Now let us define the group algebra F[G]:
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Definition 3.1.12 (Group Algebra). The group algebra F[G] is the set of all functions from G

to F. Multiplication in this group algebra is given by

(f ∗ h)(x) =
∑

g1·g2=x

f(g1)h(g2) .

We write f ∈ F[G] as a formal sum: f =
∑n

i=1 aigi meaning that f(gi) = ai for
g1, g2, . . . , gn and zero on the rest of G. We say that f ∈ F[G] is a q-sparse element if it
has support of size at most q i.e., it can be written in the form f =

∑q
i=1 aigi.

Definition 3.1.13 (Regular Representation). The regular representation of the group G is the
representation ρ in the group algebra F[G] given by: ρ(g)f = g ∗ f .

Note that an equivalent way to define the regular representation is as a permutational rep-
resentation of FG, where the group G acts on G in a natural way.

The regular representation plays an important role since it contains all irreducible repre-
sentations. It follows from the following basic theorem from representation theory.

Theorem 3.1.6. Let V be a vector space over the field F. Then for every irreducible represen-
tation (ρ, V ) there exists some G-embedding from V to F[G].

Notation 3.1.7. Let ρ : G → GL(V ) be any representation of the group G. Then we can
linearly extend ρ to the group algebra F[G] i.e., ρ : F[G]→ Mat(V ) where ρ(f) is defined as∑

g∈G f(g)ρ(g). Note that now ρ(f) may be any matrix, not necessary invertible.

Note that if (ρ1, V ), (ρ2,W ) are two representations and T : V →W is a homomorphism
between them, then for any f ∈ F[G] it holds that

T ◦ ρ1(f) = ρ2(f) ◦ T. (3.1.3)

3.1.1.5 Dual Space, Dual Representation

Definition 3.1.14. Let V be a linear vector space over field F. Then the dual space of V ,
denoted by V ∗ is the set of all linear functionals from V to F.

We want to mention here that dimV = dimV ∗.

Definition 3.1.15. Let V be a vector space of dimension k. Let u1, u2, . . . , uk be a basis of
V and v1, . . . , vk be a basis of V ∗. We say these bases are dual if vi(uj) = δi,j , where δij is
Kronecker delta i.e., δij = 1 is iff i = j and zero otherwise.

Theorem 3.1.8. For every basis there exists a dual basis.

Now let us define the dual representation:

Definition 3.1.16 (Dual Representation). Let V be a vector space over F. Let (ρ, V ) be a
representation of the group G. Let V ∗ be the set of all linear functionals from V to F. The dual
representation (ρ̄, V ∗) is given by ρ̄(g)(`) = ` ◦ ρ(g−1), i.e., ρ̄(g)(`)(v) = `(ρ(g−1)v).

Note that dimV = dimV ∗. Also it holds that (V ∗)∗ = V . We leave to the reader to check
that this is indeed a representation. In many cases a representation is isomorphic to its dual
representation, but not always. However, a representation is irreducible if and only if its dual
is irreducible.
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Theorem 3.1.9. The representation (ρ, V ) is irreducible if and only if (ρ̄, V ∗) is irreducible.

The dual group for Abelian groups is very similar to dual representation.

Definition 3.1.17. Let A be an Abelian group. Let m be an order of A. A dual group A∗ is a
set of group homomorphisms θ : A→ Zm.

Note that if θ1, θ2 are group homomorphisms then θ1 + θ2 is also group homomorphism.
Therefore, A∗ is an Abelian group. Moreover A∗ isomorphic to A. For example if A = Zhm
then isomorphism is given by a 7→ 〈−, a〉. If some group H acts on an Abelian group A
then it also acts on its dual A∗. For h ∈ H and θ ∈ A∗ the action of is given by the rule
h · θ(x) = θ(h−1 · x).

3.1.2 Locally Decodable Codes

Definition 3.1.18. A code C : Fk → Fn is said to be (q, δ, ε) locally decodable if there exists
a randomized decoding algorithm Dw with an oracle access to the received word w such that
the following holds:

1. For every message m = (m1,m2, . . . ,mk) ∈ Fk and for every w ∈ Fn such that
∆(C(m), w) ≤ δn for every i, it holds that Pr(Dw(i) = mi) ≥ 1 − ε, where proba-
bility is taken over internal randomness of D. This means that the decoding algorithm
can recover the relevant symbol even if up to δ fraction of the codeword symbols are
corrupted.

2. The algorithm Dw(i) makes at most q queries to w.

A code C is called linear if C is a linear transformation over F. A locally decodable code
is called non-adaptive if D makes all its queries simultaneously. Our constructions of locally
decodable codes are linear and non-adaptive.

Definition 3.1.19. A code C : Fk → Fn is said to have a c-smooth decoder if DC(m)(i) = mi

for every m ∈ Fk and for every i. Each query of D(i) is uniformly distributed over a domain
of size cn.

3.2 Locally Decodable Codes from Irreducible Representations

Let us start from the main theorem of this chapter.

Theorem 3.2.1. Let G be a group acting on a set X . Let (τ,FX) be the permutational rep-
resentation defined by this action. Let (ρ, V ) be a representation of G. Let C : V → FX be
a G-homomorphism between representations (ρ, V ) and (τ,FX). Assume that the following
conditions hold:

1. (a) There exists a q-sparse element D ∈ F[G], D =
∑q

i=1 cigi such that
Rank(ρ(D)) = 1.

(b) (ρ, V ) is an irreducible representation.

2. Let v ∈ Im(ρ(D)) be a non-zero vector.1 Then supp(C(v)) ≥ c|X|.
1Note that since Rank(ρ(D)) = 1, the vector v is unique up to scalar multiplication.
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Let k = dimV . Then there exists a basis b1, . . . , bk for V such that

(m1,m2, . . . ,mk) 7→ C(
k∑
i=1

(mibi))

is a (q, δ, qδc )-Locally Decodable Code.

We want to mention that this theorem is non-trivial for δ < c
q thus if we want to con-

struct codes which can handle constant fraction of noise we need that c in the theorem will be
constant.

In Subsection 3.2.2 we show that if one constructs a representation ρ that satisfies Condi-
tion 1 of Theorem 3.2.1, then we can always embed it into the regular representation in a way
that satisfies Condition 2 of the theorem. In Subsection 3.2.3 we show that if F is an algebraic
extension of Fp, we can reduce the alphabet to Fp almost at no cost. In Section 3.4 we show
that when |F| and |G| are co-prime then the irreducibility of (ρ, V ) is essential for having a
rank one element. Moreover, we show that (ρ, V ) should be irreducible not only over F but
also over the algebraic closure of F.

Proof. The proof is divided into two parts. The first part is Lemma 3.2.2 which constructs
a basis for V . This basis defines the encoding algorithm. In the second part we construct a
decoding algorithm with q queries and show that it is a c-smooth decoder.

Lemma 3.2.2. There exists a basis {b1, b2, . . . , bk} for V and h1, . . . , hk ∈ G such that bi ∈
Ker(ρ(D ∗ hj)) if and only if i 6= j.

Proof. Set L = Ker ρ(D). L is a linear subspace of V of dimension k − 1. Therefore,
there exists unique (up to scalar multiplication) non-zero linear functional u ∈ V ∗ such that
u(L) = 0. Since (ρ, V ) is an irreducible representation, it follows by Theorem 3.1.9 that
its dual (ρ̄, V ∗) is also irreducible. Therefore, from Lemma 3.1.32 it follows that there exist
h−1

1 , h−1
2 , . . . , h−1

k ∈ G such that {ρ̄(h−1
i )u}ki=1 is a basis for V ∗. By Theorem 3.1.8 it follows

that for this basis there exists a dual basis {b1, b2, . . . , bk} for V . From the definition of the dual
basis it holds that (ρ̄(h−1

i )u)(bj) = δij . Thus bi ∈ Ker ρ̄(h−1
i )u if and only if i 6= j. In order

to complete the proof of the lemma we need to show that Ker(ρ̄(h−1
i )u) = Ker ρ(D ∗ hi). Let

v ∈ Ker ρ(D∗hi) then 0 = ρ(D∗hi)v = ρ(D)ρ(hi)v. Thus ρ(hi)v ∈ Ker ρ(D) by definition
of u it also holds that u(ρ(hi)v) = 0. Therefore ρ̄(h−1

i )u(v) = 0.

Let b1, . . . , bk and h1, . . . , hk be given by Lemma 3.2.2. The encoding C of our Locally
Decodable Code encodes a message m = (m1, . . . ,mk) by

m 7→ C(
k∑
i=1

mibi) .

In order to prove Theorem 3.2.1 we show that the following algorithm is a c-smooth decoder
(see Definition 3.1.19).

Input: An oracle access to w ∈ FX and an index i ∈ {1, . . . , k}. Let Di = D ∗ hi =∑q
j=1 cj · gjhi.

2Note that this is the only place where we use the irreducibility of (ρ, V ). We discuss it later in Section 3.4.
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1. Set y = C(ρ(Di)bi) ∈ FX . Pick r ∈ X at random from the support of y.

2. For j = 1, . . . , q query w at location: (gjhi)
−1 · r ∈ X .

3. Calculate ni =
∑q

j=1 cjw[(gjhi)
−1 · r].

4. Return mi = y[r]−1ni.

In order to show that this algorithm is a c-smooth decoder we need to show that:

• Completeness, i.e., if w = C(
∑
mibi) then the algorithm returns mi on input i.

• Smoothness, i.e., each query is uniformly distributed over a domain of size c|X|.

Completeness: Recall that by definition of the permutational representation it holds that
τ(g)w[r] = w[g−1r]. Thus ni (line 3 of the decoding algorithm) is equal to

ni =

q∑
j=1

cjw[(gjhi)
−1 · r] = (τ(Di)w)[r] .

Let us substitute w = C(
∑

jmjbj) in this equation.

ni = (τ(Di)w)[r] = (τ(Di)C(
k∑
j=1

mjbj))[r]
1
= C

ρ(Di)

k∑
j=1

mjbj

 [r] (3.2.1)

=
k∑
j=1

mjC(ρ(Di)bj)[r]
2
= miC(ρ(Di)bi)[r] .

Here Equality 1 holds since C is a homomorphism of the representations ρ and τ and Equality 2

follows from Lemma 3.2.2.
Thus from the definition of y it follows that ni = miy[r]. Therefore, the algorithm returns

a correct answer at line 4.

Smoothness: Note that if r is uniformly distributed over a domain of size c|X|, then so is
gjhi · r. Thus we need to prove that r is uniformly distributed over a domain of size c|X|, This
is equivalent to say that the support of y is of size c|X|.

Since ρ(D) is of rank one it holds that Im C · ρ(D) is one dimensional. Therefore, from
Condition 2 if follows that for every non-zero vector in Im C · ρ(D) has support of size at least
c|X|. Note that y = C(ρ(D ∗ hi)bi) = C · ρ(D)(ρ(hi)bi). Thus y ∈ Im C · ρ(D) and from
Lemma 3.2.2 it follows that y 6= 0.

3.2.1 Example: Two Query LDC from Representations of Sn

The goal of this subsection is to give a concrete example of irreducible representation which
allows to construct two query LDC from Theorem 3.2.1. We want to mention that Hadamard
Code can be captured by generalization of Theorem 3.2.1 see Section 3.4.2 for more details.
The example given in this section has slightly worse parameters, but it is much simpler.
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Let F be any algebraically closed field. The group Sn has a natural action on [n]. This
action defines representation ρ on Fn. This representation decomposes into a trivial repre-
sentation which is spanned by vector of all ones and its complement which is the set of all
vectors with sum zero. Let V be this representation, i.e., V = {v ∈ Fn|

∑n
i=1 v[i] = 0}.

One can show that this is indeed an irreducible representation. We denote it by ρ1. Con-
sider f = id − (1, 2) ∈ F[Sn] then we claim that rank of ρ1(f) is one. Indeed let ~x =

(x1, x2, . . . , xn) ∈ V then ρ1(f)(x1, x2, . . . , xn) = (x1, x2, . . . , xn)− (x2, x1, x3, . . . , xn) =

(x1 − x2, x2 − x1, 0, . . . , 0) ∈ V . Thus Im ρ1(f) is λ(1,−1, 0, 0, . . . , 0). Therefore
Rank(ρ1(f)) = 1. Theorem 1.2.1 gives us immediately a 2 query [n− 1, n!] LDC.

Now let us show that using different setsX on which group Sn acts we can achieve tradeoff
rate/soundness. Now let X be the set of all subsets of [n] of size k. Then there exist a natural
action of Sn on X which gives us permutational representation FX (we think of FX as all
functions from subsets of size k to F). Let us define C(x1, x2, . . . , xn) = g where g is a
function which takes subset of size k as input and outputs the sum of this subset, i.e., g defined
by

g(S) =
k∑
j∈S

xj .

We can see that the support of C(ρ1(f)) = C(1,−1, 0, . . . , 0) is all subsets which contains
exactly one of the elements: 1 or 2. The length of the code is

(
n
k

)
. The number of k-subsets

that contain exactly one of the elements 1 or 2 is 2
(
n−2
k−1

)
. Therefore, the relative support is

2
(
n−2
k−1

)
/
(
n
k

)
= 2k(n−k)

n(n−1) .

Using Theorem 3.2.1 we get two-query locally decodable codes [n − 1,
(
n
k

)
] with sound-

ness 2 kn
n−k
n−1 . This example shows that the parameters of the LDC depends not only on the

representation it defines but also on the space in which we embed it into.

3.2.2 Embedding to the Regular Representation

Theorem 3.2.1 shows that in order to construct an LDC it is sufficient to do two things: First,
construct an irreducible representation with a sparse rank one element. Second, embed it into a
permutational representation such that the second condition of the theorem is satisfied. In this
subsection we show that we can always embed any representation into the regular representa-
tion in a way that satisfies the second condition of the theorem.

Lemma 3.2.3. Let V be a vector space over a field F. Then for every irreducible representation
(ρ, V ) and for every v ∈ V, v 6= 0 there exist a homomorphism C : V → F[G] of representa-
tions (ρ, V ) and the regular representation in F[G] such that supp(C(v)) ≥ |G|(1− 1

|F|).

Proof. We view F[G] as a left representation of G. That is, τ(g)(f) = g ∗ f . For any u ∈ V ∗

let us define a mapping Tu : V → F[G] by:

Tu(x) =
∑
g∈G

(ρ̄(g)u(x))g. (3.2.2)

We claim that Tu is an homomorphism from the representation (ρ, V ) to regular representation
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F[G]. Indeed:

Tu(ρ(h)x) =
∑
g∈G

ρ̄(g)u(ρ(h)x)g = h ∗
∑
g∈G

u(ρ(g−1h)x)h−1g.

Substituting g = h−1g we get

Tu(ρ(h)x) = h ∗
∑
g∈G

u(ρ(g−1)x)g = τ(h)Tu(x).

Now we want to show that for some u ∈ V ∗ vector Tu(v) has large support. Consider the
set U = {Tu(v) : u ∈ V ∗}. It is easy to see that it is a linear subspace of F[G] and that it
have full support. From Lemma 3.1.5 it follows that there exists a vector with support at least
|G|(1 − 1

|F|). Therefore, exist an u such that Tu is a G-homomorphism such that Tu(v) has
desired support.

Note that when F is infinite field then we can get full support and all algebraically closed
fields are infinite. As a corollary the last lemma we get Theorem 1.2.1.

Corollary 3.2.4 (Theorem 1.2.1). Let V be a vector space over an algebraically closed field F.
Let G be a finite group and let (ρ, V ) be an irreducible representation of G. Let D ∈ F[G] be
an element of group algebra of sparsity q such that Rank(ρ(D)) = 1. Then there exist locally
(q, δ, qδ) decodable code C : V → FG.

Assume that we have (ρ, V ), D ∈ F[G] which satisfies the first condition of Theorem 3.2.1.
Then from the corollary above it follows that we can embed (ρ, V ) to the regular representation
in a way that satisfies the second condition. A natural question to ask is can we embed it to
a smaller permutational representation. The next lemma gives characterization of all such
permutational representations.

Lemma 3.2.5. Let (ρ, V ), D ∈ F[G] which satisfies the first condition of Theorem 3.2.1. Let
v ∈ Im ρ(D) a non-zero vector and H < G is any subgroup of G. Assume that exist u ∈ V ∗

such that ρ(h)u = u for every h ∈ H and |{g ∈ G/H : u(ρ(g)v) 6= 0}| ≥ c|G/H| then there
exist G-homomorphism C : V → FX , where X = G/H , such that supp(C(v)) ≥ c|X|, i.e.,
it satisfies the second condition of Theorem 3.2.1.

Proof. Consider a subspaceLH of the regular representation FG of functions constant on cosets
of H , i.e., LH = {f ∈ FG : ∀g ∈ G, ∀h ∈ H, f(gh) = f(g)}. It is easy to see that LH is a
sub-representation of the regular representation isomorphic to the permutational representation
FX , where X = G/H . Let Tu be an embedding as in proof of Lemma 3.2.3 defined by
Equation 3.2.2. Note that since Hu = u for every x ∈ V, h ∈ Hu it holds that Tu(x)[g] =

Tu(x)[gh], i.e., Tu(x) ∈ LH . Therefore Tu is an embedding to the permutational representation
FX , whereX = G/Hu. From the definition of Tu it follows that the support of Tu(v) is exactly
|{g ∈ G/Hu : u(ρ(g)v) 6= 0}|.

Remark 3.2.1. It could be shown that any embedding satisfying second condition of Theo-
rem 3.2.1 could be decribed by Lemma 3.2.5.
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3.2.3 Alphabet Reduction

In this section we show that we can transform codes over any algebraic extension of Fp to codes
over Fp. The reduction which we give here adapts the reduction from [12] to our settings.

Theorem 3.2.6. Let F be a field of characteristic p and let C : Fk → FX be a (q, δ, qδc )-LDC

as in Theorem 3.2.1. Then there exist a code C̃ : Fp → FX×[q]
p which is (q, δ, p

p−1
qδ
c )-LDC.

Proof. First let us rescale the basis so that we will have the same decoding vector for every
message symbol. Let v be any vector in Im(ρ(D)). Set y = C(v). Recall that in the proof
of Theorem 3.2.1 we have showed that C(ρ(Di)bi) = λiy. We can replace bi with λ−1

i bi so
that C(ρ(Di)bi) = y. It follows from the assumption that y has support c|X|. For a linear
functional ` : F→ Fp, we denote by `(y) vector achieved by applying ` on each coordinate of
y. From standard random argument there exists a linear functional ` such that support of `(y)

is at least p−1
p c|X|. Let us fix such an `. Let D =

∑q
i=1 cigi ∈ F[G] be a rank one element.

Let us define C̃ by C̃(m)[x, i] = `(ciC(m)[x]). We need to show that this is an LDC. Let us
describe the decoding algorithm:

Input: An oracle access to w ∈ FX and bit index i.
LetDi = D∗hi =

∑q
j=1 cj ·gjhi be where hi ∈ G is a group element as in Lemma 3.2.2.

1. Set y = C(ρ(Di)bi) ∈ FX . Pick r at random from the support of `(y).

2. For j = 1, . . . , q query w at location: ((gjhi)
−1 · r, j).

3. Calculate ñi =
∑q

j=1w[(gjhi)
−1 · r, j].

4. Return mi = `(y[r])−1ñi.

Now let us show that this decoding algorithm returns the correct answer when it receives
an uncorrupted codeword. If w = C̃(m), then

ñi = `(

q∑
j=1

cjC((gjhi)−1r)) = `(τ(Di)C(m)[r]).

Recall that from Equation 3.2.1 it follows that τ(Di)C(m)[r] = miy[r]. Thus we get that
ñi = mi`(y[r]). Thus, the decoding algorithm returns the correct answer on line 4 on an
uncorrupted codeword.

Now let us prove that if C̃(m) is corrupted in at most δ coordinates, then the decoder reads
a corrupted place with probability at most p

p−1
qδ
c . Let us call the coordinates of type (x, i)

the ith block. Let δi proportion of coordinates ith block which are corrupted, and notice that∑
δi = qδ. Note that ith query is distributed uniformly over p−1

p c fraction of coordinates of

the ith block. Therefore, the probability that ith coordinate is corrupted is p
p−1

δi
c . Thus by

union bound we get that at least one of the coordinates is corrupted with probability at most∑ p
p−1

δi
c = p

p−1
qδ
c .

We have the following corollary from this theorem and Theorem 1.2.1.

Corollary 3.2.7. Let F be a field of characteristic p. Let G be a finite group and let (ρ, V )

be an irreducible representation of G and let k = dimV . Let D ∈ F[G] be an element of
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group algebra of sparsity q such that Rank(ρ(D)) = 1. Then there exist (q, δ, p
p−1qδ)-LDC

C : Fkp → FG×[q]
p .

3.3 Matching Vector Codes and Abelian Invariant Codes

In the next two sections we show that there exists irreducible representations such that Theo-
rem 3.2.1 gives codes matching the parameters of [12]. We show that the codes constructed
in [12] could be interpreted as a construction of an irreducible representation.

In this section we show that if MV is an orbit of a group H then one can construct from
such MV an irreducible representation with a sparse element in the group algebra of rank one.
In the next section, we show that the variant of the Grolmusz’s [23] construction described
in [12],3 is MV that is an orbit of the symmetric group.

Let A be an Abelian group. Recall that the dual group A∗ is the set of all group homo-
morphisms v : A → Zm, where m is the order of the group. In this section it will be more
convenient for us to work with the following generalization of MV to any Abelian group:

Definition 3.3.1. Let A be an Abelian group. Let m be the order of A. For any set S ⊂
Zm − {0} the families U = {ui}ki=1 ⊂ A,V = {vi}ki=1 ⊂ A∗ are S-Matching Vectors (MV)
if the following conditions hold:

1. vj(ui) ∈ S for every i 6= j.

2. vi(ui) = 0 for every i ∈ [k].

Note that if A = Zhm using the isomorphism ψ : A → A∗ given by ψ(v)(x) = 〈v, x〉 we
get the standard definition of MV.

In this section we assume that the characteristics of F is co-prime to m and that there exists
γ ∈ F∗ an element of order m, i.e., γm = 1 and γi 6= 1 for 0 < i < m. Then for any v ∈ A∗

we denote by γv the function from A to F defined by γv(a) = γv(a). Let H be any group
that acts on the group A. (Recall Definition 3.1.5 of an action of a group on a group.) In this
case H also acts on A∗, where an action is given by the rule: (h · v)(x) = v(h−1 · x). The
group G = A o H by Definition 3.1.6 acts on the set A. Let (τ,FA) be the corresponding
permutational representation of G.

Definition 3.3.2. A polynomial p(x) ∈ F[x] is S-decoding if p(γs) = 0 for all s ∈ S and
p(1) = 1.

The goal of this section is to prove the following theorem:

Theorem 3.3.1. Let U ,V be S-Matching Vectors such that V is an orbit of H . Let p(x) be an
S-decoding polynomial of sparsity q. Then there exists an irreducible representation (ρ, L),
a permutational representation (τ,FA) of G = A oH and D =

∑q
i=1 cigi which satisfy the

conditions of Theorem 3.2.1 with c = 1, dimL = |V|.

Proof. First we need to construct a representations (L, ρ). We do it in next two lemmas.

3 Using the same ideas it is also possible to prove the statement for Grolmusz’s construction.
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Lemma 3.3.2. For any V ⊂ A∗, the vector space L ⊂ FA defined by

L = Span{γv : v ∈ V} ⊂ FA (3.3.1)

is a sub-representation of the regular representation of group A of dimension |V|.

Proof. First let us show that L is closed under action of A. For any v ∈ A∗ it holds that:

γv(a+ b) = γv(a+b) = γv(a)+v(b) = γv(a)γv(b) = γv(a)γv(b).

Thus γv is a one-dimensional sub-representation of the regular representation of the group A.
Therefore, L is a sub-representation. Note that for v1 6= v2, the representations γv1 , γv2 are
non isomorphic one-dimensional sub-representations. Therefore, from Lemma 3.1.4 it follows
that {γv}v∈V are linearly independent vectors. Thus the dimension of L is |V|.

Lemma 3.3.3. For any V ⊂ A∗ closed under action of H it holds that the vector space L
defined by Equation 3.3.1 is a sub-representation of the permutational representation (τ,FA)

of the group G = AoH .

Proof. Let v ∈ A∗ and consider the vector γv ∈ FA. Then for h ∈ H it holds that

(τ(h)γv)(x) = γv(h−1x) = γh·v(x) .

Thus if V is closed under the action of H then the vector space L is closed under the action of
τ(h) for h ∈ H . Since L is a representation of A, it is also closed under the action of τ(a) for
a ∈ A. Since H and A generate G, the space L is a sub-representation of (τ,FA).

Let us denote this sub-representation by (ρ, L) and by C : L→ FA its embedding into FA.
Note that dimL = |V|.

Lemma 3.3.4. If H acts transitively on V then the representation (ρ, L) of G is irreducible.

Proof. Assume that L̃ ⊂ L is a non-zero sub-representation of L. In order to prove that (ρ, L)

is an irreducible representation we need to prove that L̃ = L. Now let us look on L and L̃
as a representations of the group A. Then L = ⊕v∈Vγv is a direct sum of non-isomorphic
irreducible representations. Therefore there exists some subset Ṽ ⊂ V such that L̃ = ⊕v∈Ṽγ

v.
In particular for some v ∈ V it holds that γv ∈ L̃. Since H acts transitively on V for every
v′ ∈ V there exists h ∈ H such that h · v = v′. Thus it holds that

τ(h)γv = γh·v = γv
′
.

Therefore, we proved that:

L = Span{γv : v ∈ V} ⊂ L̃ ⊂ L.

Thus L̃ = L.

Let p(x) =
∑q

i=1 cix
ti be the given S-decoding polynomial. We define D as D =∑q

i=1 ci(−tiu1), where we think of −tiu1 as an element of G. We claim that Rank ρ(D) = 1.
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Note that the set {γvi}ki=1 forms a basis of L. Let us show that ρ(D)γvi = 0 for i 6= 1 and
ρ(D)γv1 = γv1 . Indeed:

ρ(D)γvi =
∑

ciρ(−tiu1)γvi = γvi
∑

ciγ
vi(tiu1) = γvi

∑
ci(γ

vi(u1))ti = γvip(γvi(u1)).

Since vi(u1) ∈ S for all i 6= 1 it follows that p(γvi(u1)) = p(γs) for some s ∈ S and since p is
an S-decoding polynomial it is equal to 0. Thus ρ(D)γvi = 0 for i 6= 1 and for i = 1

Note that for natural embedding of C : L → FA it holds that Im C(ρ(D)) = Span{γv1}
has full support. Therefore, smoothness constant c in Theorem 3.2.1 is 1.

Remark 3.3.1. The representation of (ρ, L) defined in the proof is: IndGAoFγ
v, where v is any

element in V and F = {h ∈ H : h · v = v} be a subgroup of H .

Note that in the proof of the above theorem we used only one element u1 of U . The
following lemma shows that if V is an orbit of some group and “matching” one element then
we can construct U to be orbit of the same group such that U ,V are Matching Vectors.

Lemma 3.3.5. Let V = {hi · v}ki=1 ⊂ A∗ be an orbit of H such that for some u ∈ A it holds
that h1v(u) = 0 and hiv(u) ∈ S for i 6= 1. Then the family U = {hiu}ki=1,V = {hi · v}ki=1 is
a family of S-Matching Vectors.

Proof. First note that hiv(hiu) = h−1
i hiv(u) = v(u) = 0. Next for i 6= j it holds that

hiv(hju) = h−1
j hiv(u). Since V is an orbit there exist k such that h−1

j hiv = hkv, k 6= 1 since
i 6= j. Therefore hiv(hju) = hk(u) ∈ S.

3.4 Is Irreducibility Essential?

Representation theory when characteristic of the field divides the size of the group called mod-
ular representation theory. Modular representation theory is very different from non-modular
case. In this section we ask the question does irreducibility in Theorem 3.2.1 essential. We
show that in non-modular case the answer is Yes4. We show that in modular case we can con-
struct reducible representation which will lead to LDC. Thus we can see Theorem 3.4.1 as a
generalization of the Theorem 3.2.1 to modular representation theory.

It may happen that some representation is irreducible over field F, but reducible over al-
gebraic closure of F. Representations which are irreducible over algebraic closure of F called
completely irreducible. Although for the proof of the Theorem 3.2.1 we do not need complete
irreducibility we show that in order to have rank one element complete irreducibility is essential
for non-modular representations.

In the proof of Theorem 3.2.1, the only reason why we need the fact that (ρ, V ) is irre-
ducible is to show that the orbit of u spans all the dual space. Therefore, we can make the
following generalization of Theorem 3.2.1:

Theorem 3.4.1. Let G be a finite group. Let (ρ, V ) be any representation of G, (τ,FX) be
a permutational representation of G. Let C : V → FX be a G-embedding. Assume that the
following conditions hold:

4In fact we show that the representation should be indecomposable. In non-modular case all indecomposable
representations are irreducible.
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1. (a) There exists a q-sparse element D ∈ F[G], D =
∑q

i=1 cigi such that
Rank(ρ(D)) = 1.

(b) Let u ∈ V ∗ be a non-zero linear functional such that Keru = Ker ρ(D). Then the
set {ρ̄(g)u|g ∈ G} spans V ∗.

2. Im(C ◦ ρ(D)) has a support c|X|.

Then there exists a basis b1, . . . , bk for V such that C(
∑

(mibi)) is(q, δ, qδc )-LDC.

From Lemma 3.1.3 it follows that irreducibility of the representation (ρ, V ) implies Con-
dition 1b of this theorem. Here we show that if characteristics of the field F is does not divides
|G| then the converse is also true, i.e., if u spans dual space V ∗ then (ρ, V ) is irreducible.

3.4.1 Yes!

Theorem 3.4.2. Let V be a vector space over an algebraically closed field F of characteristic
which does not divides |G|. Let ρ be a representation of group G in the vector space V .
Let f ∈ F[G] such that Rank ρ(f) = 1. Let u ∈ V ∗ such that Keru = Ker ρ(f). If
V ∗ = Span{ρ̄(g)u|g ∈ G}, then V is an irreducible representation.

Proof. Let us assume by contradiction that V is reducible. Then from Theorem 3.1.2 it follows
that V = V1 ⊕ V2. This mean that in basis of V1 and V2 for every g ∈ G the matrix ρ(g) is of
form

ρ(g) =

(
ρ1(g) 0

0 ρ2(g)

)
,

where ρ1, ρ2 restrictions of ρ to V1, V2. Therefore ρ(f) =
∑
aiρ(gi) is of form

ρ(f) =

(
A 0

0 B

)
.

But this matrix may be of rank one only if A or B is zero. Let us assume w.l.g. that B is zero.
But then V2 ⊂ Ker ρ(f). Therefore it holds that u(V2) = 0. Since V2 is invariant space, it also
holds that ρ̄(g)u(V2) = 0. Since ρ̄(g)u span V ∗, it must be that V2 = 0.

If V is a vector space over some field F, then Rank ρ(f) = 1 also over algebraic closure
of F and thus (ρ, V ) should be irreducible not just over F, but also over the algebraic closure
of F.

3.4.2 No!

Let us now give an example of reducible representations (ρ, V ) when vector u spans all the dual
space. Of course in this example characteristics of F divides |G|. This example is a well known
Reed-Muller Code. Let F be a field of characteristic p ≥ d. Let us consider the group G of
affine transformations over Fkp , i.e., G = {A~x+ b : A ∈ GL(p, k), b ∈ Fkp}. Let us setX = Fkp
and (τ,FX) be corresponding permutational representation of G. Let RM(d, k) ⊂ FX be a
vector space of polynomials of total degree at most d with coefficients in F. It is easy to verify
that RM(d, k) is invariant under permutations of G. Thus RM(d, k) is a sub-representation
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of FX . Let us denote it by (ρ,RM(d, k)). Let const ⊂ RM(d, k) be a subspace of constant
functions. Note that const is a sub-representation of V . Thus RM(d, k) is reducible. Let us
pick λ 6= 1 ∈ Fp be a generator of the F∗p. Let mλ ∈ G be a permutation ~x 7→ λ~x.

Lemma 3.4.3. There exists c0, c2, . . . , cd such that the following holds: Let D =
∑
cim

i
λ ∈

F[G] then the mapping ρ(D) is of rank one and given a polynomial p ∈ FX the mapping ρ(D)

returns a constant function p(~0).

Proof. Let us consider how ρ(mλ) acts on p. Let p =
∑d

j=0 pj , where pj is a homogeneous
part of p of degree j. Then it holds that

ρ(mλ)p(x) = p(λ−1x) =
d∑
j=0

λ−jpj(x) .

In the same way it for every i it also holds that

ρ(mi
λ)p(x) = p(λ−ix) =

d∑
j=0

λ−ijpj(x) . (3.4.1)

Let V [i, j] = λ−ij be a Vandermonde matrix. For vector ~c = (c0, c2, . . . , cd) let a =

(a0, . . . , ad) = V · ~c. Then from Equation 3.4.1 it follows that:

ρ(
d∑
i=0

cim
i
λ)p =

d∑
i=0

aipi . (3.4.2)

Note that V is invertible matrix. Thus we can choose ~c such that V · ~c = (1, 0, . . . , 0). Substi-
tuting this ~c in Equation 3.4.2 we get:

ρ(

d∑
i=0

cim
i
λ) = p0 .

But p0 is a constant term of p which exactly equal to p(~0).

Now consider a linear functional u : RM(d, k)→ F given by u(p) = p(~0). Then definitely
it holds that Keru = Ker ρ(D).

Lemma 3.4.4. Then the set {ρ̄(g)u|g ∈ G} spans the dual space of RM(d, k).

Proof. Note that linear functionals u1, u2, . . . , uk span the dual space iff ∩ki=1 Kerui = 0. For
b ∈ Fkp let gb ∈ G be a permutation x 7→ x+ b. Let us show that:

∩b∈Fkp Ker gbu = 0 .

Indeed gbu(p) = p(b). Thus if p ∈ ∩b∈Fkp Ker gbu then p(b) = 0 for every b ∈ Fkp . Thus it
must be that p = 0.
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3.5 G-Invariant Codes and Representations of G

In this section we show tight connections between linear G-invariant codes and the represen-
tations of the group G. We show that there exists a one-to-one correspondence between sub-
representations of the permutational representations and G-invariant codes. Furthermore we
can define a representation in the message space so that the code becomes aG-homomorphism.

Let us first define G-invariant codes:

Definition 3.5.1. Let G be a group acting on a set X = {xi}ni=1. Let C : Fk → FX be a code.
We say C is G-invariant iff for every c = (cx1 , cx2 , . . . , cxn) ∈ Im(C), and for every g ∈ G it
holds that

g · c = (cg−1·x1 , cg−1·x2 , . . . , cg−1·xn) ∈ Im(C) .

The action of G on X defines a permutational representation (τ,FX) of G (see Equa-
tion 3.1.2). We claim that there is a one to one correspondence between linear G-invariant
codes and sub-representations of (τ,FX).

Lemma 3.5.1. Let G be a group that acts on the set X . Let (τ,FX) be the permutational
representation defined by this action. Let C : Fk → FX be a linear code. Then C is G-invariant
if and only if Im C is a sub-representation of (τ,FX).

Proof. The proof almost follows from the definition. Let c ∈ Im C, where c =

(cx1 , cx2 , . . . , cxn) and consider c as a function from X to F. Then (g · c)(x) = c(g−1x)

and by the definition of τ we have that (τ(g)c)(x) = c(g−1x). Thus the code C is G-invariant
if and only if for every c ∈ Im(C) and for every g ∈ G it holds that τ(g)c ∈ C i.e., if and only
if Im C is a sub-representation of (τ,FX).

As a corollary we get that G-homomorphisms into permutational representations are G-
invariant codes.

Corollary 3.5.2. Let G be a group acting on X . Let (τ,FX) be the permutational represen-
tation defined by this action. Let (ρ,Fk) be any representation of G. Let C : Fk → FX be a
homomorphism of the representations (ρ,Fk) and (τ,FX) then C is a G-invariant code.

Proof. This follows from Lemma 3.5.1 and the fact that image of a G-homomorphism is a
sub-representation.

Let C : Fk → FX be a linear one-to-one G-invariant code. We already know that Im(C) is
a sub-representation of (τ,FX). Let us show that we can define a representation (ρ,Fk) such
that C is a G-homomorphism.

Theorem 3.5.3. Let G be a group acting on X . Let (τ,FX) be the permutational representa-
tion defined by this action. Let C : Fk → FX be a linear one-to-one G-invariant code. Define
a representation ρ of G in Fk by:

ρ(g)(v) = C−1(τ(g)C(v)) . (3.5.1)

Then C is an embedding of the representations (ρ,Fk) in (τ,FX).
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Proof. First we need to proof that ρ(g) is well defined: Since C is one-to-one C−1 is defined
on Im C. Since C is closed under G it holds that τ(g)C(v) ∈ C therefore C−1 is defined on
(τ(g)C(v)).

Now let us show that C is a G homomorphism:

C(ρ(g)v) = C(C−1(τ(g)C(v))) = τ(g)C(v) .



Chapter 4

Amplifying the Error-Tolerance of
Locally Decodable Codes

4.1 Definitions

The agreement between strings x and y is the fraction of coordinates i in which xi = yi. The
agreement between x and y is denoted by Ag(x, y).

Definition 4.1.1. A probabilistic oracle machineMw locally outputs a string swith confidence
1− ε, if

∀i Pr[Mw(i) = si] ≥ 1− ε,

where the probability is over the randomness of M .

Definition 4.1.2. A deterministic oracle machine Mw locally ε-approximates a string s , if

Pr
i

[Mw(i) = si] ≥ 1− ε,

where the probability is over a uniformly chosen i.

Note that if Mw locally outputs a string s with confidence 1 − ε then there is a way to
fix its randomness such that it will locally ε-approximates a string s. Essentially, Mw locally
approximates a string s if it outputs a string that is close to s.

Definition 4.1.3 (Local unique decoding). A code C : Σn 7→ Σn̄ is (q, ε, δ) locally decodable
if there exists a probabilistic oracle machine Mw (the decoding algorithm) with oracle access
to a received codeword w such that:

1. For every message λ = (λ1, λ2, . . . , λn) ∈ Σn and for every w ∈ Σn̄ such that
Ag(C(λ), w) ≥ 1− δ it holds that Mw locally outputs λ with confidence 1− ε.

2. Mw(i) makes at most q queries to w for all i ∈ [n].

It is possible to consider a more relaxed notion of local decoding, where the machine Mw

is not required to successfully decode every i. Instead, it is required to succeed on average over
i:

35
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Definition 4.1.4 (Approximate local unique decoding). A code C over a field Σ, C : Σn 7→ Σn̄

is (q, ε, δ) approximately locally decodable if there exists a deterministic oracle machine Mw

(the decoding algorithm) with oracle access to a received codeword w such that:

1. For every message λ = (λ1, λ2, . . . , λn) ∈ Σn and for every w ∈ Σn̄ such that
Ag(C(λ), w) ≥ 1− δ, it holds that Mw locally ε-approximates λ.

2. Mw(i) makes at most q queries to w for all i ∈ [n].

Although the definitions of locally decodable codes and approximately locally decodable
codes are similar, it appears that it is much harder to construct locally decodable codes than ap-
proximately locally decodable codes. While there exist constant-query approximately locally
decodable codes of polynomial length, no such locally decodable codes are known. Approx-
imately locally decodable are interesting when ε < δ, since the identity code is a (1, ε, ε)

approximately locally decodable code.
A code C is list-decodable if for every word, there are a few codewords near it. Let

C(y1), C(y2), . . . , C(yL) be the list of codewords near a word w. Roughly speaking, a code
C is locally list-decodable if there exists a machine M , that given i, j and an oracle access
to the received word w, outputs the jth symbol of yi. The locality property requires that the
machine M makes a few queries to w. Formally:

Definition 4.1.5 (Local list-decoding). Let C : Σn → Σn̄ be a code. A set of probabilistic
oracle machines M1, . . . ,ML with oracle queries to w, (α,L, q, ε) locally list-decodes C at
the word w ∈ Σn̄, if,

• Every oracle machine Mj makes at most q queries to the input word w.

• For every codeword c ∈ C with Ag(c, w) ≥ α, there exists some k ∈ [L], such that Mw
k

locally outputs c with confidence 1− ε.

We can also define approximate local list-decoding by relaxing the requirement that Mw
k

successfully decodes c on every i. Instead, we require successful decoding on average over i.

Definition 4.1.6 (Approximate local list-decoding). Let C : Σn → Σn̄ be a code. A set of de-
terministic oracle machines M1, . . . ,ML with oracle queries to w, (α,L, q, ε) approximately
locally list-decodes C at the word w ∈ Σn̄, if,

• Every oracle machine Mj makes at most q queries to the input word w.

• For every codeword c ∈ C with Ag(c, w) ≥ α, there exists some k ∈ [L], such that Mw
k

ε-approximates c.

Definition 4.1.7 ((Approximately) Locally list-decodable codes with deterministic reconstruc-
tion). Let C : Σn → Σn̄ be (α,L) list-decodable. A deterministic algorithm A (α,L, q, ε)

(approximately) locally list-decodes C, if on input n, A outputs oracle machines M1, . . . ,ML

which (α,L, q, ε) (approximately) locally list-decode C at every word w ∈ Σn̄.

The code C is (α,L) list-decodable and therefore every w ∈ Σn̄ has at most L codewords
c1, . . . , cL that are α-close to it. Each such codeword ci = C(λi) is represented by a proba-
bilistic machine Mi such that:
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• If the code is locally list-decodable then ∀j Mi(j) = λij with probability at least 1− ε.

• If the code is approximately locally list-decodable then Mi(j) = λij for at least a 1 − ε
fraction of the indices j.

The algorithmA outputs Lmachines that are good for everyw ∈ Σn̄. One way to think about it
is that i ∈ [L] is an advice that specifies which of the L solutions corresponds to the codeword
we are interested in.

Definition 4.1.8 (Locally list-decodable codes with probabilistic reconstruction). Let C :

Σn → Σn̄ be (α,L) list-decodable. A probabilistic algorithmA (α,L, q, ε) locally list-decodes
C, if on input n, A outputs probabilistic oracle machines M1, . . . ,ML such that for every word
w ∈ Σn̄, with probability 2/3 over the random coins of A, the machines M1, . . . ,ML locally
list-decode C at w, i.e.,

∀w ∈ F n̄ Pr
A

[
∀λ
(

Ag(C(λ), w) ≥ α ⇒ ∃i ∀j Pr[Mi(j) = λj ] ≥ 1− ε
)]
≥ 2/3.

Definition 4.1.9 (Approximately locally list-decodable codes with probabilistic reconstruc-
tion). Let C : Σn → Σn̄ be (α,L) list-decodable. A probabilistic algorithm A (α,L, q, ε)

approximately locally list-decodes C, if on input n, A outputs deterministic oracle machines
M1, . . . ,ML such that for every word w ∈ Σn̄, with probability 2/3 over the random coins of
A, the machines M1, . . . ,ML approximately locally list-decode C at w, i.e.,

∀w ∈ F n̄ Pr
A

[
∀λ
(

Ag(C(λ), w) ≥ α ⇒ ∃i Pr
j

[Mi(j) = λj ] ≥ 1− ε
)]
≥ 2/3.

The best approximately list-decodable codes currently known (to the best of our knowl-
edge) are due to Impagliazzo et al. [26]. In this thesis we focus on binary codes, although by
using the non-binary codes of [26] one can also get non-binary list-decodable codes.

Theorem 4.1.1 ([26]1). For every α, ε > 0 there exists a number f(α, ε) such that there exists a
code CApp : {0, 1}n 7→ {0, 1}f(α,ε)n5

which is (1/2 + α,O( 1
α2 ), O( log(1/ε)

α3 ), ε) approximately
locally list-decodable.

4.2 Composition Theorem

Our main observation in this thesis is that if a code CLDC is locally decodable and a code CApp

is approximately locally decodable then by composing these two codes we get a code which is
locally decodable, and can tolerate a higher error-rate.

Theorem 4.2.1. Let CLDC : Σn
1 7→ ΣN ′

2 be (q, ε, δ) locally decodable code and let CApp :

ΣN ′
2 7→ ΣN

3 be an (q′, δ, δ′) approximately locally decodable code. Then the code C = CApp ◦
CLDC : Σn

1 7→ ΣN
3 defined by C(λ) = CApp(CLDC(λ)) is (q · q′, ε, δ′) locally decodable.

1The code we use is not explicit in [26], but it can be deduced from Section 5 in that paper. In Section 5 it
is shown that a longer code (the direct-product code, concatenated with Hadamard) is approximately locally list-
decodable. However, the same proof carries over when using the derandomized direct-product code (concatenated
with Hadamard). The parameter d (of [26]) is set to 5 (this is affects the exponent in the codeword length). The
number of queries is O( log(1/ε)

α3 ) since we need to run the Goldreich-Levin algorithm O( log 1/ε
α

) times, and each
run requires 1/α2 queries.
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Thus, if we have a locally decodable code which can tolerate a small fraction of errors, the
above theorem allows us to amplify the error-rate by using an approximately locally decodable
code. We have similar theorem for the list-decoding regime:

Theorem 4.2.2. Let CLDC : Σn
1 7→ ΣN ′

2 be (q, ε, δ) locally decodable code and let CApp :

ΣN ′
2 7→ ΣN

3 be an (α,L, q′, δ) approximately locally list-decodable code. Then the code C =

CApp ◦ CLDC : Σn
1 7→ ΣN

3 defined by C(λ) = CApp(CLDC(λ)) is (α, q · q′, L, ε) locally list-
decodable.

Proof. Let A denote the reconstruction algorithm for the code CApp and let Dw : [n] 7→
Σ1 denote the unique decoding algorithm for the code CLDC. The reconstruction algorithm
for the code C works as follows: it first applies the algorithm A to obtain a list of machines
M1, . . . ,ML. For each machine Mj , it outputs the machine Zj defined by Zwj (i) = DMw

j (i).
The bounds on the number of queries and the list size are immediate. Fix a word w ∈ ΣN

3 .
The inner reconstruction algorithmA fails with probability at most 1

3 . When it does not fail, we
will show that for every codeword with at least α agreement with w, its message is outputted
with confidence 1 − ε by one of the output machines. Suppose that the agreement between
CApp(CLDC(λ)) and w is at least α. Denote ζ = CLDC(λ). Since A did not fail, one of the
machines Mw

j δ-approximates ζ. Thus, Zwj = DMw
j locally outputs λ with confidence 1− ε.

The above theorem give locally list-decodable codes which improve upon previously
known constructions. Since we wish to get locally list-decodable codes with a constant query
complexity, we need to use a locally decodable code with a constant query complexity. The
best such codes currently known are due to [35]:

Theorem 4.2.3 ([35]). For every r ≥ 2 there exists a code

CLDC : {0, 1}n 7→ {0, 1}exp(exp(O( r
√

logn(log logn)r−1)))

which is (
(

3
4

)min{51,br/2c}
2r, γ, 2 ·

(
3
4

)min{51,br/2c}
2r · γ) locally decodable, for every γ > 0.

Let CLDC and CApp be the codes from Theorem 4.2.3 and Theorem 4.1.1, respectively.
Applying Theorem 4.2.2 on these codes gives:

Corollary 4.2.4 (Theorem 1.3.1 restated). For every r ≥ 2 and every α, ε > 0 there exists a
code

C : {0, 1}n 7→ {0, 1}f(α, ε

2·3r/2
)·exp(exp(O( r

√
logn(log logn)r−1)))

which is (1/2+α,O( 1
α2 ), O

(
r+log(1/ε)

α3 · 2r
)
, ε) locally list-decodable, where f is the constant

from Theorem 4.1.1.



Chapter 5

Open Problems

In this chapter we would like to summarize the most interesting open problems related to locally
decodable codes.

5.1 Locally Decodable Codes

The first most obvious open problem is closing the gap between lower and upper bounds on the
length of LDCs. For example, for 3-query LDCs the best known lower bound is Ω(k2), while
the best upper bound is only exp(exp(

√
log k log log k)). In this thesis we have presented two

approaches to improve upper bounds, namely, through matching vectors and through represen-
tation theory.

Matching Vectors A question of improving the parameters of matching vectors is a long
standing problem. Recently it was shown in [9] that for a constant modulo one can not achieve
polynomial rate matching vector codes1. We would like to mention that improving construc-
tions of matching vectors will have consequences much beyond LDCs. For example, it may
lead to the explicit Ramsey graphs.

Representaion Theory Constructing LDCs from the representation theory is a relatively new
approach and thus we believe that it is more promising. We are not aware of any limitations on
this model beyond the standard lower bounds for LDCs. It would be interesting if one could
show any lower bounds on this model.

Locally Decodable Codes over C This question is not a main stream question, but we would
like to mention it since we believe that the answer to this question will lead to a new insight
in LDCs. In the Chapter 2 we have shown a generic way to construct sub-exponential 4-query
LDCs which work over any field. Next, in order to reduce the number of queries to 3, we
gave an example of S-decoding polynomial with 3 monomials. However this works only over
field of characteristic 2. This can probably be extended to any finite characteristic, but it seems
that it is impossible to construct such a S-decoding polynomial over a field with characteristic
zero. Thus the question if one can construct 3 query linear LDCs over complex numbers of

1Assuming Polynomial Friemann Rusha conjecture
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sub-exponential length is open. It is not obvious that such codes exist and there are some
speculative reasons why such codes may not exist.

5.2 Self Correctable Codes

Self correctable codes are codes where instead of each message symbol, each codeword symbol
could be corrected by reading a constant number of symbols. Note that self correctable codes
must be LDCs, but not vise versa. For example, an Hadamard code is self correctable. Almost
the only example of self correctable codes is the family of Reed-Muller codes. The question of
constructing new families of self correctable codes is very interesting. We do not know yet if
sub-exponential self correctable codes exist.

Proving lower bounds for self correctable codes seems to be easier than proving these
bounds for LDCs. However we do not know better lower bounds for self correctable codes
except when the number of queries is 2. For example, it was shown in [3] the impossibility
of 2-query self correctable codes over C. It was also shown in [8] that in case of 2-queries
self correctable codes are longer than LDCs. Proving better lower bounds for self-correctable
codes for 3 and more queries seems like a very challenging task.
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