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1
Introduction

Extractors and condensers are ubiquitous in theoretical computer science. Extractors are

probabilistic hash functions that hash any given source with k min-entropy to a close to

uniform source. Formally, E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractor, if for any

distribution X on {0, 1}n with k min-entropy it holds that the distribution E(X,Ut) is ε-close

to uniform. Condensers are probabilistic hash functions that hash any given source with k

min-entropy to a shorter source with a lot of min-entropy. Formally, C : {0, 1}n×{0, 1}d →
{0, 1}m is a k →ε k

′ condenser, if for any distribution X on {0, 1}n with k min-entropy it

holds that the distribution C(X,Ut) is ε-close to a distribution with k′ min-entropy.

Often, the quality of an extractor is measured by its seed length d that we wish to

minimize, and its output length m that we wish to maximize. The entropy loss of the

extractor is k −m, i.e., the difference between the entropy k of the input and the length m

of the output. Non-explicitly, there are extractors with seed length d = log n+2 log 1
ε

+O(1)

and entropy loss 2 log 1
ε

+O(1). There is a matching lower bound showing every non-trivial

extractor must have seed length d at least log n+ 2 log 1
ε
−O(1), and also must have entropy

loss at least 2 log 1
ε
−O(1) [8].

While extractors have an unavoidable entropy loss, the GUV condenser [5] is lossless,

i.e., it has zero entropy loss (see also [12, 10, 11]). Specifically, for every α > 0, [5] show a

1



lossless C : {0, 1}n × {0, 1}d → {0, 1}m that is a k →ε k condenser, with m = (1 + α)k and

d = (1 + 1
α

)(log(nk) + log 1
ε
). Thus, the GUV condenser seed length dependence on the error

may be approaching log 1
ε
, whereas extractors must have dependence 2 log 1

ε
.

As expected, the improvement in the reduced entropy loss and the shorter seed length in

the GUV construction depends on how dense the output distribution is in the codomain of

the condenser. Let us define the entropy gap of a k →ε k
′ condenser C : {0, 1}n × {0, 1}d →

{0, 1}m to be m − k′, i.e., the difference between the amount of entropy in the uniform

distribution over the output domain and the amount of entropy guaranteed in the output

source. Extractors are condensers with entropy gap 0.

When the entropy gap is zero the entropy loss must be 2 log 1
ε

and the seed length is at

least log n + 2 log 1
ε
. The GUV construction shows that when the entropy gap is Ω(k) the

condenser may be lossless, and the seed length dependence may approach O(log n) + log 1
ε
.

How fast does this dependence drop with the entropy gap?

Dodis et. al. [3] observe that even when the entropy gap is just a constant, the entropy

loss may be O(log log 1
ε
) and the seed length dependence on the error is just log 1

ε
. This

is quite surprising, and shows that with even a minimal entropy gap one can substantially

reduce the limitations imposed by the lower bound on extractors. Dodis et. al. [3] use this

sudden drop in entropy loss for obtaining key derivation protocols with smaller entropy loss.

Recently, Ben-Aroya et. al. used the drop in the seed length dependence on the error for

obtaining better explicit two source extractors, and this is also used in the best explicit two

source constructions to date [2, 7].

In this paper we study the exact dependence of the seed length and entropy loss on the

entropy gap. We obtain the following non-explicit upper bounds:

Theorem 1.1 (detailed in Theorem 4.3). Let 0 < ε < 1
2
, and let c be a constant. Let g > c,

and n > k > log log n+log(e)+1
εg

+ 3. Then for l 6 k such that

l = log(1 +
log e

ε

g
) +O(1)

and for

d = dlog
n− k + log(e) + 1

εg
+ 1e,

there exists a k →ε k
′ = k − l strong condenser C : {0, 1}n × {0, 1}d → {0, 1}k′+g. The

constant in the O(1) notation depends on c.

This bound extends (with slightly improved parameters) the results in [3], which give

condensers where the entropy loss at least log log 1
ε
. We show, in particular, that already
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when the gap is O(log 1
ε
) then the entropy loss is reduced to a constant. The following

theorem addresses the case of zero entropy loss:

Theorem 1.2 (detailed in Theorem 4.4). Let 0 < ε < 1
2
, g >

log( e
ε
)

ε
, and n > k >

log log n+log(e)+1
ε2g

+ 3. Then for

d = dlog
n− k + log(e) + 1

ε2g
+ 1e

there exists a k →O(ε) k strong condenser C : {0, 1}n × {0, 1}d → {0, 1}m.

This bound shows that to get to zero loss it suffices to have O(
log 1

ε

ε
) entropy gap. We

note that in comparison with Theorem 1.1, the dependence of the seed length on the error

in Theorem 1.2 is larger: here we have ε2 rather than ε in the denominator. Since we use

g = Ω( log(1/ε)
ε

) we have that the degree of the condenser, D = 2d, may depend on 1
ε log(1/ε)

whereas in Theorem 1.1 the dependence is at most 1
ε
.

We have not proved matching lower bounds, and we leave that for future work.

In the analysis, we use and prove a tight equivalence between condensers with small

entropy gap and samplers with multiplicative error, see Corollary 3.4. A similar, but non-

tight, equivalence was already proved by Dodis et al. [3], using somewhat different objects:

they consider a weaker variant of samplers called (γ, δ) unpredictability extractors, which

are only promised to work for sets of at most a given density γ, hitting them with probability

at most δ. Their reduction is not tight and has a small gap in parameters. We show that

by slightly changing the statement to consider samplers that work for all sets, one can get

an equivalence that is completely tight. We remark that this equivalence underlies the work

of Ben-Aroya et al. [1] and later work on explicit two source extractors, and we believe it is

interesting in its own right.

Finally, we partially address an open question from [3]. Dodis et al. raise the problem of

finding an explicit condenser with a small seed, entropy gap and loss. They show an explicit

construction using seed length O(n log 1
ε
), which they reduce to O(k log k). Here we show

how to reduce this to O(log n
ε
· log k

ε
), using a simple composition. The idea is to first use a

lossy extractor, and extract all the entropy of the source, except for the unavoidable entropy

loss 2 log 1
ε

+ O(1). The point is that this entropy is not lost, but rather still present in the

source (even conditioned on the output so far). We now first apply the lossless condenser of

GUV, to bring the length down to O(log n
ε
), and on this output we apply the explicit small

loss condenser found by Dodis et al. We give full details of this in Chapter 5.
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2
Preliminaries

Throughout this work, the notation log represents the base-2 logarithm and ln the base-e

logarithm. Capital letters such as N,K,M,G,D are base-2 exponents of the respective lower-

case n, k,m, g, d. For example, d = log(D). The notation [N ] is equivalent to {1, 2, . . . , N}
for any integer N.

The min-entropy of a distribution X is H∞(X) = − log(maxx∈S Pr[X = x]). We say

that X is an (n, k) source if X is distributed over {0, 1}n and H∞(X) > k. Ud denotes the

uniform distribution on {0, 1}d.

We use the variational (or statistical) distance between distributions:

Definition 2.1 (variational distance). For every two random variables X and Y defined on

a common finite set S,

‖X − Y ‖ =
1

2

∑
x∈S

|Pr[X = s]− Pr[Y = s]| = max
A⊆S
{Pr[X ⊆ A]− Pr[Y ⊆ A]}.

The following lemma states the simple fact that the min-entropy of a distribution can be

increased by moving weight from the set of heavy elements:

Lemma 2.1. Let n > k > 0, and 0 6 ε 6 n−k. Let X be a (n, k)-source. Then X is ε-close

(in variational distance) to a (n, k + ε)-source X ′.
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Proof. Every (n, k) source is a convex combination of flat (n, k) sources, i.e., distributions

that are uniform over K = 2k elements. It therefore suffices to prove the claim for flat

sources: if X is a convex combination of X1, . . . , Xt and X1, . . . , Xt are all ε-close to X ′,

then X is ε-close to X ′. Assume therefore that X is a flat (n, k) source. Let X ′ be a random

variable obtained by ”distributing the extra weight”, i.e., taking 2−k − 2−(k+ε) weight from

every element in the support of X, and distributing it evenly on the remaining elements.

Hence, ‖X −X ′‖6 2k(2−k − 2−(k+ε)) = 1− 2−ε. Note that 1− 2−ε 6 ε, since both sides are

equal for ε = 0, and the derivative of ε is larger for ε > 0. In summary, we have that X is

ε-close to the (n, k + ε)-source X ′.

We use several inequalities regarding the probability that a sample from a given distribu-

tion is far from the mean of that distribution. These involve exponents of the Kullback-Leibler

divergence (or KL-divergence) for biased coin flips, as defined below:

Definition 2.2 (KL-divergence). Let 0 < p < 1 and 0 < q < 1. Then

D(p||q) = p ln(
p

q
) + (1− p) ln(

1− p
1− q

).

The well-known Chernoff-Hoeffding inequality bounds from above the probability that a

sample from a binomial distribution is far from the mean:

Theorem 2.2 (Chernoff-Hoeffding inequality). Let X1, . . . , Xn be independent random vari-

ables taking values in [0, 1] such that each variable has expectation q. Then, for every

q < p < 1,

Pr[
n∑
i=1

Xi > pn] 6 e−D(p||q)n.

.

Proof. The following theorem is proved in [6]: for every 0 < t < 1 − q, it holds that

Pr[ 1
n
Xi − t > q] 6 [( q

q+t
)q+t( 1−q

1−q−t)
1−q−t]n = e−D(q+t||q)n. Taking t = p − q, we obtain the

required form of the inequality.

We bound the KL-divergence from below to simplify this inequality. First, we note

Claim 2.1. For any 0 < q < p < 1, it holds that

D(p||q) > p ln(
p

q
) + q − p.

Proof. By definition, D(p||q) = p ln(p
q
) + (1 − p) ln(1−p

1−q ). Since ln(x) > 1 − 1
x

for x > 0, it

holds that (1− p) ln(1−p
1−q ) > (1− p)(1− 1−q

1−p) = q − p, proving the claim.
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We use the previous claim to further bound the KL-divergence from below, for the case

p = Aq + b.

Lemma 2.3. Let 0 6 q 6 1. Let A > 1 and b > 0 such that Aq + b 6 1. Then

D(Aq + b||q) > b ln(A).

Proof. By Claim 2.1, D(Aq + b||q) > (Aq + b) ln(A + b
q
) − Aq − b + q. Denote t = A

b
q. It

follows that

(Aq+b) ln(A+
b

q
)− Aq − b+ q

= b(1 + t) ln((1 +
1

t
)A)− (1 + t)b+

bt

A

= (1 + t)(b ln(A) + b ln(1 +
1

t
))− (1 + t)b+

bt

A

= b ln(A) + b ln(1 +
1

t
) + tb ln(A) + tb ln(1 +

1

t
)− (1 + t)b+

bt

A
.

To show D(Aq + b||q) > b ln(A) it therefore suffices to show that

1 + t 6 (1 + t) ln(1 +
1

t
) + t(ln(A) +

1

A
).

Dividing by t and setting s = 1 + 1
t
, the previous inequality is equivalent to

s 6 s ln(s) + ln(A) +
1

A
.

It holds for all A > 1 that ln(A) + 1
A
> 1 and so it is enough to show s 6 1 + s ln(s), which

is true for all s > 1 in the same way.

Finally, we use the entropy function defined to base e,

Definition 2.3. Let 0 6 p 6 1. Then

H(p) = −p ln(p)− (1− p) ln(1− p).

We use the following fact:

Claim 2.2. For every 0 < p < 1, H(p) 6 p ln( e
p
).
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Proof. Since ln(x) 6 x− 1 for every x > 0, we have that

H(p) 6 p ln(
1

p
) + (1− p)( 1

1− p
− 1) 6 p ln(

1

p
) + p,

as required.
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3
Samplers as condensers

Zuckerman [14] (see also [4]) showed an equivalence between extractors and samplers with

additive error. In this chapter, following [3] we extend this to an equivalence between sam-

plers with multiplicative factor and condensers with a small entropy gap.

3.1 Samplers

A sampler is a randomized algorithm that tosses n random coins, and based on these coins

outputs a subset of D = 2d elements from {0, 1}m as its sample set. We represent such a

sampler as

S : {0, 1}n × {0, 1}d → {0, 1}m

where S(x, i) is the i’th element in the sample set obtained when using the random coins x.

We call n the randomness complexity of S, and D and the sample size of S.

Now fix a set T ⊆ {0, 1}m and denote its density by

ρ(T ) =
|T |
M
.
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The sampler’s estimate to the density of T , given the random coins x ∈ {0, 1}n, is

Pr
y∈[D]

[S(x, y) ∈ T ].

Often, the sampler’s quality is measured as the difference between these two values. I.e.,

a sampler is said to have at most error ε on T , if (w.h.p. over x) the sampler’s estimate is

within ε additive distance from the correct density. In such a scenario we do not allow large

overestimates nor large underestimates of the density of the subset.

In this paper we are interested in estimating very small densities, and we only want to

avoid (w.h.p. over x) grossly exaggerated density estimates. Formally, we say (S, x) has at

most G multiplicative error and ε additive error for T , if

Pr
y∈[D]

[S(x, y) ∈ T ] 6 G · ρ(T ) + ε.

The quality of the sampler is then measured on its worst performance for T :

Definition 3.1 (Sampler error). Let S : {0, 1}n × {0, 1}d → {0, 1}m be a sampler. We say

S is a (k,G, ε) sampler if for every (n, k) source X and every T ⊆ {0, 1}m,

Pr
x∈X,y∈[D]

[S(x, y) ∈ T ] 6 G · ρ(T ) + ε.

We call G the multiplicative error of S and ε the additive error of S.

Notice that the definition implies that there are at most K = 2k values x ∈ {0, 1}n for

which S is wrong and Pry∈[D][S(x, y) ∈ T ] > G · ρ(T ) + ε. We remark that Dodis et. al. [3]

defined an almost equivalent object and called it an unpredictability extractor. We repeat

their definition here:

Definition 3.2 (Strong unpredictability extractor). A function S : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, δ, δ′) strong unpredictability extractor, if for every (n, k) source X and every

T ⊆ {0, 1}d+m of size at most δ2d+m, it holds that Prx∈X,s∈Ud [(s, S(x, s)) ∈ T ] 6 δ′.

Note that if S is a (k, δ, δ′) strong unpredictability extractor for all δ > 0, then the

function S ′ : {0, 1}n × {0, 1}d → {0, 1}d × {0, 1}m defined by S ′(x, y) = (y, S(x, y)) is a

sampler with total error δ′. We call such functions strong samplers:

Definition 3.3 (Strong sampler). A function S : {0, 1}n × {0, 1}d → {0, 1}m is a (k,G, ε)

strong sampler if it is a (k, δ,Gδ + ε) strong unpredictability extractor for every δ > 0.
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It is useful to look at S ′ rather than S as we consider strong condensers throughout

the rest of this work (see next section). From now on we shall generally use the definitions

of strong unpredictability extractors and strong samplers rather than usual definition of

samplers.

3.2 The equivalence between samplers and condensers

Definition 3.4. (Condenser): A function

C : {0, 1}n × {0, 1}d → {0, 1}m

is a k →ε k
′ condenser if for all (n, k)-sources X, and a uniformly random and independent

seed S over {0, 1}d, the distribution Cond(X,S) is ε-statistically-close to some distribution

W ′ with min-entropy k′.

We also define:

• The entropy loss of C is d+ k − k′,

• The entropy gap is m− k′,

• C : {0, 1}n × {0, 1}d → {0, 1}m is a strong k →ε k′ condenser, if the function

C ′(X, Y ) = (Y,C(X, Y )) is a k →ε k
′ + d condenser.

The entropy loss measures how much entropy we lose in the process of condensing. In

contrast, the entropy gap measures how close the output is to uniform. If the entropy gap is

0 we are close to true uniform bits. If the entropy gap is 1, we are missing one bit of entropy

to become truly uniform.

Zuckerman [14] showed an equivalence between samplers with additive error and extrac-

tors. In the following subsections, following [3] we show an equivalence between samplers

with multiplicative error and condensers.

3.2.1 Condensers imply samplers

Dodis et. al. proved the following in [3]:

Lemma 3.1 ([3, Lemma 3.3]). Let n > k > k′ > 0, d > 0 and m > k′. Let C : {0, 1}n ×
{0, 1}d → {0, 1}m be a strong k →ε k

′ condenser. Denote g = m − k′ and G = 2g. Then C

is a (k, δ, δ′ = Gδ + ε) strong sampler.
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In other words, strong condensers with entropy gap g and error ε are also strong samplers

with multiplicative error G = 2g and additive error ε. We restate the proof of [3], put slightly

differently:

Proof. (of Lemma 3.1). Assume by way of contradiction that there exists some δ > 0 such

that C is not a (k, δ,Gδ + ε) strong unpredictability extractor. Consider the distribution

W = (s, C(x, s)) where x is sampled from X and s is sampled from Us. By our assumption,

there is some set T ⊆ {0, 1}d × {0, 1}m such that ρ(T ) 6 δ and

Pr[W ∈ T ] > Gδ + ε > G · |T |
DM

+ ε = 2−(d+m−g)|T |+ε = 2−(k
′+d)|T |+ε.

Therefore, even if we move ε weight from elements in T to elements outside of T , there will

be some element t ∈ T such that has a strictly larger probability than 2k
′+d. In other words,

for every distribution W ′ ≈ε W, we have that H∞(W ′) < k′ + d, and therefore C is not a

k →ε k
′ strong condenser.

A natural question is whether this implication also holds in the reverse direction, that

is, if samplers with multiplicative error are also condensers. We discuss this in the following

subsection.

3.2.2 Samplers imply condensers

We begin with a result of Dodis et al. [3] that shows how one can construct strong condensers

from strong unpredictability extractors:

Lemma 3.2 ([3, Section 3, Summary]). Let n > k > 0, d > 0, m > k and δ′ > δ > 0. Let

S : {0, 1}n × {0, 1}d → {0, 1}m be a (k, δ, δ′) strong unpredictablity extractor. Let g = log δ′

δ

and ε = δ′. Then, given S, one can efficiently construct a function C : {0, 1}n × {0, 1}d →
{0, 1}m that is a k →ε m− g strong condenser.

Dodis et al. give in [3] an indirect proof for Lemma 3.2, going through a definition called

balanced hash functions. Note that in the terms of Lemma 3.2, δ′ = Gδ+ε
2
, whereas in Lemma

3.1 we have δ′ = Gδ + ε, and so there is a small gap in parameters between Lemma 3.2 and

Lemma 3.1.

We show a direct reduction from strong samplers to strong condensers. Along with

Lemma 3.1, this reduction shows that strong condensers with entropy gap g and error ε are

precisely equivalent to strong samplers with multiplicative error G = 2g and additive error ε.
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Note that here we have a requirement that Lemma 3.2 does not have: that we have a single

function S that is a (k, δ, δ′) unpredictability extractor for all δ > 0, where δ′ = Gδ + ε.

Lemma 3.3. Let n > k > 0, d > 0, m > k, ε > 0 and g > 0. Denote G = 2g. Let

S : {0, 1}n × {0, 1}d → {0, 1}m be a (k,G, ε) strong sampler. Then, S is a k →ε k
′ = m− g

strong condenser.

Proof. Let X be a (n, k)-source. Consider the distribution W = (s, S(x, s)) where x is sam-

pled from X and s is sampled from Ud. Let H =
{
h ∈ {0, 1}d × {0, 1}m |Pr[W = h] > 2k

′+d
}
.

This is the set of “heavy” elements: if there is at most 2−(k
′+d)|H|+ε weight on H, then by

moving ε weight to elements outside of H, we can obtain a distribution W ′ which has k′+ d

min-entropy, as required. Indeed, S is a (k, δ,Gδ + ε) strong unpredictability extractor for

all δ > 0, and in particular for δ = ρ(H), and therefore

Pr[W ∈ H] 6 G · |H|
DM

+ ε = 2−(d+m−g)|H|+ε = 2−(k
′+d)|H|+ε,

as required.

The following table summarizes the error ε and entropy gap g of the condensers that are

implied by the existence of a (k,G′, ε′) strong sampler in Lemmas 3.2 and 3.3. Note that in

Lemma 3.2, we first choose some δ > 0, and then efficiently construct a condenser with the

given parameters from the strong sampler.

Error Entropy gap

Lemma 3.3 ε = ε′ g = g′ = logG′

Lemma 3.2 [3] ε = G′δ + ε′ g = log(G′ + ε′

δ
)

Note that in Lemma 3.3 we obtain error ε′ and gap g′ simultaneously. In Lemma 3.2 one

can obtain error ε′ if δ tends to 0, and gap g′ if δ is close to 1.

To summarize the equivalence between strong condensers and strong samplers, the results

of Lemma 3.3 proved in this subsection along with the results of Lemma 3.1 proved in [3]

give rise to the following corollary:

Corollary 3.4. Let n > k > 0, d > 0, m > k, ε > 0 and g > 0. Denote G = 2g. Then a

function S : {0, 1}n × {0, 1}d → {0, 1}m is a (k,G, ε) strong sampler if and only if S is a

k →ε k
′ = m− g strong condenser.
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4
An upper bound on the seed length and

entropy loss of condensers with a small entropy

gap

The results of the previous chapter raise the question whether samplers that allow multi-

plicative error have substantially better parameters than those only allowing additive error.

As mentioned in the introduction, the answer is yes, and this was already observed in [3].

We first revisit the proof of [3] in the following section.

4.1 Previous work

In [3], Dodis et al. gave a probabilistic proof for the existence of (k, δ, δ′) unpredictablity

extractors:

Theorem 4.1 ([3, Theorem 4.15]). There exists a function S : {0, 1}m times {0, 1}d →
{0, 1}m which is a (k, δ, δ′) unpredictability extractor if one of the following conditions hold:

δ′ > max
{

2eδ, (n− k − 2)2−d + log(e/δ)δ2m−k
}

(4.1)
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2eδ > δ′ > δ + 2δ
√

(1/δ)(n− k + 2)2−d + log(e/δ)2m−k. (4.2)

We are interested in condensers, and so recall that Dodis et al. also gave in [3] a way to

construct condensers from unpredictability extractors (see also Section 3.2.2, Lemma 3.2).

Applying this to Theorem 4.1 gives an existence proof for condensers whose parameters

satisfy equations that correspond to Equations 4.1 and 4.2. This is detailed in the following

claim:

Claim 4.1. Let C : {0, 1}n × {0, 1}d → {0, 1}m be a k →ε m − g condenser obtained

by applying the reduction given in Lemma 3.2 to an unpredictability extractor S given by

Theorem 4.1. Denote by l = k −m + g the entropy loss of this condenser. Denote D = 2d

and L = 2l. Then the parameters of C satisfy

1 >
n− k + 2

εD
+
g + log e

ε

L
.

Proof. Recall that by the reduction of Lemma 3.2, the existence of S implies the existence

of a k →ε m − g condenser where ε = δ′ and g = log δ′

δ
. By definition, the entropy loss of

this condenser is l = k−m+ g. We consider the case where Equation 4.1 holds and the case

where Equation 4.2 hold separately.

Large gap: Assume that Equation 4.1 holds. First, we have δ′

δ
> 2e. Since g = log δ′

δ
, we

have that g > log(e) + 1. We divide the remaining inequality by δ′, substitute δ′ = ε,

δ = ε
G

, and m− k = g − l, and so we have that if Equation 4.1 holds then:

1 >
n− k + 2

εD
+
g + log e

ε

L
.

Small gap: Assume that Equation 4.2 holds. We have δ′

δ
6 2e, and so g < log(e) + 1. We

divide the remaining inequality by δ and, as in the previous case, we substitute δ′ = ε,

δ = ε
G
, and m− k = g − l. We obtain that if Equation 4.2 holds then:

G > 1 + 2
√
G

√
n− k + 2

εD
+
g + log e

ε

L
.

In other words,
(G− 1)2

4G
>
n− k + 2

εD
+
g + log e

ε

L
.

Since G 6 2e, we have that (G−1)2
4G

6 (2e−1)2
8e

< 1.
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Note that Claim 4.1 implies that the condensers given in [3] have seed length d > log n−k+2
ε

and entropy loss l > log(g + log e
ε
). We know by e.g. [5] that there exist lossless condensers

with l = 0. In the next sections, we show a probabilistic argument for the existence of

condensers that extends the results of [3] to constant entropy loss, with slightly improved

seed length and entropy gap. We also show the existence of lossless condensers, at the cost

of larger seed length.

4.2 The upper bound: statement and discussion

In this section we generally consider the entropy loss and seed length as a function of the

entropy gap and error.

We first state a generalized theorem that has a parameter ζ in addition to the usual

parameters of randomness condensers. This parameter captures a trade-off between entropy

loss and seed length.

Theorem 4.2 (Generalized upper bound). Fix 0 < ζ < 1, 0 < ε < 1
2
, g > 0, and n > k >

log log n+log(e)+1
ζεg

+ 2. Let l 6 k be such that

l > log(1 +
log e

ε

g
) + log

1

1− 1−(1/G)
lnG

+ log
1

1− ζ

and let d be such that

d > log
n− k + log(e) + 1

ζεg
.

Then, there exists a k →ε k
′ = k − l strong condenser C : {0, 1}n × {0, 1}d → {0, 1}k′+g.

We prove Theorem 4.2 in the next section. The various parameters in Theorem 4.2 can

be set in different ways to achieve specific objectives. We discuss two such instantiations. In

the first, we simply set ζ = 1
2
.

Theorem 4.3 (Upper bound for condensers with at least one bit of entropy loss). Fix

0 < ε < 1
2
, g > 0, and n > k > log log n+log(e)+1

εg
+ 3. Let l 6 k be such that

l > log(1 +
log e

ε

g
) + log

1

1− 1−(1/G)
lnG

+ 1

and let d be such that

d > log
n− k + log(e) + 1

εg
+ 1.
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Then, there exists a k →ε k
′ = k − l strong condenser C : {0, 1}n × {0, 1}d → {0, 1}k′+g.

We note the fact that with only one bit of entropy gap we achieve log log 1
ε

entropy loss,

as in the results of [3] which previously showed this is possible. This is remarkable in contrast

with the unavoidable 2 log 1
ε
− O(1) entropy loss of extractors (which are condensers with

zero entropy gap).

Further comparing Theorem 4.3 to the parameters of condensers given by [3] (see Claim

4.1), we see the following:

• For entropy gap g > 1, the parameters in Theorem 4.3 slightly improve over the

parameters shown in Claim 4.1: Theorem 4.3 has d = n−k+log(e)+1
εg

+ 1 instead of

d > n−k+2
ε

and l = log(1 +
log e

ε

g
) +O(1) rather than l > log(g + log e

ε
).

• There is no restriction that l > log log 1
ε
. Indeed, we see that with O(log 1

ε
) entropy

gap we achieve constant entropy loss.

The entropy loss in Theorem 4.3 does not drop below 1, since we have set ζ = 1
2
. The second

instantiation we discuss shows the existence of lossless condensers. Here we set ζ such that

log( 1
1−ζ ) is close to ε. We also require that g >

log 1
ε

ε
. This results in the following theorem:

Theorem 4.4 (Upper bound for lossless condensers). Fix 0 < ε < 1
2
, g >

log( e
ε
)

ε
, and

n > k > log log n+log(e)+1
ε2g

+ 3. Let

d > log
n− k + log(e) + 1

ε2g
+ 1.

Then, there exists a k →O(ε) k strong condenser C : {0, 1}n × {0, 1}d → {0, 1}k+g.

Proof. First note that, by the definition of g, it holds that log(1 +
log( e

ε
)

g
) 6 log(1 + ε) < 2ε.

Set ζ = ε
2
. We show that log 1

1−ζ 6 ε, or equivalently ε
2
6 1 − 1

2ε
. This holds since both

sides are equal for ε = 0 and the derivative of ε
2

is smaller for 0 < ε < 1
2
.

We now show that log 1

1− 1−1/G
lnG

6 ε. Since lnG > 1, it suffices to show that log 1
1− 1

lnG

=

log(1 + ln 1
ε
) − log(1 + ln 1

ε
− ε) 6 ε. By the mean value theorem, for every pair of positive

real numbers x > t, it holds that log(x)−log(x−t)
t

6 log(e)
x−t . In particular,

log(1 + ln
1

ε
)− log(1 + ln

1

ε
− ε) 6 log(e)

1 + ln 1
ε
− ε
· ε.

It therefore suffices to show ln 1
ε
> log(e), which holds since ε < 1

2
.
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By Theorem 4.2 and what we’ve shown so far, there exists a k →ε k
′ = k − O(ε) strong

condenser C : {0, 1}n × {0, 1}d → {0, 1}k′+g. This implies that C is also a randomness

condenser with error O(ε) and zero entropy loss (and g − O(ε) entropy gap), as detailed in

Lemma 2.1.

It is interesting to note that in comparison with Theorem 4.3, the dependence of the

seed length on the error in Theorem 4.4 is larger: here we have ε2 rather than ε in the

denominator. Since we use g = Ω( log(1/ε)
ε

), we have that D = 2d may depend on 1
ε log(1/ε)

whereas in Theorem 4.3, if g = Ω(1), the dependence is at most 1
ε
.

4.3 Proof of the upper bound

It remains to prove the generalized upper bound of Theorem 4.2. We give a proof using the

probabilistic method.

Proof. Let C : {0, 1}n × {0, 1}d → {0, 1}m be chosen uniformly at random from the set of

such functions. We show that, with positive probability, C is a k →ε m−g strong condenser,

and therefore such a condenser must exist. We use the following definition:

Definition 4.1. Let A ⊆ {0, 1}n such that |A|= K, and let B ⊆ {0, 1}d+m be any subset.

We say the pair (A,B) is C-bad if Prx∈A,s∈Ud [(s, C(x, s)) ∈ B] > Gρ(B) + ε.

By Corollary 3.4, and since every (n, k) source is a convex combination of flat (n, k)

sources, i.e., distributions that are uniform over some set A ⊆ {0, 1}n of size |A|= K, we

have that C is a k →ε m − g strong condenser if and only if no C-bad pairs (A,B) exist.

The following claim bounds the chance of a given pair to be C-bad.

Claim 4.2. Let A ⊆ {0, 1}n such that |A|= K, and let B ⊆ {0, 1}d+m with ρ(B) = δ. The

probability (over the choice of C) that the pair (A,B) is C-bad is at most e−D(Gδ+ε||δ)KD.

Proof. For every a ∈ A and s ∈ {0, 1}d, let Xa,s denote the random variable that is 1 if

(s, C(a, s)) ∈ B and zero otherwise. Then, the boolean random variables {Xa,s}a∈A,s∈{0,1}d
are i.i.d. with expectation δ. By Theorem 2.2, Pr[

∑
a,dXa,d > (Gδ+ε)KD] 6 e−D(Gδ+ε||δ)KD.

Next we use the union bound to get an upper bound on the probability that a randomly

chosen C is not a condenser. Note that a pair (A,B) cannot be C-bad if ρ(B) > 1−ε
G

.
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Therefore, by Claim 4.2 and the union bound,

Pr
C

[C is not a k →ε m− g strong condenser] 6

DM
G∑
i=0

(
N

K

)(
DM

i

)
e−D(G·δ(i)+ε||δ(i))KD,

where δ(i) = i
DM

. Splitting the term e−D(G·δ(i)+ε||δ(i))KD into two terms: e−ζD(G·δ(i)+ε||δ(i))KD

and e−(1−ζ)D(G·δ(i)+ε||δ(i))KD, it suffices to prove for every fixed δ ∈ (0, 1
G

] that(
N

K

)
e−ζD(Gδ+ε||δ)KD <

G

DM
, (4.3)

and also that (
DM

δDM

)
e−(1−ζ)D(Gδ+ε||δ)KD < 1 (4.4)

since then the above probability is bounded from above by DM
G
· G
DM

= 1.

To prove Eq. (4.3), using
(
N
K

)
6 ( eN

K
)K = 2K(n−k+log(e)), it suffices to show that

ζ log(e)D(Gδ + ε||δ)D − (n− k + log(e)) >
d+m− g

K
.

We have that d+m−g
K

= d+k′

K
6 d+k

K
6 d

K
+ log(e)

e
. By the statement of the theorem we have

that d
K

6 1
4
, and so d+m−g

K
< 1, and it suffices to show

D >
n− k + log(e) + 1

ζ log(e)D(Gδ + ε||δ)
.

By Lemma 2.3, we have that D(Gδ+ ε||δ) > ε ln(G), and the required equation then follows

from the statement of the theorem.

It remains to prove Eq. (4.4). Using the fact that
(
DM
δDM

)
6 eH(δ)DM , it suffices to show

that eH(δ)DM−(1−ζ)D(Gδ+ε||δ)KD < 1, or equivalently that H(δ) < (1− ζ)D(Gδ+ ε||δ)K
M
. Since

K
M

= L
G
, we need to show

L >
H(δ)G

(1− ζ)D(Gδ + ε||δ)
.

We divide into cases:

Small δ: assume that δ 6 ε
G
. Since ε < 1

2
and H(δ) is monotone increasing for δ ∈ (0, 1

2
), we

have thatH(δ) 6 H( ε
G

). By Claim 2.2, H( ε
G

) 6 ε
G

ln(Ge
ε

). By Lemma 2.3, D(Gδ+ ε||δ) >

18



ε ln(G). It therefore suffices to prove

L >
ln eG

ε

(1− ζ) lnG

which is implied by the statement of the theorem.

Large δ: assume that ε
G
< δ. By Claim 2.2, H(δ) 6 δ ln( e

δ
) 6 δ ln( eG

ε
). By Claim 2.1,

D(Gδ + ε||δ) > (Gδ + ε)(ln(G+ ε
δ
) + 1

G+ ε
δ
− 1). Using that ε > 0 and that ln(x) + 1

x

is monotone increasing for all x > 1, we have that D(Gδ + ε||δ) > Gδ(lnG+ 1
G
− 1).

It therefore suffices to prove

L >
ln eG

ε

(1− ζ)(lnG+ 1
G
− 1)

=
ln eG

ε

(1− ζ) lnG
· 1

1− 1−1/G
lnG

,

which is given by the statement of the theorem.
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5
Reducing the seed length of explicit

constructions

As mentioned in Chapter 4, Dodis et al. show in [3] that there exist condensers with only

a single bit of entropy gap which have O(log log 1
ε
) entropy loss. Furthermore, they show an

explicit construction for such condensers:

Theorem 5.1 ([3, Corollary 4.5]). For 0 < ε < 2−5 and k = m + log log 1
ε

+ 4, there exists

a k →ε k
′ = m − 1 strong condenser C : {0, 1}n × {0, 1}d → {0, 1}m with seed length

d = O(n log 1
ε
).

In this construction, the seed is used to choose a random hash function from a (dlog 1
ε
e+6)-

independent hash family. The chosen function is then applied to the weak random source.

See [3] for details.

A main goal in [3] is to construct unpredictability extractors. These are useful for key

derivation, i.e., using weak random sources to generate keys for certain cryptographic pro-

tocols. One way to achieve unpredictability extractors that is detailed in [3] is by using

randomness condensers. We restate this in Lemma 3.1. Dodis et al. consider unpredictabil-

ity extractors with various output lengths. We note that, given a construction of C as in

Theorem 5.1, one can construct unpredictability extractors for any output length, including
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those that are larger than k − log log 1
ε
− 4, in a way that asymptotically matches the re-

sults in [3]. This is done by simply padding the output with (for example) zeroes until we

reach the desired output length. We restate the results of [3] regarding the construction of

unpredictability extractors for general output lengths. The statement and proof are slightly

reformulated to emphasize this possible use of C:

Theorem 5.2 ([3, Theorem 4.1, item 3]). Fix δ > 0 and m > k − log log 1
δ
− 4. Then, there

exists an efficient construction of a (k, δ, δ′) strong unpredictability extractor S : {0, 1}n ×
{0, 1}d → {0, 1}m for δ′ = O(1 + 2m−k log 1

δ
)δ, with seed length d = O(n log 1

δ
).

Proof. Denote m′ = k−log log 1
δ
−4. Let C : {0, 1}n×{0, 1}d → {0, 1}m

′
be a k →δ k

′ = m′−1

strong condenser as in Theorem 5.1. Let S(x, s) be a binary string obtained by appending

C(x, s) with m−m′ = m− k + log log 1
δ

+ 4 zeroes. S is a strong k →δ k
′ condenser, i.e., it

has error δ and entropy gap m− k′ = m− k + log log 1
δ

+ 5. By Lemma 3.1, for all t > 0, S

is a (k, t, 2m−k+5 log(1
δ
)t+ δ) unpredictability extractor. In particular, taking t = δ, we have

that S is a (k, δ, (1 + 2m−k+5 log 1
δ
)δ) unpredictability extractor, as required.

Dodis et al. ask the following question: can the seed length in the construction of un-

predictability extractors be further reduced? As we note, reducing the seed length in the

construction of condensers with constant entropy gap and O(log log 1
ε
) entropy loss would

imply the same reduction in seed length for unpredictability extractors for the entire range

of output lengths. It was already shown in [3] that the seed length can in fact be reduced,

where the seed length was lowered to O(n log k) by a more intricate construction and then

to O(k log k). Here we show that a seed length of O(log n
ε
· log k

ε
) can be achieved by concate-

nating the simpler construction from Theorem 5.1 with an existing explicit extractor and

condenser. This improves upon the previous construction in some cases, for example, when

ε is constant and k is asymptotically larger than log n.

Theorem 5.3 (Seed reduction via extracting and then condensing). For 0 < ε < 2−5 and

k = m+log log 1
ε
−4, there exists a a k →ε k

′ = m−2 strong condenser C : {0, 1}n×{0, 1}d →
{0, 1}m with seed length d = O(log n

ε
log k

ε
).

Proof. Construction. The construction uses the following components:

1. A strong extractor with minimal entropy loss. Let E : {0, 1}n×{0, 1}d1 → {0, 1}m1

be an explicit (k, ε) strong extractor with entropy loss l1 = O(log 1
ε
) and seed

length d1 = O(log k · log n
ε
). Note that m1 = k − l1. It is shown in [13, Corollary

6.40] that E exists.
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2. A lossless condenser. Let GUV : {0, 1}n×{0, 1}d2 → {0, 1}m2 be an explicit l1 →ε

l1 strong condenser with seed length d2 = 2(log(n) + log(l1) + log(1
ε
)) = O(log n

ε
)

and output length m2 = 2(d2 + l1) = O(log n
ε
). It is shown in [5, Theorem 1.7]

that GUV exists.

3. A previous construction of a condenser with one bit of entropy gap andO(log log 1
ε
)

entropy loss. Let DPW : {0, 1}m2 ×{0, 1}d3 → {0, 1}m3 be a l1 →ε m3− 1 strong

condenser, where m3 = l1 − log log 1
ε
− 4 and d3 = O(m2 log 1

ε
) = O(log n

ε
log 1

ε
).

The existence of DPW follows from Theorem 5.1.

We define d = d1 + d2 + d3 = O(log n
ε

log k) + O(log n
ε

log 1
ε
) = O(log n

ε
log k

ε
) and

m = m1 +m3 = k − log log 1
ε
− 4.

Now, given x ∈ {0, 1}n and si ∈ {0, 1}di for i ∈ [3], we define C : {0, 1}n × {0, 1}d →
{0, 1}m in the following way:

C(x, s1, s2, s3) = (E(x, s1), DPW (GUV (x, s2), s3)).

Claim: C is a k →ε m− 2 strong condenser.

Proof: Let X be a (n, k) source. Let x be sampled from X and let si be sampled from

Udi for i ∈ [3]. Denote y1 = E(x, s1), y2 = GUV (x, s2) and y3 = DPW (y2, s3). By

the definition of E, the distribution of y1|s1 is ε-close to Um1 . It holds with probability

1 − ε that the distribution X|(s1, y1) has at least l1 − 1 min-entropy (see [9, Claims

29 and 30]). We assume this is the case (this adds ε error to the final condenser). We

therefore have by the definition of GUV that y2|(s1, s2, y1) is ε-close to a distribution

with at least l1−1 min-entropy. Therefore, by the definition of DPW, y3|(s1, s2, s3, y1)
is 2ε-close to a distribution with m3 − 2 min-entropy.

To summarize, we want to show that the distribution of

(s1, s2, s3, y1, y3),

has at least d+m− 2 = d+ k − log log 1
ε
− 6 min-entropy and we have that

• s1, s2, s3 are uniformly distributed over {0, 1}d ,

• y1|(s1, s2, s3) is ε-close to uniform over {0, 1}k−l1 ,

• y3|(s1, s2, s3, y1) is 2ε-close to a distribution with l1 − log log 1
ε
− 6 min-entropy.

Indeed we see that with probability 1− O(ε), every output string has weight at most

2d · 2k−l1 · 2l1−log log 1
ε
−6, as required.
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We conclude by stating the result for unpredictability extractors which follows from

Theorem 5.2 and Theorem 5.3:

Corollary 5.4. Fix δ > 0 and m > k − log log 1
δ
− 4. Then, there exists an efficient con-

struction of a (k, δ, δ′) strong unpredictability extractor S : {0, 1}n × {0, 1}d → {0, 1}m for

δ′ = O(1 + 2m−k log 1
δ
)δ, with seed length d = O(log n

δ
log k

δ
).

Proof. This proof is precisely the same as the preceding proof of Theorem 5.2, except that

here C is the condenser given by Theorem 5.3.
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