
Dispersers with logarithmic entropy loss

Noam Parzanchevski

August 4, 2019

Abstract

Fixing an error in the proof of [TS02] and improving upon the results therein,
we construct dispersers over 2n vertices for any min-entropy k + O

(
log3 k

ε

)
where k ≥ c log n

ε (for some constant c) of degree poly n
ε and O

(
log k

ε

)
en-

tropy loss

1 Introduction
The focus on the construction of pseudorandom objects has stood as a cornerstone in
the theory of randomness since its earliest days. Some of the most important results
in the field of derandomization were achieved via the use of pseudorandom objects
such as pseudorandom generators, expander graphs and extractors (see, for example,
[Nis94, Rei08]). Pseudorandom objects are objects that can be constructed explicitly
(i.e., deterministically and efficiently) but exhibit certain aspects that appear to behave
randomly. This work deals with the construction of dispersers, low-degree bipartite
graphs that have large vertex expansion (id est, if V1, V2 are the partition of the graph
vertices then every large enough subset of V1 covers almost all of V2).

Definition 1. (disperser) A (D = 2d)-left regular bipartite graph

G = (V1 = [N = 2n], V2 = [M = 2m], E)

is a (K = 2k, ε)-disperser, if for every subset W ⊆ V1 of size at least K it holds that
|Γ(W)| ≥ (1− ε)M where Γ(W) is the set of neighbors of W . The entropy loss of the
disperser is ∆(G) = k + d−m.

1.1 Deterministic construction and low degree
If we do not limit ourselves to an explicit construction and maintaining a low degree
then constructing a bipartite graph G = (V1, V2, E) with large vertex expansion is an
easy task:

1

• Without a limitation on the degree of the graph, we can simply construct the
complete bipartite graph. This graph obviously has optimal expansion but its
degree is extremely high

• On the other hand, non-explicitly, one can show using the probabilistic method
that for any ε > 0 and k there exists a (k, ε)-disperser of degree Θ(n

ε
) and that

this is also the lower bound for such a graph (see [RTS00])

Our goal will be to present a deterministic construction of dispersers with low
degree.

1.2 Extraction and entropy loss
It is clear that what we want is a disperser with k, ε and degree as small as possible.
Another important and less obvious measure of the effectiveness of our construction
is the entropy loss we incur. In order to explain this it makes more sense to switch
to a different perspective and examine Extractors, which are stronger pseudorandom
objects that are easily reducible to Dispersers. Extractors are functions which take as
input a flawed random source X (in the sense that X is distributed over n bit but has
k < n min-entropy) and an additional small input of d truly uniform random bits and
output m bits that are ε-close to uniform.

In this setting we “invest” d bits of randomness and “harvest”m bits of entropy out
of the total k + d bits of entropy in the system. We call the margin between the two
our entropy loss ∆

def
= k + d−m.

Coming back to dispersers, let G = (V1, V2, E) be a bipartite graph of degree
D = 2d where |V1| = N = 2n. Identify the vertices in V1 with n-bit strings by an
arbitrary enumeration φ : {0, 1}n → V1 and enumerate the edges drawn from each
vertex v ∈ V1 by 0, . . . , D − 1. With this approach, consider any source X ⊆ {0, 1}n
with k bits of entropy. By definition, for any x ∈ Supp (X) : Pr[X = x] ≤ 2−k and
so |Supp (X) | ≥ 2k. Thus, we can think of X as a random variable distributed over a
subset W ⊆ V1 of size ≥ 2k by letting W = {φ(x) | x ∈ Supp (X)} . Additionally, a
truly random seed y ∈ {0, 1}d can be thought of as a random selection of an edge.

The entropy loss is in this case is the logarithmically scaled margin log |W |·D|V2| =

k + d − log |V2|, comparing the size of W plus the degree of the graph (our “invest-
ment”) and the size of V2 (our “reward”). The dispersers we will construct will incur a
polylogarithmic entropy loss.

In order to achieve the above, we will construct a third pseudorandom object which
will turn out to be stronger than a disperser but weaker than an extractor - a somewhere
random extractor.

2

1.3 Previous works and our contribution
Dispersers were first defined in [Sip88] where a probabilistic proof was given to show
that a random bipartite graph G = (V1, V2, E) where |V1| = n, |V2| = 2

√
logn of

degree 2 log n is a (2
√

logn, 1/2)-disperser with high probability. However, the task of
providing an explicit construction remained open.

In [SZ99], an explicit construction of a (nγ, 1/2)-disperser was given for any con-
stant γ > 0 with a poly n degree and Ω(nγ) entropy loss. In [SSZ98], a construction
was given with similar parameters for any ε = poly 1

n
.

In later works, [TSUZ07] showed how to construct (k, ε)-dispersers for any k and
with entropy loss Ω(log n) if ε is constant and [GUV09] constructed dispersers for any
k and ε > 0 with entropy loss Ω(k).

From a different perspective, non-explicit results from [RTS00] show that for any
k, ε there exist dispersers of degree Θ(n

ε
) with entropy loss only log log 1

ε
+ O(1) and

that this is also a lower bound on the entropy loss.
The work we present in this paper is built upon the construction given in [TS02],

where (k, ε)-dispersers of poly n
ε

degree were constructed for k = poly log n
ε

and
any ε > 0 with a poly log n

ε
entropy loss. The parameters of [TS02] improve upon

previous results both in terms of the entropy loss and in supporting any k ≥ poly log n
ε

and any error rate. However, the proof in [TS02] contained an error.
In this work we fix the error, streamline the construction and improve the parame-

ters we achieve. Namely, for any ε > 0, k ≥ c log n
ε

for some absolute constant c we
construct

(
k +O

(
log3 k

ε

)
, ε
)
-dispersers of poly n

ε
degree and O

(
log k

ε

)
entropy loss.

The following table summarizes previous results discussed above:

Degree D Min entropy k = logK Error ε Entropy loss Reference and notes
D = poly n k = nΩ(1) ε = 1/2 nΩ(1) [SZ99]
D = poly n k = nΩ(1) ε ≥ poly 1

n
nΩ(1) [SSZ98]

D = poly n Any k Constant 3 log n+O(1) [TSUZ07]
D = poly n

ε
Any k Any ε Ω(k) [GUV09]

D = poly n
ε

k = poly log n
ε

Any ε poly log n
ε

[TS02], see below
D = poly n

ε
k ≥ c log n

ε
Any ε O

(
log k

ε

)
This paper

D = Θ(n
ε
) Any k Any ε log log 1

ε
+O(1) [RTS00], non-explicit

D = Θ(n
ε
) Any k Any ε log log 1

ε
+O(1) [RTS00], lower bound

As mentioned above, the construction in [TS02] contained an error which was
pointed to us by Arkadev Chattopadhyay, Michael Langberg, Shi Li and Atri Rudra.
Namely, in the proof of Claim 9 in the original paper an erroneous inequality was used.
Our result fixes this issue and improves upon [TS02] in several respects:

• Correctness: as mentioned, first and formost, we fix the error in the original
paper. A detailed review of the error and the fix employed is available in section
5.1.1.

3

• Parameters: while the original construction requires k = poly log n
ε

bits of
entropy and proves a poly log n

ε
entropy loss, we actually compute the exponents

and shows that if k ≥ c log n
ε

for some constant c then k + O
(
log3 k

ε

)
bits of

entropy is sufficient and that the entropy loss we incur is only O
(
log k

ε

)
.

• Simplification: the original construction of [TS02] required the composition of
two types of extractors. The correctness proof for the pseudorandom properties
of this composition was fairly arduous. By using a different composition and
state of the art extractors we manage to bypass this composition and provide
a simpler, streamlined construction. A detailed explanation of this process is
available in section 5.1.2

Finally, it was brought to our attention by Ronen Shaltiel that if we allow for a
polylogarithmic entropy loss then there is a simple construction of dispersers with
similar parameters to ours and an entropy loss of order O

(
log k · log k

ε

)
. We present

this proof in appendix D.

1.4 Main results: asserting the results of [TS02]
While our end goal is to construct a disperser graph, this work deals mainly with
the construction of a somewhere random extractor with logarithmic seed length and
polylogarithmic entropy loss:

Theorem 1. For any n ≥ k, ε > 0 there exists an
(
k +O(log3 n

ε

)
, ε)-somewhere

random extractor
S : {0, 1}n × {0, 1}d → ({0, 1}m)n

3

with d = O(log n
ε
) and m = k − 2 log 1

ε
−O(1).

By applying an initial condensing step using the [GUV09] lossless condenser, we
achieve even better results:

Theorem 2. There exists a constant c such that for any ε > 0 and c log n
ε
< k ≤ n

there exists a (k1, ε)-somewhere random extractor

S : {0, 1}n × {0, 1}d → ({0, 1}m)
O(k31)

where k1 = k + O
(
log3 k

ε

)
, d = O

(
log n

ε

)
,m = k1 + O

(
log n

ε

)
. Furthermore, the

entropy loss of S is ∆(S) = O
(
log k

ε

)
Using Lemma 5, the above immediately implies the following:

Theorem 3. There exists a constant c such that for any ε > 0 and c log n
ε
< k ≤ n

there exists a (2k1 , ε)-disperser

G = (V1 = {0, 1}n, V2 = {0, 1}m, E)

of degree D = poly n
ε

where k1 = k + O
(
log3 k

ε

)
and m = k1 + O

(
log n

ε

)
. Further-

more, the entropy loss of G is ∆(G) = O
(
log k

ε

)
4

1.5 Organization
In what follows, section 2 contains definitions, preliminary information and reductions
between the various pseudorandom objects presented in the paper. A top down view
of the proof is presented in section 3. Sections 4-5 contain a detailed proof of the main
theorem.

2 Preliminaries and background
In this section we begin by defining the pseudorandom objects we will use for our
construction.

2.1 Statistical Distance and Sources
Throught the paper, we will denote the uniform distribution over {0, 1}d by Ud. When
d is clear from context we will sometimes simply denote it by U .

Definition 2. (Statistical distance) Let X and Y be two random variables distributed
over the same universe Λ. The Statistical distance between X, Y is:

|X − Y | = 1

2
|X − Y |1 =

1

2

∑
λ∈Λ

|Pr[X = λ]− Pr[Y = λ]|

If |X − Y | ≤ ε we say that X is ε-close to Y .

We record the well known fact that statistical distance between distributions can
only shrink:

Fact 1. Let A,B be two distributions over the same universe Λ. For any function
f : Λ→ Λ′:

|f(A)− f(B)| ≤ |A−B|

And use it to establish the following useful corollary:

Corollary 2. Let A,B be two distributions over the same universe Λ such that |B −
A| ≤ ε1 and f : Λ → Λ′ a function such that |f(A) − U | ≤ ε2, then by the triangle
inequality

|f(B)− U | ≤ |f(B)− f(A)|+ |f(A)− U | ≤ ε1 + ε2

Definition 3. (Weak source) Let X be a distribution over {0, 1}n. The min-entropy of
X is H∞(X) = log 1

maxx Pr[X=x]
. We say X is a k-source if H∞(x) ≥ k, or, equiva-

lently, Pr[X = x] ≤ 2−k for every x ∈ X .

5

Definition 4. [CG88] (Block-wise source) Suppose X is a random variable taking
values from {0, 1}n, and π is a partition of [1..n] into ` consecutive blocks. Define the
induced random variable Xπ

i to be the random variable X when restricted to the i’th
block of π. Thus, X = Xπ

1 ◦ . . . ◦Xπ
` where the Xπ

i are possibly correlated.
We say X is a (π, z1, . . . , z`) block-wise source, if for every x ∈ {0, 1}n for which

Pr[X = x] > 0 and for every 1 ≤ i ≤ ` we have H∞(Xπ
i | Xπ

i−1 = xi−1, . . . , X
π
1 =

x1) ≥ zi. Many times we omit the partition π and simply say that X is a (z1, . . . , z`)
block-wise source.

We will strive to partition our input random variables in a way which guarantees
sufficient min entropy in each block. We formalize this requirement in the following
definition:

Definition 5. (Segmentations) A segmentation of [n] to ` blocks is a partition of [n]
into ` blocks B1 = [1..b1], B2 = [b1 + 1..b2], . . . , B` = [b`−1 + 1..n]. A family F of
segmentations of [n] into ` blocks is (k, [z1, . . . , z`], w) good, if for any weight function
p : [1..n] → [0..w] with

∑
i p(i) ≥ k there is at least one segmentation π ∈ F that

partitions [1..n] into blocks B1, . . . , B` such that for every 1 ≤ j ≤ ` :
∑

i∈Bj p(i) ≥
zj .

2.2 Extractors
Next, we define the basic pseudorandom object we will utilize in our construction:

Definition 6. (Extractor) Let E : {0, 1}n × {0, 1}d → {0, 1}m.

• Let F be a family of distributions over {0, 1}n. We say E is a (F, ε)-extractor, if
for every X ∈ F , |E(X,Ud)− Um| ≤ ε.

• We say E is a (k, ε)-extractor, if it is an (F, ε) extractor for the family F of all
k-sources.

• We say E is an (π, [z1, . . . , zl], ε)-block wise extractor if it is an (F, ε) extractor
for the family of all (π; z1, . . . , zl) block-wise sources. E may depend on π (and
z1, . . . , zl and ε), and when we want to emphasize this we write Eπ.

Adapting a construction of [SZ99] we know that:

Lemma 3. There exist constants c > 1 , α ∈ (1, 2) such that for all `, if z`−i ≥
αic log n

ε
there exists a ([z0, z1, . . . , z`], ε) block wise extractor:

F : {0, 1}n × {0, 1}r` → {0, 1}m

with m ≥ Ω(α` log n
ε
) and r` = O(z`+log n). If z1 = Ω(log2 n

ε
) then there exists such

an extractor with m ≥ z0 − 2 log 1
ε
−O(1)

We give the proof, for completeness, in appendix A.

6

2.3 Somewhere-random extractors
Next we define an object that will turn out to be stronger than a disperser but weaker
than an extractor. We start with a definition of a somewhere random source:

Definition 7. [NTS99] (Somewhere random source) B = (B1, . . . , Bb) is a b-block
(m, ε) somewhere random source if each Bi is a random variable over {0, 1}m and
there is a random variable Y over [0, . . . , b] such that:

• For every i ∈ [1, . . . , b] : Pr[Y = i] > 0 =⇒ |(Bi|Y = i)− Um| ≤ ε.

• Pr[Y = 0] ≤ ε.

We call Y a selector for B.

We think of a somewhere random source as a bunch of correlated random variables
that are also correlated with some (possibly unknown) selector function that tells which
of them is the uniform one. The case Y = 0 means the selector function could not find
an appropriate block and this happens with probability at most ε.

We define a somewhere random extractor to be a function whose output is a some-
where random source.

Definition 8. (Somewhere random extractor) Let S : {0, 1}n × {0, 1}d → ({0, 1}m)b

be a function. Given a distributionX on {0, 1}n the distribution S(X,Ud) = B1◦ . . .◦
Bb is obtained by picking x ∈ X, y ∈ Ud and computing S(x, y).

We say S is a (k, ε) somewhere random extractor if for every distribution X which
is a k-source, {B1, . . . , Bb} is a b-block (m, ε) somewhere random source.

Similar to our definition of dispersers, given a (k, ε)-extractor or somewhere ran-
dom extractor E with uniform seed length d whose output length ism, the entropy loss
of the extractor is ∆(E) = k + d−m.

Given a random source with k min-entropy, a (k, ε)-extractor outputs a single dis-
tribution that is ε close to uniform. In contrast, a somewhere random extractor may
output many (possibly correlated) distributions with the guarantee that at least one
of them (and possibly only one) is ε close to uniform. Thus, a somewhere random
extractor is weaker than an extractor.

2.4 Reductions
As stated earlier, we will construct a disperser using a somewhere random extractor.
The following lemmas show the relation between extractors, somewhere random ex-
tractors and dispersers.

7

2.4.1 Extractors to dispersers

We first present a straightforward reduction from extractors to dispersers:

Lemma 4. Given E : {0, 1}n × {0, 1}d → {0, 1}m, a (k, ε)-extractor, one can con-
struct a (K = 2k, ε)-disperserG = (V1, V2, E) where |V1| = N = 2n, |V2| = M = 2m

of degree D = 2d

Proof. Identify V1 with the set {0, 1}n and V2 with {0, 1}m. For each x ∈ {0, 1}n , y ∈
{0, 1}d such that E(x, y) = z add the edge (x, z) to G. Clearly, this is a D regular
bipartite graph.

Now, let W ⊆ V1 be a set of size |W | ≥ K. The uniform distribution over W is
a k-source, thus E(W,Ud) is ε-close to uniform and misses at most an ε-fraction of
{0, 1}m. It follows that |Γ(W)| ≥ (1− ε)M

2.4.2 Somewhere random extractors to dispersers

Every (k, ε)-extractor is also a somewhere random extractor outputting a single block
with a selector Y such that Pr[Y = 0] = 0. Thus in a sense a somewhere random
extractor is weaker then an extractor. The following lemma shows that a somewhere
random extractor is still a stronger object than a disperser:

Lemma 5. Given S : {0, 1}n × {0, 1}d → ({0, 1}m)
b, a (k, ε)-somewhere random

extractor, one can construct a (K = 2k, ε)-disperser G = (V1, V2, E) where |V1| =
N = 2n, |V2| = M = 2m of degree b ·D = b · 2d

Proof. Identify V1 with the set {0, 1}n and V2 with {0, 1}m. For each x ∈ {0, 1}n , y ∈
{0, 1}d write S(x, y) = S1(x, y)◦· · ·Sb(x, y) = z1◦· · ·◦zb. Add the edges (x, z1), . . . , (x, zb)
to G. It is easy to see that this is a b ·D regular bipartite graph.

Again, letW ⊆ V1 be a set of size |W | ≥ K. As S(W,Ud) is a somewhere random
source we have a selector function Y for it. Now, let i ∈ [b] such that Pr[Y = i] > 0.
By a similar argument to that in Lemma 4 even if we restrict the edges of G to the ith
block of the output (that is, we connect x and Si(x, y) for any x ∈ {0, 1}n , y ∈ {0, 1}d)
the set Γ(W) misses at most an ε-fraction of the vertices in V2

3 Top-down structure of the proof
First, given a source X and a set of requirements z1, . . . , z`, we give a combinatorial
lemma which shows that if we are willing to “pay a little extra” in the entropy placed
on X then there is a small family of segmentations F of the interval [n] such that at
least one such segmentation will split the input into ` blocks, where the ith block has
at least zi bits of entropy. The extra cost in this stage accounts for the polylogarithmic
entropy loss of our final somewhere random extractor.

8

Theorem 4. Suppose k ≥
(∑`

j=1 zj + w
)
· 2` + z0 + w for some positive values

k, `, n, zj, w. Then there is a family F of segmentations of [1..n] into `+ 1 blocks that
is (k, [z0, z1, . . . , z`], w) good such that the size of F is at most n3.

We give the proof of Theorem 4 in Section 4.
Next, we show that applying appropriate block-wise extractors over a family of

segmentations gives a somewhere-random extractor:

Theorem 5. Suppose for n, ε = ε(n) > 0 and k = k(n) the following holds:

• There exists an explicit family F of segmentations of [1..n] into ` = `(n) blocks
that is (k, [z1, . . . , z`], w) good, for w = log(4n

ε
).

• There exists an explicit ((z′1, . . . , z
′
`), ε) block-wise extractor Eπ : {0, 1}n ×

{0, 1}d → {0, 1}m for z′j = zj − 2 log 1
ε
− log 4|F | − log 2`.

Then there exists an explicit (k, ε)-somewhere random extractor:

S : {0, 1}n × {0, 1}d → ({0, 1}m)|F |

Plugging the block-wise extractor of Lemma 3 and the family of segmentations
of Theorem 4 into Theorem 5 gives Theorem 1. Applying a condensing step on the
somewhere random extractor of Theorem 1 gives Theorem 2. For completeness, we
give the calculations for Theorem 1 in Appendix C and for Theorem 2 in appendix B.

4 A small family of segmentations

Lemma 6. Suppose k
2`
−
∑`

j=1 zj ≥ w for some positive values k, `, n, zj, w. Then
there is a family F of segmentations of [n] into ` blocks that is (k, [z1, . . . , z`], w) good
such that the size of F is at most n2.

Proof. We assume wlog that n is a power of 2 (otherwise we can add dummy elements
of weight zero), and consider the elements in [1, ..., n] as the leaves of a full binary tree.
For an inner node v we denote by dom(v) the leaves of the subtree rooted in v (note that
this is a consecutive interval). We define for both leaves and intervals the appropriate
weight function:

• wt(v) =
∑

i∈dom(v) p(i)

• wt(Bj) =
∑

i∈Bj p(i)

We now give the construction of F :

• For each path from the root to a leaf P = (v1, ..., vlgn) take all subsets of size
`− 1 from P

9

• For each such subset, each vj puts a partition point in the middle of dom(vj)
(e.g. - the root partitions the interval into [1..n

2
], [n

2
+1..n]). These `−1 partition

points thus induce an `-partition of [1..n]

Notice that there are exactly n paths in the tree, so

|F | = n ·
(

lgn
`−1

)
≤ n · 2lgn = n2

Now fix a weight function p : [1..n]→ [0..w] such that
∑

i p(i) = k. We will show
that there exists a π ∈ F such that ∀j :

∑
i∈Bj p(i) ≥ zj . We run Algorithm 1 and

construct a set Good of good vertices.
Algorithm 1: Vertex labeling

Input: T, p, (z1, ..., z`)
Output: Good

1 Initializations: v ← root(T), Good = {1, n}, tl = tr = 0
2 while v is not a leaf do
3 q ← mid(v)
4 Let a, b ∈ Good be closest to q s.t a < q < b
5 if heavy son(v) = left(v) and wt([q + 1..b]) ≥ z`−tr then
6 Good← Good ∪ {v}; tr ← tr + 1
7 else if heavy son(v) = right(v) and wt([a..q]) ≥ ztl+1

then
8 Good← Good ∪ {v}; tl ← tl + 1
9 v ← heavy son(v)

10 end
11 return Good

For every t ≥ 2, After Algorithm 1 finds t good vertices Goodt, the vertices in
Goodt induce a partition into t− 1 blocks. Of these blocks, t− 2 blocks B1, . . . , Bt−2

will never be touched again and we call them inactive blocks. We order these blocks
by the order in which they were created. The only block which could change (the
active block) is the one spanned by the heavy son of the latest good vertex. We further
denote by wj the required weight of block Bj , i.e., if Bj is the t` block from the left
than wj = zt` , and if it is the tr block from the right than wj = z`−tr+1. We claim:

Claim 7. Using the above notation, for every t ≥ 2, it holds that

k −
t−2∑
j=1

wt(Bj) ≥
k

2t−2
−

t−2∑
j=1

wj

Proof. By induction on t. t = 2 is trivial. Assume for t and prove for t + 1.
Suppose the t + 1 block was created when vi was added to Good. Wlog, assume
vi+1 = heavy son(vi) is the right son of vi. Let a < q < b be as in Algorithm 1. The
active block is exactly the leaves spanned by the heavy son vi+1, thus, by the induction

10

hypothesis,

wt(vi+1) = k −
t−1∑
j=1

wt(Bj)

= k −
t−2∑
j=1

wt(Bj)− wt(Bt−1)

≥ k

2t−2
−

t−2∑
j=1

wj − wt(Bt−1)

Next we note that wt(Bt−1) is composed of the lighter half of dom(vi) and an interval
which was lighter than wt−1, so wt(Bt−1) ≤ wt(vi)

2
+ wt−1 and therefore

wt(vi+1) ≥ k

2t−2
−

t−2∑
j=1

wj −
(

wt(vi)

2
+ wt−1

)

=
k

2t−2
−

t−1∑
j=1

wj −
wt(vi)

2
.

Thus, wt(vi)
2

+ wt(vi+1) ≥ k
2t−2 −

∑t−1
j=1wj . As vi+1 is the heavy son vi we have

wt(vi+1) ≥ wt(vi)
2

and 2 · wt(vi+1) ≥ wt(vi)
2

+ wt(vi+1). Hence,

wt(vi+1) ≥ 1

2

(
k

2t−2
−

t−1∑
j=1

wj

)
≥ k

2t−1
−

t−1∑
j=1

wj

concluding the proof of the claim.

Next, we claim that there are at least ` + 2 good vertices in Pheavy. Suppose not.
Then there are at most t ≤ `+1 good vertices and let vheavy be the heavy son of the last
good vertex. Wlog, let us assume t = `+ 1. We know that the inactive blocks defined
by these vertices B1..Bt−2 have tl blocks covering a prefix [1..a] and tr covering a
suffix [b..n] and t` + tr = t− 2 ≤ `− 1, and the remaining block B = [a + 1..b− 1]
which is spanned by the leaves of v has

wt(B) = wt(vheavy) = k −
`−2∑
j=1

wt(Bj) ≥
k

2`−1
−

`−1∑
j=1

wj.

Let z be the element of {z1, . . . , z`} not covered by {w1, . . . , w`−1}. As k
2`
−
∑

j zj ≥
w, we have k

2`−1 = 2 k
2`
≥ 2

∑
j wj + 2w, and

wt(B) ≥ 2z + w. (1)

11

Now suppose the heavy path ends at the leaf q. Since we do not have any further
good vertices both wt([a + 1..q − 1]) < z and wt([q + 1..b − 1]) < z. Hence,
wt(B) = wt(vheavy) = wt([a + 1..b − 1]) ≤ z + w(q) + z. But w(q) < w, a
contradiction to Eq (1). Thus we have at least ` + 2 good vertices in Pheavy which
defined ` blocks B1, . . . , B` with wt(Bj) ≥ wj as desired

Having that, we prove Theorem 4:

Proof. As p(j) ≤ w for any j there exists an index i such that
∑i

j=0 p(j) ≥ z0 and∑n
j=i+1 p(j) ≥ k. By the lemma, we know that there exists a family F ′ of segmen-

tations of i + 1, . . . , n into ` blocks which is (k, [z1, . . . , z`], w)-good. Thus, for any
weight function pwe have a π ∈ F ′ which partitions p properly on the interval [i+1..n]
for z1, . . . , z`, that is to say that if π = B1, . . . B` then for every 1 ≤ j ≤ ` we have∑

i∈Bj p(i) ≥ zj . As additionally
∑i

j=0 p(j) ≥ z0, we get that B0 = [1..i], B1, . . . B`

is a proper partition for p on the entire interval [1..n]. Therefore we can simply output
for each π ∈ F ′ and each i ∈ n the segmentation B0 = [1..i]◦π. If we denote by F ′[a..b]
the segmentation family guaranteed for the interval [a..b] we get:

|F | =
n∑
j=1

|F ′[j..n]| ≤ n · |F ′[1..n]| ≤ n3

5 Using a family of segmentations to construct a somewhere-
random extractor

We now show how to use a block wise extractor, “extra” entropy and a family F of
segmentations to construct a somewhere random extractor which outputs |F | blocks:

Proof. (of Theorem 5) We define

S : {0, 1}n × {0, 1}d → ({0, 1}m)|F |

by simply running our somewhere random extractor over all partitions in F and out-
puting each one as a block. For a random variable X taking values x ∈ {0, 1}n and
τ ∈ F we denote by Xτ

i and xτi the ith block of X and x (respectively) as partitioned
by τ . Our somewhere random extractor works as follows:

Algorithm 2: The Somewhere Random Extractor S
Input: x ∈ {0, 1}n [input], y ∈ {0, 1}d [seed]

1 for τ ∈ F do
2 return Eπ(xτ1 ◦ · · · ◦ xτ` , y)
3 end

To see that S is a somewhere random extractor, let X be the distribution over
{0, 1}n with H∞(X) ≥ k. We need some notation:

12

• We say x ∈ X is rare if Pr[Xi = xi|x1, . . . , xi−1] ≤ ε
4n

for some i ∈ [n]. Notice
that by a union bound Pr[x is rare] ≤ n · ε

4n
= ε

4
.

• For a non-rare x ∈ X we define

qx(i) = Pr[Xi = xi|X1 = x1, . . . Xi−1 = xi−1], and,

px(i) = log
1

qx(i)
.

• Also set δ = ε
4|F | .

For a non-rare x, for every i ∈ [n], px(i) ≤ log(4n
ε

) = w, and therefore the weight
function px is px : [1..n] → [0..w]. Also, for every x,

∏
qx(i) = Pr[X = x] ≤ 2−k

and therefore
∑
px(i) ≥ k. Thus, by assumption, for every non-rare x there exists at

least one partition πx in F that is good for px. Let

Π = Π(x) =

{
0 x is rare
πx Otherwise

And let

• Rare0,π(b) be a boolean random variable getting value 1 iff Π(b) = π and
Pr[Π(x) = π] < δ.

• Rarej,π(b) for j ∈ [` − 1], be a boolean random variable getting value 1 iff
Π(b) = π and Pr[Π(x) = π | Xπ

1 = bπ1 , . . . , X
π
j = bπj] < ε

2`
· Pr[Π = π].

Let

Π′(x) =

{
π Π(x) = π 6= 0 and Rarej,π(x) = 0 for every 0 ≤ j ≤ `− 1.
0 Othewrwise

We advise the reader to think of Π as an initial selector and Π′ as a more refined
selector for S. The following claims show that if the initial selector chose a “not
unlikely” partition then it will “survive” the refined selector with high probability.

Claim 8. If Pr[Π = π] > δ then Pr[Π′ = π] > (1− ε
2
) · Pr[Π = π].

Proof. Fix π 6= 0 such that Pr[Π = π] = γ > δ. By definition of Π′,

Pr
x∈X

[Π′(x) = π] = Pr
x∈X

[Π(x) = π and
∧`−1
j=0 Rarej,π(x) = 0]

≥ Pr[Π = π]− Pr
x∈X

[∃`−1
j=1Rarej,π(x) = 1]

≥ Pr[Π = π]−
`−1∑
j=0

Pr
x∈X

[Rarej,π(x) = 1].

13

As Pr[Π = π] > δ we have Rare0,π(x) = 0 for all x with Π(x) = π. Now, define for
every j ∈ [`− 1] the set of j-block prefixes that can be extended to a word whose jth
block is rare:

Rπ,j = {cπ1 ◦ · · · ◦ cπj | ∃cπj+1 ◦ · · · ◦ cπ` : Π(c) = π ∧ Rarej,π(c) = 1}

Note that for any cπ1 ◦ · · · ◦ cπj ∈ Rπ,j we have by definition

Pr
x∈X

[Π(x) = π | xπ1 = cπ1 , . . . , x
π
j = cπj] <

ε

2`
· Pr
x∈X

[Π(x) = π]

we now claim that Prx∈X [Rarej,π = 1] ≤ ε
2`

Prx∈X [Π(x) = π]. This follows as
Prx∈X [Rarej,π = 1] is a convex sum of the probability that a prefix in Rπ,j is extended
to a word whose jth block is rare. Indeed

Pr
x∈X

[Rarej,π(x) = 1] =
∑

cπ1 ◦···◦cπj ∈Rπ,j

Pr
x∈X

[xπ1 = cπ1 , . . . , x
π
j = cπj]

Pr
x∈X

[xπj+1 = cπj+1, . . . , x
π
` = cπ` ,Π(x) = π,Rarej,π(x) = 1 | xπ1 = cπ1 , . . . , x

π
j = cπj]

≤
∑

cπ1 ◦···◦cπj ∈Rπ,j

Pr
x∈X

[xπ1 = cπ1 , . . . , x
π
j = cπj] Pr

x∈X
[Π(x) = π | xπ1 = cπ1 , . . . , x

π
j = cπj]

≤

 ∑
cπ1 ◦···◦cπj ∈Rπ,j

Pr
x∈X

[xπ1 = cπ1 , . . . , x
π
j = cπj]

· max
dπ1 ◦···◦dπj ∈Rπ,j

Pr
x∈X

[Π(x) = π | xπ1 = dπ1 , . . . , x
π
j = dπj]

≤ max
dπ1 ◦···◦dπj ∈Rπ,j

Pr
x∈X

[Π(x) = π | xπ1 = dπ1 , . . . , x
π
j = dπj]

<
ε

2`
· Pr
x∈X

[Π(x) = π]

And thus,

Pr[Π′ = π] ≥ γ −
`−1∑
j=1

γ · ε
2`
≥ γ(1− ε

∑̀
j=1

1

2`
) = γ(1− ε

2
).

Next, we show that the above implies:

Corollary 9.
Pr[Π′ = π|Π = π] ≥ 1− ε

2

14

Proof. We want to show that the “survival” probability of the refined selector is high,
that is to say that if Π = π 6= 0 then with significantly high probability Π′ = π as well.
Note that by the law of total probability

Pr[Π′ = π] =
∑
τ

Pr[Π′ = π ∧ Π = τ]

Since for any τ 6= π we have Pr[Π′ = π ∧ Π = τ] = 0 we get that Pr[Π′ = π] =
Pr[Π′ = π ∧ Π = π], thus:

Pr[Π′ = π|Π = π] =
Pr[Π′ = π ∧ Π = π]

Pr[Π = π]
≥ 1− ε

2

We now prove that the refined selector Π′ is indeed a selector function for S:

Claim 10. If Pr[Π′ = π] > 0 then (Xπ
1 ◦ · · · ◦Xπ

` |Π′ = π) is a (z′1, . . . , z
′
`) block-wise

source and therefore (Eπ(X,U) | Π′ = π) is ε-close to uniform.

Proof. Fix 1 ≤ j ≤ ` and bπ1 , . . . , b
π
j that can be extended to some b with Π(b) = π.

Since Π(b) = π we have that under the weight function p = pb the weight of Bπ
j is at

least zj . Consequently:

Pr[Xπ
j = bπj |Xπ

1 = bπ1 , . . . , X
π
j−1 = bπj−1] =

∏
i∈Bπj

Pr[Xi = bi|X1 = b1, . . . , Xi−1 = bi−1]

=
∏
i∈Bπj

qb(i) = 2
−

∑
i∈Bπ

j
pb(i) ≤ 2−zj .

Let γ = Pr[Π = π]. As Π′(b) = π 6= 0 we know that γ ≥ δ and Rarej−1,π(b) = 0,
i.e.,

Pr[Π = π|Xπ
1 = bπ1 , . . . , X

π
j−1 = bπj−1] ≥ ε

2`
· γ

Hence,

Pr[Xπ
j = bπj |Xπ

1 = bπ1 , . . . , X
π
j−1 = bπj−1,Π = π] ≤

Pr[Xπ
j = bπj |Xπ

1 = bπ1 , . . . , X
π
j−1 = bπj−1]

Pr[Π = π|Xπ
1 = bπ1 , . . . , X

π
j−1 = bπj−1]

,

≤ 2−zj

(ε/2`) · γ
≤ 2−zj

εδ
· 2` = 2−z

′
j ,

where we have used Pr[A | B,C] ≤ Pr[A | B]
Pr[C | B]

. The claim follows

Next, we show that Π′ 6= 0 with high probability:

15

Claim 11. Pr[Π′ = 0] ≤ ε

Proof. If Pr[Π = π] = γ > δ, then it follows from Corollary 9 that Pr[Π′ = 0|Π =
π] ≤ ε

2
. Letting F<δ = {π ∈ F | Pr[Π = π] < δ} and F≥δ = F\F<δ, we have:

Pr[Π′ = 0] ≤ Pr[Π = 0] + Pr[Π′ = 0 | Π 6= 0]

≤ ε

4
+
∑
π∈F

Pr[Π = π] Pr[Π′ = 0 | Π = π]

≤ ε

4
+
∑
π∈F<δ

Pr[Π = π] +
∑
π∈F≥δ

Pr[Π = π] Pr[Π′ = 0 | Π = π]

≤ ε

4
+
∑
π∈F<δ

δ +
∑
π∈F≥δ

Pr[Π = π] · ε
2

≤ ε

4
+ δ|F |+ ε

2
= ε.

By Claim 10 we know that Π′ is a proper selector function for S. By Claim 11 we
know that Pr[Π′ = 0] ≤ ε. We conclude that S is indeed a (k, ε)-somewhere random
extractor.

5.1 A note on the changes from [TS02]
5.1.1 Fixing the error

In the original paper, a step used in the proof of Claim 10 stated that

Pr[Xπ
j = bπj |Xπ

1 = bπ1 , . . . , X
π
j−1 = bπj−1,Π = π] ≤

Pr[Xπ
j = bπj |Xπ

1 = bπ1 , . . . , X
π
j−1 = bπj−1]

Pr[Π = π]

relying on the erroneous inequality Pr[A | B,C] ≤ Pr[A | B]
Pr[C]

for arbitrary random vari-

ables A,B,C. The correct inequality is Pr[A | B,C] ≤ Pr[A | B]
Pr[C | B]

.
To mend the argument, we have introduced a sequence of auxiliary random vari-

ables Rarej,π(b) for j ∈ [`− 1] which informally indicate that the selector Π chose an
unlikely segmentation π given the prefix Xπ

1 , . . . , X
π
j . We say b ∈ {0, 1}n is unlikely

(for a given j ∈ [`− 1]) if Π(b) = π and the probability to get π given the j − 1 prefix
of b is at most εj · Pr(Π = π). We choose the εj such that

∑
j εj is 1

2
ε.

The downside of the fix is an increase in the weight of z′j . We can think of the

discrepancy ratio log
z′j
zj

as the “extra entropy” we need to pay in order to get our
somewhere random extractor. In our case, this amounts to O(log 1

ε
+ log n + log `)

whereas the previous construction had a discrepancy of O(log 1
ε

+ log n). As ` ≤ n,
this is essentially the same (up to constant factors).

16

5.1.2 Streamlining the construction

Informally speaking, Theorem 5 states that given a block wise extractor that works
for block wise sources with entropy (z1, . . . , z`), if we are given a source with “a
little extra entropy” k ≥

∑`
i=1 zi then one can construct a (k, ε)-somewhere random

extractor. By plugging the parameters of Lemma 3 we essentially use a (z0, . . . , z`)
block wise source where z0 contains the bulk of our entropy and all other blocks which
contain (z1, . . . , z`) bits of entropy can be thought of as a supply of “auxiliary entropy”.
Theorem 4 then allows us to extract z0 bits of entropy with minimal entropy loss (as
we only incur an entropy loss on blocks 1, . . . , `).

The corresponding proof in [TS02] (Theorem 3, the composition lemma) has a
different structure. Using a somewhere random extractor S and an extractor E the
following composition takes place:

1. For any segmentation π of the source X into X1 ◦X2 let:

(a) S1,π, . . . , St,π = S(X2, U)

(b) E1,π, . . . , Et,π = E(X1, S1,π), . . . , E(X1, St,π)

Where U is a truly random seed.

2. The output of the composition is

E ◦ S(X) = E1,π1 , . . . , Et,π1 ◦ E1,π2 , . . . , Et,π2 ◦ . . . , ◦E1,πn , . . . , Et,πn

I.e., for each segmentation πi of X into X[1,i], X[i+1,n] output the composition of
E ◦ S when X is segmented according to πi

It is then proved in a fairly complicated and technical manner that E ◦S is in itself
a somewhere random extractor. Finally, the proof shows that one of the segmentations
yields an X1 with z0 bits of entropy in X1 and X2 which is a (z1, . . . , z`) blocks wise
source yielding the necessary extraction properties.

By extracting the entropy from all blocks including z0 using a single somewhere
random extractor we were able to simplify the construction and the proof of correctness
of Theorem 5. By using state of the art extractors we were able to extract the entropy
from the zeroth block with minimal entropy loss (see appendix A).

6 Acknowledgments
We thank Arkadev Chattopadhyay, Michael Langberg, Shi Li and Atri Rudra for point-
ing out the error in the proof of [TS02]. We thank Ronen Shaltiel for pointing out the
simple proof of theorem 9.

17

References
[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak

randomness and probabilistic communication complexity. SIAM Journal
on Computing, 17(2):230–261, 1988.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbal-
anced expanders and randomness extractors from parvaresh–vardy codes.
Journal of the ACM (JACM), 56(4):20, 2009.

[Nis94] Noam Nisan. RL in SC. Computational Complexity, 4(1):1–11, 1994.

[NTS99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and
new constructions. Journal of Computer and System Sciences, 58(1):148–
173, 1999.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM
(JACM), 55(4):17, 2008.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM Journal on Discrete
Mathematics, 13(1):2–24, 2000.

[Sip88] Michael Sipser. Expanders, randomness, or time versus space. Journal of
Computer and System Sciences, 36(3):379–383, 1988.

[SSZ98] Michael Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit OR-
dispersers with polylogarithmic degree. Journal of the ACM (JACM),
45(1):123–154, 1998.

[SZ99] Aravind Srinivasan and David Zuckerman. Computing with very weak
random sources. SIAM Journal on Computing, 28(4):1433–1459, 1999.

[TS02] Amnon Ta-Shma. Almost optimal dispersers. Combinatorica, 22(1):123–
145, 2002.

[TSUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-
less condensers, unbalanced expanders, and extractors. Combinatorica,
27(2):213–240, 2007.

A Constructing the Block Wise Extractor
We now prove Lemma 3. In section A.1 we first show we can extractm = Ω(α` log n

ε
),

and then in section A.2 we show that if z1 = Ω(log2 n
ε
) then m can be much larger.

Finally, we compare the block wise extractor we give to the one constructed in [TS02]
in section A.3.

18

A.1 The [SZ99] block wise extractor
Proof. (of Lemma 3, first part) Our proof will use the following extractor which is
based on the improved Leftover Hash Lemma presented in [SZ99] :

Theorem 6. (Lemma 3.2 in [SZ99]) There exists a constant Csz > 1 such that for
every ε > 0,∆ ≥ 2 log 1

ε
+ 2, k ≥ ∆ there exists a (k, ε)-extractor

F : {0, 1}n × {0, 1}d → {0, 1}k−∆+d

where d = Csz(log n+ k)

We will also require the following technical claim, the proof of which is given in
the next section:

Claim 12. Let c ≥ 4, α = 1 + 1
c·Csz and denote by f(i) = αic log n

ε
. Then for any

integer i ≥ 0:

f(i) + Csz(log n+ f(i))− 2 log
1

ε
− 2 ≥ Csz (log n+ f(i+ 1))

Set c ≥ 4, r` = Csz(log n+ z`) and α = 1 + 1
c·Csz . We now show by induction on `

that we have a block wise extractor with output length at leastCsz(log n+α`+1c log n
ε
).

For the base case, ` = 0, by assumption z0 ≥ c log n
ε

and r` = Csz(log n+ z0) thus by
Theorem 6 we have a (z0, ε)-extractor

E : {0, 1}n × {0, 1}r` → {0, 1}m=z0+r`−2 log 1
ε
−2

where m ≥ Csz(log n+ αc log n
ε
) by Claim 12.

Next, set ε′ = ε
2

and let

E` : {0, 1}n × {0, 1}r` → {0, 1}m`

be a ([z0, . . . , z`], ε
′) block wise extractor guaranteed by the induction hypothesis where

m` ≥ Csz(log n + α`+1c log n
ε′

). Consider a [z0, . . . , z`] block wise source X` where
z`−i ≥ αic log n

ε′
and note that |E`(X`, Ur`)− Um`| ≤ ε′.

Now, let X be a z-source where z ≥ α`+1c log n
ε′

. Again, by Theorem 6 we have a
(z, ε′) extractor

E : {0, 1}n × {0, 1}d → {0, 1}m′=z+d−2 log 1
ε′−2

where d = Csz(log n+ z). It follows by corollary 2 that

|E(X,E`(X`, Ur`))− Um′ | ≤ 2 · ε′ = ε

Finally,

m′ ≥ α`+1c log
n

ε′
+ Csz(log n+ α`+1c log

n

ε′
)− 2 log

1

ε′
− 2

which is at least Csz(log n + α`+2c log n
ε′

) by Claim 12. Letting F (X ◦ X`, Ur`) =
E(X,E`(X`, Ur`)) be our block wise extractor, the claim follows

19

Proof. (of Claim 12) A straightforward computation shows:

f(i) + Csz(log n+ f(i))− 2 log
1

ε
− 2 =

Csz

(
log n+

(
1 +

1

Csz

)
f(i)−

2 log 1
ε

+ 2

Csz

)
≥

Csz

(
log n+

(
1 +

1

Csz

)
f(i)− 3 log

n

ε

)
≥

Csz

(
log n+

(
1 +

1

Csz
− 3

c

)
f(i)

)
=

Csz

(
log n+

(
1 +

c− 3

c · Csz

)
f(i)

)
≥

Csz

(
log n+

(
1 +

1

c · Csz

)
f(i)

)
=

Csz

(
log n+ f(i+ 1)c log

n

ε

)
Where we use c ≥ 4 for the last inequality

A.2 Extracting all of the remaining entropy
Next, we complete the proof of Lemma 3 showing how to extract the remaining entropy
in the first block with optimal loss.

Proof. (of Lemma 3, second part)
We now assume z1 = Ω(log2 n

ε
), we want to extract the entropy from z0 with

optimal loss, and for that we use the following extractor, due to [GUV09]:

Theorem 7. (Theorem 4.21 in [GUV09]) There exists a constant Cguv such that for
all positive integers n ≥ k and all ε > 0, there is an explicit (k, ε)-extractor FGUV :
{0, 1}n × {0, 1}d → {0, 1}m where m = k + d − 2 log 1

ε
− O(1) and d = log n +

Cguv(log k · log(k
ε
)).

Now, let
E : {0, 1}n × {0, 1}r` → {0, 1}m′=2·Cguv log2 n

ε′

be a ([z1, . . . , z`], ε
′) block wise extractor guaranteed by the previous section (note:

m′ ≥ log n+ Cguv(log k · log(k
ε
)) for any k ≤ n), and let

FGUV : {0, 1}n × {0, 1}d → {0, 1}m

be the (z0, ε
′)-extractor guaranteed by Theorem 7. As before, if X` is a [z1, . . . , z`]

block wise source and X is a z0 source we use corollary 2 to see that:

|FGUV (X,E(X`, Ur`))− Um| ≤ 2 · ε′ = ε

20

and m = z0 + d − 2 log 1
ε
− O(1) > z0 − 2 log 1

ε
− O(1) as required. Again, letting

F (X◦X`, Ur`) = FGUV (X,E`(X`, Ur`)) be our block wise extractor, the claim follows

A.3 Comparing the block wise extractor to [TS02]
In the terminology of Lemma 3, the block wise extractor shown in [TS02] (which is
based on the construction of [SZ99]) does not deal with the the block z0, namely, it is
a ([z1, . . . , z`], ε) block wise extractor:

F : {0, 1}n × {0, 1}r` → {0, 1}m

with m ≥ Ω(α` log n
ε
) and r` = O(z` + log n). The task of extracting the bulk of the

entropy which is placed in the zeroth block was then delegated to a different part of
the proof (see section 5.1.2 for more details).

By using the [GUV09] extractor on the zeroth block we were able to simplify our
construction as detailed in section 5.1.2.

B Applying the initial condensing step
We will use the following theorem of [GUV09]:

Theorem 8. (Theorem 4.3 in [GUV09] with α = 1, kmax = k) For any k ≤ n and
ε > 0 there exists a k →ε k + d lossless converter

C : {0, 1}n × {0, 1}d → {0, 1}m

where d = 2 log nk
ε

+O(1) and m = 2(d+ k).
Id est, given a k-source X over n bits, the output C(X,Ud) is ε-close to some

(k + d)-source over m bits.

With this, we’re ready to prove theorem 2.

Proof. (of Theorem 2)
Let ε > 0, n ≥ k ≥ c log n

ε
for some contant to be specified later. We will need to

compose a condenser with a somewhere random extractor.

B.1 The condenser
Let ε1 = ε/2, k1 = k + c1 log3 k

ε1
, d1 = c2 log nk1

ε1
+ O(1) for some constants c1, c2

such that

• c > 2c2 (observe that as k1 ≤ nwe know that k > d1 and therefore also k1 > d1)

• c2 > 2

21

And let
C1 : {0, 1}n × {0, 1}d1 → {0, 1}2(k1+d1)

be a k1 →ε1 k1 + d1 lossless condenser guaranteed by theorem 2.

B.2 The somewhere random extractor
Let ε2 = ε/2, k2 = k1 + d1, n2 = 2(k1 + d1), d2 = O(log n2

ε2
) such that there exists a

(k2, ε2)-somewhere random extractor

S2 : {0, 1}n2 × {0, 1}d2 → ({0, 1}m2)
n3
2

where m2 = k2 − 2 log 1
ε2
−O(1) = k2 − 2 log 1

ε
−O(1) guaranteed by theorem 1

B.3 The composition

We now claim that S : {0, 1}n × {0, 1}d1+d2 → ({0, 1}m2)
n3
2 defined by

S(X,Ud1 ◦ Ud2) = S2(C1(X,Ud1), Ud2)

is a (k1, ε)-somewhere random extractor.
To see this, let X be a k1-source over n bits. By the properties of C1, we know

that C1(X,Ud1) is a distribution over 2(k1 + d1) bits which is (ε/2)-close to a k1 + d1

source.
We want to show that a k2 = (k1 + d1)-source has sufficient entropy for S2. Id est,

we need to show that

k1 + d1 = k + c1 log3 k

ε1

+ d1 ≥ k + csre log3 n2

ε2

for the constant csre required by the somewhere random extractor. As ε1 = ε2 and
n2 = 2(k1 + d1) = 2k2 we can clearly choose c1 such that the above holds.

Since C1(X,Ud1) is ε1-close to a source with sufficient entropy for S2, we see by
corollary 2 that S(X,Ud1 ◦ Ud2) is a (k1, ε1 + ε2 = ε)-somewhere random extractor.

B.4 The parameters we achieve
The entropy we require is k1 = k+O(log3 k

ε
), the uniform seed we require has length

d1 + d2 = O(log nk1
ε1

+ log n2

ε2
) +O(1) = O

(
log n

ε

)
and the entropy loss we incur is

k1 + d1 + d2−m2 = k1 + d1 + d2− (k1 + d1− 2 log
1

ε
−O(1)) = d2 + 2 log

1

ε
+O(1)

As d2 = O
(

log n2

ε2

)
and n2 = 2(k1 + d1) ≤ 4k1 = O

(
k + log3 k

ε

)
we see that

the entropy loss ∆ is of order ∆ = O
(

log
(
k+log3 k

ε

ε

))
+ O(1). As k + log3 k

ε
=

22

O(k + log3 k + log3 1
ε
) = O(k + log3 1

ε
) we bound the loss by

∆ = O

(
log

(
k + log3 1

ε

)
+ log

1

ε

)
= O

(
log k + log

1

ε

)
= O

(
log

k

ε

)
Finally, the length of each block we output is m2 = k2 − 2 log 1

ε
− O(1) = k1 +

d1 − 2 log 1
ε
− O(1) = k1 + O

(
log n

ε

)
and the number of blocks we output is n3

2 =
(2(k1 + d1))3 ≤ (4k1)3 = O(k3

1)

C Plugging the parameters for theorem 1
Proof. (of Theorem 1) We want to use Theorem 5 and for that we need both a some-
where random extractor and a family of segmentations. For the somewhere random
extractor, we set the parameters as specified in the proof of Lemma 3: Let ` =
log
(
2 · Cguv · log n

ε

)
, for 0 ≤ i < ` : z′`−i = 2ic log n

ε
and z′0 = k where we think

of k as the number of bits we wish to extract and
∑`

i=1 z
′
i as “auxiliary” bits.

Now, as z′1 = 2 · Cguv · log2 n
ε
, by Lemma 3 we have a ([z′0, . . . , z

′
`], ε)-block wise

extractor:
E : {0, 1}n × {0, 1}r` → {0, 1}m

with m ≥ k − 2 log 1
ε
−O(1).

Next, for 0 ≤ i ≤ ` define zi = z′i + 2 log 1
ε

+ log 4|F | + log 2` and finally, let

k′ = z0 + w +
(∑`

i=1 zi + w
)
· 2` and observe that by Theorem 4 we have a family

F of size n3 which is (k′, [z0, . . . , z`], w) good where w = log(4n
ε

). Next, we claim
that k′, the amount of entropy which we will require for our final somewhere random
extractor is not too high:

Claim 13. k′ = k +O(log3 n
ε
)

23

Proof. Again, a simple computation shows that for some constants c1, c2, c3:

k′ = z0 + w +

(∑̀
i=1

zi + w

)
· 2`

= k + w +

(∑̀
i=1

z′i + `

(
2 log

1

ε
+ log 4|F |+ log 2`

)
+ w

)
· 2`

≤ k + w +

(∑̀
i=1

z′i + c1

(
log

n

ε
+ log log log

n

ε

))
· 2`

= k + w +

(∑̀
i=1

2i · c log
n

ε
+ c1

(
log

n

ε
+ log log log

n

ε

))
· 2 · Cguv log

n

ε

≤ k + w +
(
c2 · c log2 n

ε
+ c1

(
log

n

ε
+ log log log

n

ε

))
· 2 · Cguv log

n

ε

≤ k + c3 log3 n

ε

Together with the block wise extractor E, the segmentation family F and Claim
13, by Theorem 5 we can construct a (k′, ε)-somewhere random extractor as needed

D A simple construction with polylogarithmic entropy
loss

In this section we will show a simple construction due to Ronen Shaltiel for dispersers
with polylogarithmic entropy loss.

Theorem 9. There exists a constant c such that for any ε > 0 and c log n
ε
< k ≤ n

there exists a (k1, ε)-somewhere random extractor

S : {0, 1}n × {0, 1}d → ({0, 1}m)
O(k1)

where k1 = k+O
(
log k · log k

ε

)
, d = O

(
log n

ε

)
,m = k+O

(
log k · log k

ε

)
. Further-

more, the entropy loss of S is ∆(S) = O
(
log k · log k

ε

)
Proof. The technique we use is due to [NTS99]. The idea behind it is that given two
(k1, ε1) and (k2, ε2)-extractors E1, E2 and a (k1 + k2 + s)-source X (where s is some
extra “safety” bits of entropy) there is a segmentation ofX into two partsX[1,i], X[i+1,n]

such that X[1,i] is a k1 source and X[i+1,n] is a k2 source. With this, by corollary 2,
E2(X[1,i], E1(X[i+1,n], U)) is roughly (ε1 + ε2)-away from uniform. Since we don’t
know the precise value of i, we run our composition on all is and get a somewhere
random extractor with n output blocks. The process is made precise in the following
composition lemma:

24

Lemma 14. (Theorem 3 in [NTS99]) Let E1 : {0, 1}n × {0, 1}t1 → {0, 1}t2 and
E2 : {0, 1}n × {0, 1}t2 → {0, 1}m be (respectively) (k1, ε1) and (k2, ε2)-extractors,
then for any s > 0 there exists a (k1 + k2 + s, ε1 + ε2 + 8n · 2−s/3)-somewhere random
extractor

S : {0, 1}n × {0, 1}t1 → ({0, 1}m)
n

Let ε′ = ε/4 and let X be a k1-source where k1 = k + c1 log k · log k
ε′

+ s for
some sufficiently large constant c1 and s to be specified later. We will first condense
our source and then apply the lemma on two extractors we present shortly.

D.1 The condenser
We will use the condenser of theorem 8. Let

C : {0, 1}n × {0, 1}d1 → {0, 1}2(d1+k1)

be a k1 →ε′ k1 + d1 condenser where d1 = O(log n
ε′

). We again pick k ≥ c∗ log n
ε′

for
some constant c∗ such that k1 ≥ d1.

D.2 The extractors
We will need two extractors. The first is given by the following theorem:

Theorem 10. (Theorem 4.19 in [GUV09] with α = 1/2) There exists a constant c such
that for all positive integers n ≥ k and all ε > 0, there is an explicit (k, ε)-extractor
EGUV : {0, 1}n × {0, 1}d → {0, 1}m where m = k/2 and d = log n+ c log(k

ε
).

With the above, let

E1 : {0, 1}2(d1+k1) × {0, 1}d2 → {0, 1}
c1
2

log k·log k
ε′

be a (c1 log k · log k
ε′
, ε′)-extractor where d2 = log 2(d1 + k1) + c log

(
c1 log k·log k

ε′
ε′

)
=

O(log k
ε′

).
Our second extractor will use theorem 7 again. Let

E2 : {0, 1}2(d1+k1) × {0, 1}d3 → {0, 1}m

be a (k, ε′)-extractor where d3 = log 2(d1 + k1) + Cguv log k log k
ε′

and m = k + d3 −
2 log 1

ε′
−O(1).

D.3 The composition
Given a k1 source X , let Z = C(X,Ud1) be the output of the condenser. We let
c1 = 2Cguv and our somewhere random extractor will output:

S(X,Ud1 ◦ Ud2) = E2(Z,E1(Z,Ud2))

25

Since Z is ε′-close to a (d1 + k1)-source it follows by corollary 2 and lemma 14
that S is a (k1, 3ε

′ + 16(d1 + k1) · 2−s/3). As d1 + k1 ≤ 2k1 if we pick s = 3 · log 32k1
ε′

we get that
3ε′ + 16(d1 + k1) · 2−s/3 ≤ 4ε′ = ε

and thus S is a (k1, ε)-somewhere random extractor.

D.4 The parameters
We require k1 = k+c1 log k · log k

ε′
+s bits of entropy for our source, d1 bits of entropy

for the uniform seed of C and d2 bits of entropy for the uniform seed of E1. We first
note that indeed d1 + d2 = O(log n

ε
). Next, S has 2(d1 + k1) ≤ 4k1 output blocks and

finally, for the entropy loss, the output of the somewhere random extractor has length
k + d3 − 2 log 1

ε′
− O(1) = k + log 2(d1 + k1) + c1

2
log k log k

ε′
− 2 log 1

ε
− O(1) and

thus the loss is:

k+ c1 log k · log
k

ε′
+ d1 + d2− (k+ log 2(d1 + k1) +

c1

2
log k log

k

ε′
− 2 log

1

ε
−O(1))

We see that apart from the loss of c1
2

log k log k
ε′

all other factors in the loss are of order
O(log k

ε
) and we are done.

26

	Introduction
	Deterministic construction and low degree
	Extraction and entropy loss
	Previous works and our contribution
	Main results: asserting the results of TS02
	Organization

	Preliminaries and background
	Statistical Distance and Sources
	Extractors
	Somewhere-random extractors
	Reductions
	Extractors to dispersers
	Somewhere random extractors to dispersers

	Top-down structure of the proof
	A small family of segmentations
	Using a family of segmentations to construct a somewhere-random extractor
	A note on the changes from TS02
	Fixing the error
	Streamlining the construction

	Acknowledgments
	Constructing the Block Wise Extractor
	The SZ99 block wise extractor
	Extracting all of the remaining entropy
	Comparing the block wise extractor to TS02

	Applying the initial condensing step
	The condenser
	The somewhere random extractor
	The composition
	The parameters we achieve

	Plugging the parameters for theorem 1
	A simple construction with polylogarithmic entropy loss
	The condenser
	The extractors
	The composition
	The parameters

