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Abstract

In the past few years there was a growing interest in proving the security of cryptographic proto-

cols, such as key distribution protocols, from the sole assumption that the systems of Alice and Bob

cannot signal to each other. This can be achieved by making sure that Alice and Bob perform their

measurements in a space-like separated way (and therefore signalling is impossible according to the

non-signalling postulate of relativity theory) or even by shielding their apparatus. Unfortunately, it

was proven in [11] that, no matter what hash function we use, privacy ampli�cation is impossible if

we only impose non-signalling conditions between Alice and Bob and not within their systems.

In this letter we reduce the gap between the assumptions of [11] and the physical relevant assump-

tions, from an experimental point of view, which say that the systems can only signal forward in time

within the systems of Alice and Bob. We consider a set of assumptions which is very close to the

conditions above and prove that the impossibility result of [11] still holds.
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Chapter 1

Introduction and Contribution

1.1 Non-signalling cryptography

In the past few years there was a growing interest in proving the security of cryptographic protocols,

such as quantum key distribution (QKD) protocols, from the sole assumption that the system on

which the protocol is being executed does not allow for signalling between Alice and Bob. One way

to make sure that this assumption holds is for Alice and Bob to have secured shielded laboratories,

such that information cannot leak outside. It could also be ensured by performing Alice's and Bob's

measurements in a space-like separated way; this way, relativity theory predicts the impossibility of

signalling between them. For this reason, such cryptographic protocols are sometimes called �relativistic

protocols�. Since the condition that information cannot leak outside is a necessary condition in any

cryptographic protocol (otherwise the key could just leak out to the adversary, Eve), basing the security

proof on this condition alone will mean that the protocol has minimal assumptions.

We consider families of protocols which have two special properties. First, the security of the

protocols is based only on the observed correlations of Alice's and Bob's measurements outcomes and

not on the physical apparatus they use. I.e., the protocols are device-independent [17, 19]. In device-

independent protocols, we assume that the system of Alice and Bob was prepared by the adversary

Eve. Note that although the system was created by Eve, Alice and Bob have to be able to make sure

that information does not leak outside by shielding the systems. Alice and Bob therefore perform some

(unknown) measurements on their system and privacy should be concluded only from the correlations

of the outcomes.

Second, in the protocols that we consider, the adversary is limited only by the non-signalling

principle and not by quantum physics (i.e., super-quantum adversary). By combining these two prop-

erties together we can say that quantum physics guarantees the protocol to work, but the security is

completely independent of quantum physics.
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1.2 Systems and correlations

For two correlated random variables X,U over Λ1 × Λ2, we denote the conditional probability distri-

bution of X given U by PX|U (x|u) = Pr(X = x|U = u).

A bipartite system is de�ned by the joint input-output behavior PXY |UV (see Figure 1.2.1).

U

X

PXY |UV

V

Y

Figure 1.2.1: A bipartite system

In a system PXY |UV U and X are usually Alice's input and output respectively, while V and Y are

Bob's input and output. We denote Alice's interface of the system by X(U) and Bob's interface by

Y (V ). In a similar way, when considering a tripartite system PXY Z|UVW Eve's interface of the system

is denoted by Z(W ).

We are interested in non-local systems - systems which cannot be described by shared randomness

of the parties. Bell proved in [3] that entangled quantum states can display non-local correlations under

measurements. Bell's work was an answer to Einstein, Podolsky, and Rosen's claim in [1] that quantum

physics is incomplete and should be augmented by classical variables determining the behavior of every

system under any possible measurement. In this letter we deal with a speci�c type of Bell inequality,

called the CHSH inequality after [7].

We can think about the CHSH inequity as a game. In the CHSH game Alice and Bob share a

bipartite system PXY |UV . Alice gets a random input U , Bob gets a random input V and the goal is

that the outputs of Alice and Bob, X and Y respectively, will satisfy X ⊕ Y = U ·V . For all local

systems the probability of winning the game satis�es Pr[X ⊕ Y = U ·V ] ≤ 0.75. This can be easily

seen from the fact that only three out of the four conditions represented by Pr[X ⊕ Y = U · V ] = 1

can be satis�ed together. If a system violates the inequality then it is non-local.

De�nition 1.2.1. (CHSH non-locality). A system PXY |UV is non-local if
∑
u,v

1
4 Pr[X⊕Y = u·v] > 0.75.

When measuring entangled quantum states, one can achieve roughly 85%; this is a Bell inequality

violation. The maximal violation of the CHSH inequality, i.e.
∑
u,v

1
4 Pr[X ⊕ Y = u · v] = 1 for any u, v,

is achieved by the following system, called a Popescu-Rohrlich box, or a PR-box [20].
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Figure 1.2.2: PR-box

De�nition 1.2.2. (PR-box). A PR box is the following bipartite system PXY |UV : For each input

pair (u, v), the random variables X and Y are uniform bits and we have
∑
u,v

1
4 Pr[X ⊕ Y = u · v] = 1

(see Figure 1.2.2).

As seen from Figure 1.2.2 the outputs are perfectly random, and since the correlations are non-local,

they cannot be described by pre-shared randomness. I.e., PR-boxes correspond to perfect secrecy. This

implies that PR-boxes could have been a good resource for cryptographic protocols. Unfortunately,

perfect PR-boxes do not exist in nature; as was proven by Tsirelson [6], quantum physics is non-local,

but not maximally. Therefore, for a protocol which can be implemented using quantum systems, we

should consider approximations of PR-boxes, or PR-boxes with some error. For example, an 85%-

approximations can be achieved with maximally entangled qubits. For a more general treatment we

can de�ne the following.

De�nition 1.2.3. (Unbiased PR-box with error ε). An unbiased PR-box with error ε is the following

bipartite system PXY |UV : For each input pair (u, v), the random variables X and Y are uniform bits

and we have Pr[X ⊕ Y = u · v] = 1− ε (see Figure 1.2.3).

Note that the error here is the same error for all inputs. In a similar way we can de�ne di�erent

errors for di�erent inputs.

De�nition 1.2.4.

Using this notation, systems PXY |UV which approximate the PR-box with error ε ∈ [0, 0.25) are

non-local. For a proof that any unbiased PR-box with error ε < 0.25 �holds� some secrecy, see
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Figure 1.2.3: Unbiased PR-box with error ε

for example Lemma 5 in [12]. While PR-Boxes correspond to perfect secrecy, PR-boxes with error

correspond to partial secrecy. The problem is that the amount of secrecy (de�ned formally in Section

2.3) which can be achieved from a quantum system is not enough for our purposes. Therefore we must

have some privacy ampli�cation protocol in order for such systems to be useful.

1.3 Privacy ampli�cation

In the privacy ampli�cation problem we consider the following scenario. Alice and Bob share

information that is only partially secret with respect to an adversary Eve. Their goal is to distill this

information to a shorter string, the key, that is completely secret. The problem was introduced in

[4, 5] for classical adversaries and in [13] for quantum adversaries. In our case, Alice and Bob want

to create a secret key using a system PXY |UV while Eve, who is only limited by the non-signalling

principle, tries to get some information about it.

Assume that Alice and Bob share a system from which they can create a partially secret bit string

X. Information theoretically, if there is some entropy in one system, we can hope that by using several

systems we will have enough entropy to create a more secure key. The idea behind privacy ampli�cation

is to consider Alice's and Bob's system as a black box, take several such systems which will produce

several partially secret bit strings X1, ..., Xn and then apply some hash function f (which might take a

short random seed as an additional input) to X1, ..., Xn, in order to receive a shorter but more secret

bit string K, which will act as the key.

The amount of secrecy, as will be de�ned formally in Section 2.3, is usually measured by the

distance of the actual system of Alice, Bob and Eve from an ideal system, in which the key is uniformly

distributed and not correlated to the information held by Eve. We will denote this distance by d(K|E),
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where E is Eve's system. We say that a system generating a key is ε-indistinguishable from an ideal

system if d(K|E) ≤ ε for some small ε > 0. Therefore, the problem of privacy ampli�cation is actually

the problem of �nding such a `good' function f .

Privacy ampli�cation is said to be possible when ε is a decreasing function of n, the number of

systems held by Alice and Bob. In order to prove an impossibility result it is enough to give a speci�c

system, in which each of the subsystems holds some secrecy, but this secrecy cannot be ampli�ed by

using any hash function - the distance from uniform remains high, no matter what function Alice and

Bob apply to their output bits and how many systems they share.

In the classical scenario, this problem can be solved almost optimally by extractors [18, 21]. Al-

though not all classical extractors work against quantum adversaries [9], some very good extractors

do, for example, [8]. Since we consider a super-quantum adversary, we cannot assume that protocols

which work for the classical and quantum case, will stay secure against a more powerful adversary.

Therefore a di�erent treatment is needed when considering non-signalling adversaries.

1.4 Related work

Barrett, Hardy, and Kent have shown in [2] a protocol for QKD which is based only on the

assumption that Alice and Bob cannot signal to each other. Unfortunately, the suggested protocol

cannot tolerate any errors caused by noise in the quantum channel and is ine�cient in the number of

quantum systems used in order to produce one secure bit. This problem could have been solved by

using a privacy ampli�cation protocol, which works even when the adversary is limited only by the

non-signalling principle. Unfortunately, it was proven in [11] that such a privacy ampli�cation protocol

does not exist if signalling is possible within the laboratories of Alice and Bob.

On the contrary, in [12], [15] and [16] it was proven that if we assume full non-signalling conditions,

i.e., that any subset of systems cannot signal to any other subset of systems, QKD which is based only

on the non-locality of the correlations is possible. In particular, the step of privacy ampli�cation is

possible.

In the gap between these two extreme cases little has been known. There is one particular set of

assumptions of special interest from an experimental point of view; the set of assumptions which says

that the systems can only signal forward in time within the systems of Alice and Bob. For this setting

it was only known that privacy ampli�cation using the XOR or the AND function is impossible [14].

1.5 Contribution

In this letter we reduce the gap between the assumptions of [11], in which signalling is impossible

only between Alice and Bob, and the physical relevant assumptions which says that the systems can

only signal forward in time within the systems of Alice and Bob. We consider a set of assumptions

which is very close to the conditions which only allow to signal forward in time and prove that the

impossibility result of [11] still holds.

5



Since our set of assumptions di�ers only a bit from the assumptions of signalling only forward in

time, called �backward non-signalling�, we can highlight the speci�c assumptions which might make

the di�erence between possibility and impossibility results. If the adversary does not necessarily need

to exploit these speci�c assumptions, then privacy ampli�cation will be impossible also in the physical

assumptions of �backward non-signalling� systems. On the other hand, if privacy ampli�cation will be

proved to be possible we will know that the power of the adversary arises from these assumptions.

The proof given here is an extension of the proof in [11]. We prove that the adversarial strategy

suggested in [11] is still valid under stricter non-signalling assumptions (Theorem 3.2.2), and as a

consequence also under the assumption of an �almost backward non-signalling� system (Corollary

3.2.4). This will imply that privacy ampli�cation against non-signalling adversaries is impossible

under our stricter assumptions (which include a lot more non-signalling conditions than in [11]), as

stated formally in Theorem 3.2.2.

1.6 Outline

The rest of this letter is organized as follows. In Chapter 2 we describe several di�erent non-

signalling conditions and explain the model of non-signalling adversaries. In Chapter 3 we de�ne a

speci�c system which respects many non-signalling conditions and yet we cannot use privacy ampli�-

cation in order to create an arbitrary secure bit from it. In addition, we prove that an impossibility

result for our set of assumptions implies an impossibility result for �almost backward non-signalling�

systems (Corollary 3.2.4). In Chapter 4 we prove our main theorem, Theorem 3.2.2. We conclude in

Chapter 5.
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Chapter 2

Preliminaries

2.1 Notations

We denote the set {1, ..., n} by [n]. For any string x ∈ {0, 1}n and any subset I ⊆ [n], xi stands for

the i'th bit of x and xI ∈ {0, 1}|I| stands for the string formed by the bits of x at the positions given

by the elements of I. I is the complementary set of I, i.e., I = [n]/I. xi is the string formed by all

the bits of x except for the i'th bit.

For two correlated random variables X,U over Λ1 × Λ2, we denote the conditional probability

distribution of X given U as PX|U (x|u) = Pr(X = x|U = u).

2.2 Non-signalling systems

We start by formally de�ning the di�erent types of non-signalling systems and conditions which

will be relevant in this letter.

De�nition 2.2.1. (Fully non-signalling system). An n-party conditional probability distribution PX|U

over X,U ∈ {0, 1}n is called a fully non-signalling system if for any set I ⊆ [n],

∀xI , uI , u
′
I , uI

∑
xI∈{0,1}|I|

PX|U (xI , xI |uI , uI) =
∑

xI∈{0,1}|I|
PX|U (xI , xI |u

′
I , uI) .

This de�nition implies that any group of parties cannot infer from their part of the system which

inputs were given by the other parties. A measurement of a subset I of the parties does not change the

statistics of the outcomes of parties I; the marginal system they see is the same for all inputs of the

other parties. This means that di�erent parties cannot signal to other parties using only the system.
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Note that this type of condition is not symmetric. The fact that parties I cannot signal to parties I

does not imply that parties I cannot signal to parties I. The fully non-signalling conditions can also

be written in the following way.

Lemma 2.2.2. (Lemma 2.7 in [10]). An n-party system PX|U over X,U ∈ {0, 1}n is a fully non-

signalling system if and only if for all i ∈ [n],

∀xi, ui, u
′
i, ui

∑
xi∈{0,1}

PX|U (xi, xi|ui, ui) =
∑

xi∈{0,1}

PX|U (xi, xi|u
′
i, ui) .

In order to make sure that the fully non-signalling conditions as in De�nition 2.2.1 hold one will

have to create the system such that each of the 2n subsystems is space-like separated from all the

others, or shielded, to exclude signalling. This is of course impractical from an experimental point

of view. Therefore, we need to consider more practical, weaker, conditions. A minimal requirement

needed for any useful system is that Alice cannot signal to Bob and vice versa1. We stress that this is

an assumption, since the non-signalling condition cannot be tested (not even with some small error)

using a parameter estimation protocol as a previous step. This assumption can be justi�ed physically

by shielding the systems or by performing the measurements in a space-like separated way.

De�nition 2.2.3. (Non-signalling between Alice and Bob). A 2n-party conditional probability dis-

tribution PXY |UV over X,Y, U, V ∈ {0, 1}n does not allow for signalling from Alice to Bob if

∀y, u, u′, v
∑
x

PXY |UV (x, y|u, v) =
∑
x

PXY |UV (x, y|u′, v)

and does not allow for signalling from Bob to Alice if

∀x, v, v′, u
∑
y

PXY |UV (x, y|u, v) =
∑
y

PXY |UV (x, y|u, v′) .

On top of the assumption that Alice and Bob cannot signal to each other, we can now add di�erent

types of non-signalling conditions. In a more mathematical way, we can think about it as follows. The

full non-signalling conditions are a set of linear equations as in De�nition 2.2.1 and Lemma 2.2.2. We

1If we will not ensure this condition, say by making sure that they are in space-like separated regions or by shielding
their systems, the measured Bell violation will have no meaning and any protocol based on some kind of non locality
will fail
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can assume that all of these equations hold (this is the full non-signalling scenario) or we can use just

a subset (which does not span the whole set) of these equations.

One type of systems which are physically interesting are the systems which can only signal forward

in time (messages cannot be sent to the past). This can be easily achieved by measuring several

quantum systems one after another, and therefore these are the non-signalling conditions that one

�gets for free� when performing an experiment of QKD. For example, an entanglement-based protocol

in which Alice and Bob receive entangled photons and measure them one after another using the same

apparatus will lead to the conditions of De�nition 2.2.4. If the apparatus has memory signalling is

possible from Ai to Ai+1 for example. However, signals cannot go outside from Alice's laboratory to

Bob's laboratory. Formally, we use the following de�nition for backward non-signalling systems.

De�nition 2.2.4. (Backward non-signalling system). For any i ∈ {2, ..., n−1} denote the set {1, ..., i−
1} by I1 and the set {i, ..., n} by I2. A 2n-party conditional probability distribution PXY |UV over

X,Y, U, V ∈ {0, 1}n is a backward non-signalling system (does not allow for signalling backward in

time) if for any i ∈ [n],

∀xI1 , y, uI1 , uI2 , u′I2 , v
∑
xI2

PXY |UV (xI1 , xI2 , y|uI1 , uI2 , v) =
∑
xI2

PXY |UV (xI1 , xI2 , y|uI1 , u′I2 , v)

∀x, yI1 , u, vI1 , vI2 , v′I2
∑
yI2

PXY |UV (x, yI1 , yI2 |u, vI1 , vI2) =
∑
yI2

PXY |UV (x, yI1 , yI2 |u, vI1 , v′I2).

In order to understand why these are the conditions that we choose to call �backward non-signalling�

note that in these conditions Alice's (and analogously Bob's) systems AI2 cannot signal not only to

AI1 , but even to AI1 and all of Bob's systems together. I.e., AI2 cannot change the statistics of AI1

and B, even if they are collaborating with one another. Another way to see why these conditions

make sense, is to consider a scenario in which Bob, for example, performs all of his measurements �rst.

This of course should not change the results of the experiment since Alice and Bob are separated and

cannot send signals to each other. Therefore when Alice performs her measurements on the systems

AI2 , her outcomes cannot impact the statistics of both AI1 and B together.

In this letter we consider a di�erent set of conditions, which does not allow for most types of

signalling to the past.

De�nition 2.2.5. (Almost backward non-signalling system). For any i ∈ {2, ..., n− 1} denote the set
{1, ..., i− 1} by I1 and the set {i, ..., n} by I2. A 2n-party conditional probability distribution PXY |UV

9



An

.

.

.

A3

A2

A1

Bn

.

.

.

B3

B2

B1

(a)

An

.

.

.

A3

A2

A1

Bn

.

.

.

B3

B2

B1

(b)

An

.

.

.

A3

A2

A1

Bn

.

.

.

B3

B2

B1

(c)

An

.

.

.

A3

A2

A1

Bn

.

.

.

B3

B2

B1

(d)

Figure 2.2.1: Di�erent non-signalling conditions: signalling is impossible in the direction of the straight
red arrow. (a) Non-signalling between Alice and Bob. (b) The conditions of De�nition 2.2.5, almost
backward non-signalling conditions, for i = 3. Note that signalling may be possible in the direction of
the curly blue arrow. (c) The conditions of De�nition 2.2.4, backward non-signalling conditions, for
i = 3. (d) Full non-signalling conditions. The conditions we consider are the combination of (a) and
(b).

over X,Y, U, V ∈ {0, 1}n is an almost backward non-signalling system if for any i ∈ [n],

∀xI1 , yI1 , uI1 , uI2 , u′I2 , vI1 , vI2 , v
′
I2∑

xI2
,yI2

PXY |UV (xI1 , xI2 , yI1 , yI2 |uI1 , uI2 , vI1 , vI2) =
∑

xI2
,yI2

PXY |UV (xI1 , xI2 , yI1 , yI2 |uI1 , u′I2 , vI1 , v
′
I2).

Figure 2.2.1 visualizes the di�erence between all of these non-signalling conditions.

The di�erence between the conditions of De�nition 2.2.4 and De�nition 2.2.5 is that when assuming

the conditions of an almost backward non-signalling system signalling is not forbidden from Ai to Bi

and Aj together for any i and j < i. I.e., if Ai wants to signal to some system in the past, Aj , Bi

has to cooperate with Aj . To see this consider the following system for example. Alice and Bob share

a system PXY |UV for X,Y, U, V ∈ {0, 1}2. We de�ne the system such that each of the outputs is a

perfectly random bit and independent of any input, except for X1, which is equal to Y2⊕U2. Obviously,

the outputs on Bob's side look completely random and independent of any input, i.e., the system is

non-signalling from Alice to Bob. Now note that whenever we do not have access to Y2, X1 also looks

like a perfectly random bit and independent of the input. Therefore, the system is also non-signalling

from Bob to Alice, and almost backward non-signalling. However, the conditions of De�nition 2.2.4

does not hold, since the input U2 can be perfectly known from X1 and Y2 (i.e. A2 can signal A1 and

B2 together).
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For every system PXY |UV which ful�lls some arbitrary non-signalling conditions we can de�ne

marginal systems and extensions to the system in the following way.

De�nition 2.2.6. (Marginal system). A system PX|U is called a marginal system of the system

PXZ|UW if ∀x, u, w PX|U (x|u) =
∑
z
PXZ|UW (x, z|u,w).

Note that for the marginal system PX|U of PXZ|UW to be de�ned properly, all we need is a non-

signalling condition between the parties holding X(U) and the parties holding Z(W ).

De�nition 2.2.7. (Extension system). A system PXZ|UW is called an extension to the system PX|U ,

which ful�lls some arbitrary set of non-signalling conditions C, if:

1. PXZ|UW does not allow for signalling between the parties holding X(U) and the parties holding

Z(W ).

2. The marginal system of PXZ|UW is PX|U .

3. For any z the system PZ=z
X|U ful�lls the same non-signalling conditions C.

Note that for every system PX|U there are many di�erent extensions. Next, in an analogous way

to the de�nition of a classical-quantum state, ρXE =
∑
x
PX(x)|x〉〈x| ⊗ ρxE , we would like to de�ne a

classical-non-signalling system.

De�nition 2.2.8. (Classical - non-signalling system). A classical - non-signalling (c-n.s.) system is a

system PXZ|UW such that |U | = 1.

We can think about it as a system in which some of the parties cannot choose or change the input

on their side of the system. When it is clear from the context which side of the system is classical and

which side is not we drop the index which indicates the trivial choice for U and just write PXZ|W .

Notice that for a general system with some U , after choosing an input ui ∈ U we get the c-n.s. system

PXZ|U=ui,W .
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2.3 Distance measures

In general, the distance between any two systems PX|U and QX|U can be measured by introducing

another entity - the distinguisher. Suppose PX|U and QX|U are two known systems. The distinguisher

gets one of these systems, S, and has to guess which system he was given. In the case of our non-

signalling systems, the distinguisher can choose which measurements to make (which inputs to insert

to the system) and to see all the outputs. He then outputs a bit B with his guess. The distinguishing

advantage between systems PX|U and QX|U is the maximum guessing advantage the best distinguisher

can have.

De�nition 2.3.1. (Distinguishing advantage). The distinguishing advantage between two systems

PX|U and QX|U is

δ(PX|U , QX|U ) = max
D

[P (B = 1|S = PX|U )− P (B = 1|S = QX|U )]

where the maximum is over all distinguishers D, S is the system which is given to the distinguisher and

B is its output bit. Two systems PX|U and QX|U are called ε-indistinguishable if δ(PX|U , QX|U ) ≤ ε.

If the distinguisher is given an n-party system for n > 1 he can choose not only the n inputs but

also the order in which he will insert them. The distinguisher can be adaptive, i.e., after choosing an

input and seeing an output he can base his later decisions for the following inputs on the results seen

so far. Therefore the maximization in this case will be on the order of the measurements and their

values.

If the distinguisher is asked to distinguish between two c-n.s. systems we can equivalently write

the distinguishing advantage as in the following lemma.

Lemma 2.3.2. (Distinguishing advantage between two c-n.s. systems). The distinguishing advantage

between two c-n.s systems PKZ|W and QKZ|W is

δ(PKZ|W , QKZ|W ) =
∑
k

max
w

∑
z

∣∣∣∣ PKZ|W=w(k, z)−QKZ|W=w(k, z)

∣∣∣∣ .

Proof. In order to distinguish between two c-n.s. systems, PKZ|W and QKZ|W , the distinguisher has

only one input to choose, W . In addition, because the distinguisher has no choice for the input of

the classical part, the distinguishing advantage can only increase if the distinguisher will �rst read

the classical part of the system and then choose W according to the value of K. Therefore, for two
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c-n.s. systems, the best strategy will be to read K and then to choose the best W , as indicated in the

expression above.

The distance (in norm 1) between two systems is de�ned to be half of the distinguishing advantage

between these systems.

De�nition 2.3.3. (Distance between two c-n.s. systems). The distance between two c-n.s systems

PKZ|W and QKZ|W in norm 1 is∣∣∣∣ PKZ|W −QKZ|W

∣∣∣∣
1

≡ 1

2

∑
k

max
w

∑
z

∣∣∣∣ PKZ|W=w(k, z)−QKZ|W=w(k, z)

∣∣∣∣ .

In a cryptographic setting, we mostly consider the distance between the real system in which the

key is being calculated from the output of the system held by the parties, and an ideal system. The

ideal system in our case is a system in which the key is uniformly distributed and independent of the

adversary's system. For a c-n.s. system PKZ|W where K is over {0, 1}n, let Un denote the uniform

distribution over {0, 1}n and let PZ|W be the marginal system held by the adversary. The distance

from uniform is a de�ned as follows.

De�nition 2.3.4. (Distance from uniform). The distance from uniform of the c-n.s. system PKZ|W

is

d(K|Z(W )) ≡
∣∣∣∣ PKZ|W − Un × PZ|W

∣∣∣∣
1

where the system Un × PZ|W is de�ned such that Un × PZ|W (k, z|w) = Un(k) · PZ|W (z|w).

In the following sections we consider the distance from uniform given a speci�c input (measurement)

of the adversary, W = w. In this case, according to De�nition 2.3.4, we get

d(K|Z(w)) =
1

2

∑
k,z

∣∣∣∣ PKZ|W=w(k, z)− Un(k) · PZ|W=w(z)

∣∣∣∣=
=

1

2

∑
k,z

PZ|W=w(z)

∣∣∣∣ PK|Z=z(k)−
1

n

∣∣∣∣ . (2.3.1)
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2.4 Modeling non-signalling adversaries

When modeling a non-signalling adversary, the question in mind is: given a system PXY |UV shared

by Alice and Bob, for which some arbitrary non-signalling conditions hold, which extensions to a

system PXY Z|UVW , including the adversary Eve, are possible? The only principle which limits Eve is

the non-signalling principle, which means that the conditional system PZ=z
XY |UV , for any z ∈ Z, must

ful�ll all of the non-signalling conditions that PXY |UV ful�lls, and in addition PXY Z|UVW does not

allow signalling between Alice and Bob together and Eve. Since any non-signalling assumptions about

the system of Alice and Bob are ensured physically (by shielding the systems for example), they must

still hold even if Eve's output z is given to some other party. Therefore the conditional system PZ=z
XY |UV

must also ful�ll all the non-signalling conditions of PXY |UV , which justi�es our assumptions about the

power of the adversary in this setting.

U

X

PXY Z|UVW

V

Y

Z W

Figure 2.4.1: A three-partite system

We adopt here the model given in [11, 10, 12] of non-signalling adversaries. We reduce the scenario

in which Alice, Bob and Eve share a system PXY Z|UVW to the scenario considering only Alice and

Bob in the following way. Because Eve cannot signal to Alice and Bob (even together) by her choice

of input, we must have, for all x, y, u, v, w,w′,∑
z

PXY Z|UVW (x, y, z|u, v, w) =
∑
z

PXY Z|UVW (x, y, z|u, v, w′) = PXY |UV (x, y|u, v).

Moreover, as said before, since any non-signalling condition must still hold even if Eve's output z is

given to some other party, the system conditioned on Eve's outcome, PZ=z
XY |UV , must also ful�ll all

the non-signalling conditions of PXY |UV . We can therefore see Eve's input as a choice of a convex

decomposition of Alice's and Bob's system and her output as indicating one part of this decomposition.

Formally,

De�nition 2.4.1. (Partition of the system). A partition of a given multipartite system PXY |UV ,

which ful�lls a certain set of non-signalling conditions C, is a family of pairs (pz, P z
XY |UV ), where:
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1. pz is a classical distribution (i.e. for all z pz ≥ 0 and
∑
z
pz = 1).

2. For all z, P z
XY |UV is a system that ful�lls C.

3. PXY |UV =
∑
z
pz · P z

XY |UV .

We can use the same proof as in Lemma 2 and 3 in [12] to prove that this is indeed a legitimate

model, i.e., that the set of all partitions covers exactly all the possible strategies of a non-signalling

adversary in our case.

It is further proven in [11] that for showing an impossibility result, we can assume that Eve's

information Z is a binary random variable:

Lemma 2.4.2. (Lemma 5 in [11]). If (pz=0, P z=0
XY |UV ) is an element of a partition with m elements,

then it is also possible to de�ne a new partition with only two elements, in which one of the elements

is (pz=0, P z=0
XY |UV ) .

Moreover, it is not necessary to determine both parts of the partition ((pz=0, P z=0
XY |UV ) and

(pz=1, P z=1
XY |UV )) explicitly. Instead, a condition on the system given outcome z = 0 is given, which

will make sure that there exists a second part, complementing it to a partition:

Lemma 2.4.3. (Lemma 6 in [11]). Given a non-signalling distribution PXY |UV , there exists a par-

tition with element (pz=0, P z=0
XY |UV ) if and only if for all inputs and outputs x, y, u, v it holds that

pz=0 · P z=0
XY |UV (x, y|u, v) ≤ PXY |UV (x, y|u, v).

For the formal proofs of these lemmas, note that since the non-signalling conditions are linear the

same proofs as in Lemma 5 and Lemma 6 in [11] will hold here as well, no matter which non-signalling

conditions are imposed for PXY |UV .

De�ning a partition is equivalent to choosing a measurement W = w, therefore, we can also write

the distance from uniform of a key, as in Equation (2.3.1), using the partition itself. Since we will only

need to consider the case where Alice and Bob try to output one secret bit, we can further simplify

the expression, as in the following lemma.

Lemma 2.4.4. (Lemma 5.1 in [10]). For the case K = f(X), where f : {0, 1}|X| → {0, 1}, U = u,
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V = v, and where the strategy W = w is de�ned by the partition
{
(pzw , P zw

XY |UV )
}
zw∈{0,1}

,

d (K|Z(w)) = 1

2

∑
zw

pzw ·
∣∣∣∣ ∑

x,y

(−1)f(x)P zw
XY |UV (x, y|u, v)

∣∣∣∣ .

For a proof see Lemma 5.1 in [10].
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Chapter 3

The Non-signalling Assumptions

3.1 The basic assumptions

It was proven in [12] (Lemma 5) that any unbiased PR-box with error ε < 0.25 holds some secrecy.

With the goal of amplifying the privacy of the secret in mind, Alice and Bob now share n such systems.

The underlying system of Alice and Bob that we consider is a product of n independent PR-boxes

with errors (De�nition 1.2.3), as seen from Alice's and Bob's point of view. This is stated formally in

the following de�nition:

De�nition 3.1.1. (Product system). A product system of n copies of PR-boxes with error ε is the

system PXY |UV =
∏

i∈[n]
PXiYi|UiVi

, where for each i, the system PXiYi|UiVi
is an unbiased PR-box with

error ε as in De�nition 1.2.3.

In addition, as explained in Section 2.2, in order for any system to be useful, we will always make

sure that Alice and Bob cannot signal to each other (otherwise any non-local violation will not have

any meaning - it could have also been achieved by signalling between the systems). Mathematically,

this means that for any outcome z of any adversary, Alice and Bob cannot signal to each other using

the system P z
XY |UV . I.e., P

z
XY |UV ful�lls the conditions of De�nition 2.2.3.

On top of this assumption we can now add more non-signalling assumptions of di�erent types.

For example, in [12], [15] and [16] it was proven that if we assume full non-signalling conditions then

privacy ampli�cation is possible. On the contrary, in [11] it was proven that if we do not add more

non-signalling assumption (and use only the assumption that Alice and Bob cannot signal to each

other) then privacy ampli�cation is impossible. An interesting question is therefore, what happens in

the middle? Is privacy ampli�cation possible when we use some additional assumptions but not all of
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them?

The goal of this letter is to consider the conditions of almost backward non-signalling systems,

given in De�nition 2.2.5. We will do so by considering a larger set of equations, de�ned formally in

Section 3.2.

3.2 Our additional assumptions

Consider the following system.

De�nition 3.2.1. Alice and Bob and Eve share a system PXY Z|UVW such that:

1. The marginal system of Alice and Bob PXY |UV is a product system as in De�nition 3.1.1.

2. For any z, P z
XY |UV ful�lls the conditions of De�nition 2.2.3 (Alice and Bob cannot signal each

other).

3. For all i ∈ [n] and for any z

∀xi, yi, ui, u
′
i, ui, v

∑
xi,yi

P z
XY |UV (x, y|u, v) =

∑
xi,yi

P z
XY |UV (x, y|u

′, v)

∀xi, yi, u, vi, v
′
i, vi

∑
xi,yi

P z
XY |UV (x, y|u, v) =

∑
xi,yi

P z
XY |UV (x, y|u, v

′).

Note that the set of these conditions is equivalent to

∀xi, yi, ui, u
′
i, ui, vi, v

′
i, vi

∑
xi,yi

P z
XY |UV (x, y|u, v) =

∑
xi,yi

P z
XY |UV (x, y|u

′, v′). (3.2.1)

To see this �rst note that the conditions of De�nition 3.2.1 are a special case of Equation (3.2.1). For

the second direction: ∀xi, yi, ui, u′i, ui, vi, v′i, vi,∑
xi,yi

P z
XY |UV (x, y|u, v) =

∑
xi,yi

P z
XY |UV (x, y|u

′, v) =
∑
xi,yi

P z
XY |UV (x, y|u

′, v′).

Therefore, the equations of De�nition 3.2.1 mean that for all i, parties Ai and Bi together cannot

signal the other parties (See Figure 3.2.1).

Adding these assumptions to the the non-signalling assumption between Alice and Bob (De�nition

2.2.3) does not imply the full non-signalling conditions. To see this consider the following example.
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Figure 3.2.1: The n.s. conditions of De�nition 3.2.1 for i = 3

Alice and Bob share a system PXY |UV such that X,Y, U, V ∈ {0, 1}2. We de�ne the system such that

each of the outputs is a perfectly random bit and independent of any input, except for X2, which is

equal to Y1 ⊕ U1. The outputs on Bob's side look completely random and independent of any input,

i.e., the system is non-signalling from Alice to Bob. Now note that whenever we do not have access to

Y1, then X2 also looks like a perfectly random bit and independent of the input. Therefore, the system

is also non-signalling from Bob to Alice, and the conditions of De�nition 3.2.1 hold as well. However,

this system is not fully non-signalling, since the input U1 can be perfectly known from X2 and Y1 (i.e.

A1 can signal A2 and B1 together).

Adding this set of equations as assumptions means to add a lot more assumptions about the system

(on top of the basic system described before). Intuitively, such a system is close to being a fully non-

signalling system. We will prove that even in this case, Theorem 15 in [11] still holds and privacy

ampli�cation is impossible:

Theorem 3.2.2. There exists a system as in De�nition 3.2.1 such that for any hash function f ,

there exists a partition w for which the distance from uniform of f(X) given w is at least c(ε), i.e.,

d(f(X)|Z(w)) ≥ c(ε), where c(ε) is some constant which depends only on the error of a single box, ε

(as in De�nition 3.1.1).

Note that although our set of equations might seem unusual, proving an impossibility result for

this set implies the same impossibility result for all sets of linear equations that are determined by

it. The set of equations of an almost backward non-signalling system, as in De�nition 2.2.5, is one

interesting example of such a set.

Lemma 3.2.3. The almost backward non-signalling conditions, as in De�nition 2.2.5, are implied by

the non-signalling conditions of De�nition 3.2.1.
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Proof. Consider the set of equations in De�nition 2.2.5. We will now prove them using the equations

in De�nition 3.2.1, this will imply that if the assumptions of De�nition 3.2.1 hold then so do the

assumption of almost backward non-signalling.

For every i ∈ [n] we can write

∑
xI2

,yI2

PXY |UV (x, y|uI1 , uI2 , vI1 , vI2) =
∑

xI2/{i}

yI2/{i}

∑
xi

yi

PXY |UV (x, y|uI1 , ui, uI2/{i}, vI1 , vi, vI2/{i})

=
∑

xI2/{i}

yI2/{i}

∑
xi

yi

PXY |UV (x, y|uI1 , u′i, uI2/{i}, vI1 , v
′
i, vI2/{i})

=
∑

xI2/{i+1}

yI2/{i+1}

∑
xi+1

yi+1

PXY |UV (x, y|uI1 , u′i, ui+1, uI2/{i,i+1}, vI1 , v
′
i, vi+1, vI2/{i,i+1})

=
∑

xI2/{i+1}

yI2/{i+1}

∑
xi+1

yi+1

PXY |UV (x, y|uI1 , u′{i,i+1}, uI2/{i,i+1}, vI1 , v
′
{i,i+1}, vI2/{i,i+1})

= ... =
∑

xI2
,yI2

PXY |UV (x, y|uI1 , u′I2 , vI1 , v
′
I2).

Combining Lemma 3.2.3 together with Theorem 3.2.2 implies the following.

Corollary 3.2.4. There exists an almost backward non-signalling system as in De�nition 2.2.5 such

that for any hash function f , there exists a partition w for which the distance from uniform of f(X)

given w is at least c(ε), i.e., d(f(X)|Z(w)) ≥ c(ε), where c(ε) is some constant which depends only on

the error of a single box, ε (as in De�nition 3.1.1).

Another interesting example is the set of equations which includes non-signalling conditions between

all of Alice's systems alone and non-signalling conditions between all of Bob's systems alone, together

with the condition of non-signalling between Alice and Bob.
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De�nition 3.2.5. An n-party conditional probability distribution PXY |UV over X,Y, U, V ∈ {0, 1}n is

completely non-signalling on Alice's side and completely non-signalling on Bob's side, if for any i ∈ [n],

∀xi, ui, u
′
i, ui

∑
xi

PX|U (xi, xi|ui, ui) =
∑
xi

PX|U (xi, xi|u
′
i, ui)

∀yi, vi, v
′
i, vi

∑
yi

PY |V (yi, yi|vi, vi) =
∑
yi

PY |V (yi, yi|v
′
i, vi)

where PX|U is the marginal system of PXY |UV , held by Alice, and PY |V is the marginal system of

PXY |UV , held by Bob.

Lemma 3.2.6. The non-signalling conditions of De�nition 3.2.5 are implied by the non-signalling

conditions of De�nition 3.2.1.

Proof. We show that this is true for Alice's side. The proof for Bob's side is analogous. First, for any

i ∈ [n], we can write the equation

∀xi, ui, u
′
i, ui

∑
xi

PX|U (xi, xi|ui, ui) =
∑
xi

PX|U (xi, xi|u
′
i, ui)

using the original system PXY |UV and the de�nition of a marginal system:

∀xi, ui, u
′
i, ui, v

∑
xi, y

PXY |UV (x, y|ui, ui, v) =
∑
xi, y

PXY |UV (x, y|u′i, ui, v).

Now, as in the proof of Lemma 3.2.3,∑
xi, y

PXY |UV (x, y|ui, ui, v) =
∑

y/{yi}

∑
xi, yi

PXY |UV (x, y|ui, ui, v)

=
∑

y/{yi}

∑
xi, yi

PXY |UV (x, y|u′i, ui, v)

=
∑
xi, y

PXY |UV (x, y|u′i, ui, v).

Combining Lemma 3.2.6 together with Theorem 3.2.2 implies the following.

21



Corollary 3.2.7. There exists a system as in De�nition 3.2.5 such that for any hash function f ,

there exists a partition w for which the distance from uniform of f(X) given w is at least c(ε), i.e.,

d(f(X)|Z(w)) ≥ c(ε), where c(ε) is some constant which depends only on the error of a single box, ε

(as in De�nition 3.1.1).

22



Chapter 4

Privacy Ampli�cation Against

Non-signalling Adversaries

4.1 The impossibility of privacy ampli�cation under the basic

non-signalling assumptions

We use here the same adversarial strategy as presented in [11] and therefore repeat it here shortly

for completeness. For intuitive explanations and complete formal proofs please see [11].

As explained before, Alice's and Bob's goal is to create a highly secure key using a system, PXY |UV ,

shared by both of them. Eve's goal is to get some information about the key. It is therefore natural

to model this situation in the following way: Alice, Bob and Eve share together a system PXY Z|UVW ,

an extension of the system PXY |UV held by Alice and Bob, which ful�lls some known non-signalling

conditions. Each party can perform measurements on it's part of the system (i.e., insert input and

read the outputs of their interfaces of the system), communicate using a public authenticated channel,

Alice then applies some public hash function f to the outcome she holds and in the end Alice should

hold a key, K = f(X), which is ε-indistinguishable from an ideal, uniformly distributed key, even

conditioned on Eve's information. I.e., d(K|Z(W )) ≤ ε.
The distance from uniform of the key k is lower-bounded by the distance from uniform of a single

bit of the key, and therefore, for an impossibility result, it is enough to assume that f outputs just one

bit. Note that since the adversarial strategy can be chosen after all public communication is over, it can

also depend on a random seed for the hash function. Therefore it is enough to consider deterministic

functions in this case.

We consider a partition with only two outputs, z = 0 and z = 1, each occurring with probability
1
2 , such that given z = 0, f(X) is maximally biased towards 0. According to Lemma 2.4.3 it is enough
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to explicitly construct the conditional system given measurement outcome z = 0. In order to do so we

start from the unbiased system as seen by Alice and Bob and �shift around� probabilities such that

f(X) is maximally biased towards 0 and the marginal system remains valid. By valid me mean that:

1. All entries must remain probabilities between 0 and 1.

2. The normalization of the probability distribution must remain.

3. The non-signalling condition between Alice and Bob must be satis�ed.

4. There must exist a second measurement outcome z = 1 occurring with probability 1
2 , and such

that the conditional system, given outcome z = 1, is also a valid probability distribution. This

second system must be able to compensate for the shifts in probabilities. According to Lemma

2.4.3 this means that the entry in every cell must be smaller or equal twice the original entry.

The system P z=0
XY |UV which describes this strategy is de�ned formally in the following way. For sim-

plicity we will drop the subscript of PXY |UV (x, y|u, v) and write only P (x, y|u, v). We use the same

notations as in [11, 10] and de�ne the following groups, for all u, v:

y< =

y
∣∣∣∣ ∑
x|f(x)=0

P (x, y|u, v) <
∑

x|f(x)=1

P (x, y|u, v)


y> =

y
∣∣∣∣ ∑
x|f(x)=0

P (x, y|u, v) >
∑

x|f(x)=1

P (x, y|u, v)


x0 =

{
x

∣∣∣∣ f(x) = 0

}
x1 =

{
x

∣∣∣∣ f(x) = 1

}
and a factor c(x, y|u, v) as:

∀x ∈ x0, y ∈ y< c(x, y|u, v) = 2

∀x ∈ x1, y ∈ y< c(x, y|u, v) =

∑
x′
(−1)(f(x

′)+1)P (x′, y|u, v)∑
x′|f(x′)=1

P (x′, y|u, v)

∀x ∈ x0, y ∈ y> c(x, y|u, v) =

∑
x′
P (x′, y|u, v)∑

x′|f(x′)=0

P (x′, y|u, v)

∀x ∈ x1, y ∈ y> c(x, y|u, v) = 0
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The system P z=0 is then de�ned as P z=0(x, y|u, v) = c(x, y|u, v) · P (x, y|u, v).
Intuitively, this de�nition of the strategy means that for each u, v and within each row, Eve shifts

as much probability as possible out from the cells P (x, y|u, v) for which f(x) = 1 and into the cells

P (x′, y|u, v) for which f(x′) = 0 (she wants P z=0 to be biased towards 0). The factor c(x, y|u, v) is
de�ned in such a way that as much probability as possible is being shifted, while still keeping the

system P z=0 a valid element of a partition.

Although Eve shifts probabilities for each u, v separately, P z=0 will still ful�ll the required non-

signalling conditions, which connect the inputs u, v to other inputs u′, v′; this is due to the high

symmetry in the original marginal box of Alice and Bob (De�nition 3.1.1). For example, it is easy to

see that since Eve only shifts probabilities within the same row (i.e. cells with the same value of y)

Bob cannot signal to Alice using P z=0; the sum of the probabilities in one row stays the same as it was

in P , and since P did not allow for signalling from Bob to Alice, so do P z=0. The other non-signalling

conditions follow from a bit more complex symmetries.

It was proven in [11] that for this strategy1 d(K|Z(w)) ≤ −1+
√
1+64ε2

32ε .

4.2 Proof of the theorem - a more general impossibility result

In order to prove Theorem 3.2.2 we will just prove that the adversarial strategy presented in [11]

still works. Formally, this means that we need to prove that the element
(
pz=0 = 1

2 , P
z=0(x, y|u, v)

)
in

the partition is still valid, even when we add the assumptions of De�nition 3.2.1, and that d(K|Z(w))
is high. Since we do not change the strategy, the same bound on d(K|Z(w)) still holds. Moreover,

it was already proven in [11] that P z=0(x, y|u, v) does not allow signalling between Alice and Bob,

therefore we only need to prove that our additional non-signalling assumptions of De�nition 3.2.1

hold in the system P z=0(x, y|u, v), i.e., the system satis�es our assumptions even conditioned on Eve's

result. draw,

The �rst three lemmas deal with the impossibility of signalling from Alice's side and the next three

lemmas deal with Bob's side. All the lemmas use the high symmetry of the marginal box (De�nition

3.1.1). What these lemmas show is that most of this symmetry still exists in P z=0, because we only

shift probabilities within the same row.

We use the following notation; for all i ∈ [n] let ui
′
be ui

′
= u1...ui−1, ui, ui+1...un (i.e., only the

i'th bit is �ipped) and the same for xi
′
, yi

′
and vi

′
.

Lemma 4.2.1. For all i ∈ [n] and for all x,y,u,v such that vi = 1, P (x, yi
′ |u, v) = P (x, y|ui′ , v).

1Actually, this strategy is being used only when Alice is using an hash function which does not allow Bob to generate
a bit from his output of the system Y , which is highly correlated with the key. If Alice uses a function which does
allow Bob to get an highly correlated key, then this function has to be biased and therefore Eve can just use the trivial
strategy of doing nothing. For more details please see [11].
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Proof. For every single box , PXiYi|UiVi
(xi, yi|ui, vi) = PXiYi|UiVi

(xi, yi|ui, vi). Therefore it also holds

that P (x, y|u, v) = P (xi
′
, yi

′ |u, v). Moreover,

P (x, y|ui
′
, v) =

(
1

2
− ε

2

)∑
l

1⊕xl⊕yl⊕ui′
l ·vl
·
(ε
2

)∑
l

xl⊕yl⊕ui′
l ·vl

=

=

(
1

2
− ε

2

)∑
l

1⊕xi′
l ⊕yl⊕ul·vl

·
(ε
2

)∑
l

xi′
l ⊕yl⊕ul·vl

=

= P (xi
′
, y|u, v)

Combining these two properties together, we get P (x, y|ui′ , v) = P (xi
′
, y|u, v) = P (x, yi

′ |u, v).

Lemma 4.2.2. For all i ∈ [n] and for all x,y,u,v such that vi = 1, c(x, yi
′ |u, v) = c(x, y|ui′ , v). I.e.,

the cells P (x, yi
′ |u, v) and P (x, y|ui′ , v) are from the same type (x0/x1, y>/y<).

Proof. First, it is clear that if P (x, yi
′ |u, v) was a x0 (x1) cell, so is P (x, y|ui′ , v) because this only

depends on x.

Now note that Lemma 4.2.1 is correct for every x, therefore the entire row P (•, yi′ |u, v) is equivalent
to the row P (•, y|ui′ , v). This means that if we change yi

′
to y and u to ui

′
together, we will get the

same row, and therefore if P (x, yi
′ |u, v) was a y< (y>) cell, so is P (x, y|ui′ , v). All together we get

c(x, yi
′ |u, v) = c(x, y|ui′ , v).

The properties of the marginal system PXY |UV which are being used in Lemma 4.2.1 and Lemma

4.2.2 can be easily seen, for example, in Table 4.1 and Table 4.2. For simplicity we consider a product

of only 2 systems. When changing Alice's input from u = 11 to u = 10 while v = 11, the rows

interchange as Lemma 4.2.1 suggests.

u = 11
H
HHHHy

x
00 01 10 11

v = 111

00 ( ε2 )
2 ε

2 ·
1−ε
2

ε
2 ·

1−ε
2 ( 1−ε2 )2

01 ε
2 ·

1−ε
2 ( ε2 )

2 ( 1−ε2 )2 ε
2 ·

1−ε
2

10 ε
2 ·

1−ε
2 ( 1−ε2 )2 ( ε2 )

2 ε
2 ·

1−ε
2

11 ( 1−ε2 )2 ε
2 ·

1−ε
2

ε
2 ·

1−ε
2 ( ε2 )

2

Table 4.1: PXY |UV for two systems (n = 2), for u = 11, v = 11
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u = 10
H
HHHHy

x
00 01 10 11

v = 111

00 ε
2 ·

1−ε
2 ( ε2 )

2 ( 1−ε2 )2 ε
2 ·

1−ε
2

01 ( ε2 )
2 ε

2 ·
1−ε
2

ε
2 ·

1−ε
2 ( 1−ε2 )2

10 ( 1−ε2 )2 ε
2 ·

1−ε
2

ε
2 ·

1−ε
2 ( ε2 )

2

11 ε
2 ·

1−ε
2 ( 1−ε2 )2 ( ε2 )

2 ε
2 ·

1−ε
2

Table 4.2: PXY |UV for two systems (n = 2), for u = 10, v = 11

Lemma 4.2.3. In the conditional system P z=0 , for any i ∈ [n]

∀xi, yi, ui, ui, v
∑
xi,yi

P z=0(x, y|u, v) =
∑
xi,yi

P z=0(x, y|ui
′
, v).

Proof. First note that for any u and v such that vi = 0 the probability distribution PXY |U=u,V=v is

identical to PXY |U=ui′ ,V=v (because of the properties of a single box, see Figure 1.2.3). Therefore Eve

will shift the probabilities in these two systems in the same way, which implies that P z=0
XY |U=u,V=v is

identical to P z=0
XY |U=ui′ ,V=v

, and in particular, any non-signalling conditions will hold in this case.

Assume vi = 1. We will prove something a bit stronger than needed. We prove that for all

x, yi, ui, ui, v,
∑
yi

P z=0(x, y|u, v) =
∑
yi

P z=0(x, y|ui′ , v). This in particular implies that
∑
xi,yi

P z=0(x, y|u, v) =∑
xi,yi

P z=0(x, y|ui′ , v) also holds.

∑
yi

P z=0(x, y|ui
′
, v) =

∑
yi

c(x, y|ui
′
, v) · P (x, y|ui

′
, v)

=
∑
yi

c(x, yi
′
|u, v) · P (x, yi

′
|u, v)

=
∑
yi

P z=0(x, yi
′
|u, v)

=
∑
yi

P z=0(x, y|u, v).

The �rst and third equalities are by the de�nition of P z=0, the second equality is due to Lemma 4.2.1

and Lemma 4.2.2 and the last equality is due the fact that the sum is over yi.

Lemma 4.2.4. For all i ∈ [n] and for all x,y,u,v, P (x, yi
′ |u, v) = P (x, y|u, vi′).
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Proof.

P (x, y|u, vi
′
) =

(
1

2
− ε

2

)∑
l

1⊕xl⊕yl⊕ul·vi′
l

·
(ε
2

)∑
l

xl⊕yl⊕ul·vi′
l

=

=

(
1

2
− ε

2

)∑
l

1⊕xl⊕yi′
l ⊕ul·vl

·
(ε
2

)∑
l

xl⊕yi′
l ⊕ul·vl

=

= P (x, yi
′
|u, v).

Lemma 4.2.5. For all i ∈ [n] and for all x,y,u,v such that vi = 1, c(x, yi
′ |u, v) = c(x, y|u, vi′). I.e.,

the cells P (x, yi
′ |u, v) and P (x, y|u, vi′) are from the same type (x0/x1, y>/y<).

Proof. As in Lemma 4.2.2, it is clear that if P (x, yi
′ |u, v) was a x0 (x1) cell, so is P (x, y|u, vi

′
) because

this only depends on x.

Lemma 4.2.4 is correct for every x, therefore the entire row P (•, yi′ |u, v) is equivalent to the row

P (•, y|u, vi′) and therefore if P (x, yi
′ |u, v) was a y< (y>) cell, so is P (x, y|u, vi′). All together we get

c(x, yi
′ |u, v) = c(x, y|u, vi′).

Lemma 4.2.6. In the conditional system P z=0 , for any i ∈ [n]

∀xi, yi, u, vi, vi
∑
xi,yi

P z=0(x, y|u, v) =
∑
xi,yi

P z=0(x, y|u, vi
′
).

Proof. In an analogous way to the proof of Lemma 4.2.3, if ui = 0 the proof is trivial. Assume ui = 1.

We prove that for all x, yi, u, vi, vi,
∑
yi

P z=0(x, y|u, v) =
∑
yi

P z=0(x, y|u, vi′). This in particular

implies that
∑
xi,yi

P z=0(x, y|u, v) =
∑
xi,yi

P z=0(x, y|u, vi′) also holds.

∑
yi

P z=0(x, y|u, vi
′
) =

∑
yi

c(x, y|u, vi
′
) · P (x, y|u, vi

′
) =

=
∑
yi

c(x, yi
′
|u, v) · P (x, yi

′
|u, v) =

=
∑
yi

P z=0(x, yi
′
|u, v) =

=
∑
yi

P z=0(x, y|u, v).
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Note that the only di�erence between the full non-signalling conditions and what we have proved

here is that in Lemma 4.2.3 we have to keep the summation over yi. Moreover, it is interesting to see

that at least on Bob's side, the �full� non-signalling conditions also hold in P z=0. Since Eve's strategy

is de�ned to work on each row separately, the symmetry on Bob's side does not break at all.

Lemmas 4.2.3 and 4.2.6 together prove that the assumption of De�nition 3.2.1 holds even condi-

tioned on Eve's result. Adding this to the rest of the proof of [11] proves Theorem 3.2.2.
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Chapter 5

Concluding Remarks and Open

Questions

In this letter we proved that privacy ampli�cation is impossible even if we add a lot more non-

signalling conditions over the assumptions of [11]. This also implies that privacy ampli�cation is

impossible under the assumptions of an almost backward non-signalling system. An interesting ques-

tion which arises from our theorem is whether the non-signalling conditions in which the backward

non-signalling systems and the almost backward non-signalling system di�ers are the ones which give

Eve the tremendous power which makes privacy ampli�cation impossible. If yes, then it might be the

case that privacy ampli�cation is possible in the relevant setting of backward non-signalling systems.

On the other hand, if the answer to this question is no, then privacy ampli�cation is also impossible

for backward non-signalling systems. If this is indeed the case then it seems that the security proof

for any practical QKD protocol will have to be based on quantum physics somehow, and not on the

non-signalling postulate alone.

Another interesting question is whether we can extend our result to the case where Alice and Bob

use a more interactive protocol to amplify the secrecy of their key; instead of just applying some hash

function only on Alice's output X and get a key K = f(X), maybe they can use Bob's output Y as

well and create a key K = g(X,Y ).
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