MATH 4022 Graph Theory (Fall '10)

Instructor: Asaf Shapira

Home Assignment 1

Due date: 09/23/10

Please submit organized and well written solutions!

Problem 1. Prove that every graph with n > 1 vertices and at least 2n edges contains a cycle of length at most $2 \log_2 n$.

Problem 2. Show that G is bipartite if and only if it has no *induced* cycle of odd length.

Problem 3. Let T be a tree and let T_1, \ldots, T_k be a collection of sub-trees of T. Show that if for every i < j we have $V(T_i) \cap V(T_j) \neq \emptyset$ then $\bigcap_{i=1}^k V(T_i) \neq \emptyset$.

Problem 4. Let d_1, \ldots, d_n be a sequence of integers. Show that this sequence represents the degrees of the vertices of some tree on n vertices if and only if $\sum_{i=1}^n d_i = 2n-2$ and $d_1, \ldots, d_n \ge 1$.

Problem 5. Prove that in a connected graph G every two paths of maximum length share a vertex.

Problem 6. Let T be a tree on t vertices. Show that there is an ordering $\{v_1, \ldots, v_t\}$ of the vertices of T such that for every $2 \le i \le t$ vertex v_i has exactly one neighbor in the set $\{v_1, \ldots, v_{i-1}\}$. Use this fact to show that if G has min-degree at least t-1, then it contains every tree on t vertices as a subgraph.