CS 6550 Algorithms (Fall '10)

Instructor: Asaf Shapira

Home Assignment 2

Due date: 10/12/10

Please submit organized and well written solutions!

Problem 1. Give a *deterministic* 7/8-approximation algorithm for MAX-3-CNF.

Problem 2. Let S be a sample space of n random variables which are uniformly distributed over \mathbb{F}_4 and 4-wise independent. Show how to use S in order to construct a sample space of size |S| consisting of 2n random variables which are uniformly distributed over \mathbb{F}_2 and 4-wise independent.

Hint: Recall the representation of elements of \mathbb{F}_4 as elements of $(\mathbb{F}_2)^2$.

Problem 3. Let M be an $r \times n$ matrix over \mathbb{F}_2 . Let I(M) denote the largest integer I such that every set of I columns of M are linearly independent over \mathbb{F}_2 . In the following items all computations are over \mathbb{F}_2 .

• Suppose we pick x from $(\mathbb{F}_2)^r$ uniformly at random and define a collection of random variables $\{X_1, \ldots, X_n\}$, by setting X_i to be the i^{th} entry of xM.

Show that $\{X_1, \ldots, X_n\}$ are k-wise independent unbiased 0/1 bits if and only if $I(M) \ge k$.

- Let $C(M) = \{x \in (\mathbb{F}_2)^n : Mx = 0\}$ and $\mathbf{wt}(x)$ denote the number of non-zero entries of x. Show that $I(M) + 1 = \min_{0 \neq x \in C(M)} \mathbf{wt}(x)$.
- Show that $I(M) + 1 = \min_{x,y \in C(M)} d_H(x,y)$, where $d_H(x,y)$ denotes the Hamming distance between x and y.

Problem 4. We have shown that if X_1, \ldots, X_n are ± 1 random-variables which are 4-wise independent, then $\mathbb{P}[|\sum_{i=1}^n X_i| \ge c\sqrt{n}] \ge c$ for some absolute c > 0. We will show here that one cannot replace the 4-wise independence condition with 3-wise independence.

• Let M' be the $k \times 2^k$ matrix whose columns are all possible 0/1 vectors. Let M be the $(k+1) \times 2^k$ matrix obtained by adding to M a row whose entries are all 1s. Suppose we randomly pick $x \in (\mathbb{F}_2)^{k+1}$ and set the random variables X_1, \ldots, X_{2^k} to be the entries of xM. Show that X_1, \ldots, X_{2^k} are 3-wise independent.

Hint: Use the first item from the previous question.

• Let $Y_i = 1 - 2X_i$. Show that Y_1, \ldots, Y_{2^k} are 3-wise independent ± 1 random variables and yet $\mathbb{P}[|\sum_{i=1}^{2^k} Y_i| > 0] = 2^{-k}$.