MATH 8803 Algebraic Methods in Combinatorics (Spring '10) Instructor: Asaf Shapira

Home Assignment 3

Due date: 03/23/10

Please submit organized and well written solutions!

Problem 1. Let $\mathcal{P} = \{P_1, \ldots, P_m\}$ be *m* polynomials in *n* variables x_1, \ldots, x_n , each of total degree at most *d*. Let *S* be a set of points representing distinct sign patterns of \mathcal{P} (that is for $s \neq s' \in S$ there is at least one *i* for which $P_i(s) > 0$ while $P_i(s') < 0$ or vise versa). Set $\epsilon = \min\{P_i(s) : 1 \le i \le m, s \in S\}$ and define

$$Q(x_1, \dots, x_n, x_{n+1}) = -x_{n+1}^2 - \frac{1}{2}\epsilon^{2m} + \prod_{1 \le i \le m} P_i^2(x_1, \dots, x_n)$$

- Show that for every $s = (s_1, \ldots, s_n) \in S$ there is s_{n+1} such that $Q(s_1, \ldots, s_n, s_{n+1}) = 0$.
- Show that if $s \neq s' \in S$, then the two solutions in the previous item belong to distinct connected components of the variety Q = 0.
- Conclude that \mathcal{P} has at most $(2md)^{n+1}$ sign patterns.

Problem 2. Let f(n,k) denote the number of $n \times n$ sign (that is, ± 1) matrices of rank at most k. Show that $f(n,k) \leq (Cn/k)^{2nk}$, where C is an absolute constant. **Hint:** Recall that $rank(M) \leq k$ iff there are two $k \times n$ matrices U, V satisfying $U^T V = M$.

Problem 3. Show that for infinitely many values of n, one can *explicitly* construct an $n \times n$ bipartite graph containing no copy of $K_{t,t}$ or its complement, where $t = \sqrt{n}$?

Problem 4. Suppose $R_1, \ldots, R_m \subseteq [n]$ is a collection of clubs with the property that $|R_i|$ are all even, while $|R_i \cap R_j|$ are all odd. Show that if n is odd then $m \leq n$, and if n is even $m \leq n-1$. Show that these two bounds are tight.

Problem 5. Suppose $R_1, \ldots, R_m \subseteq [n]$ is a collection of clubs satisfying $|R_i| \neq 0 \pmod{6}$ for every i, while $|R_i \cap R_j| = 0 \pmod{6}$ for every $i \neq j$. Show that $m \leq 2n$.

Problem 6. Let G be an n-vertex graph and suppose every pair of vertices has an odd number of common neighbors. Prove that n is odd.

Hint: Start by showing that all vertices of G have an even degree.

Problem 7. Let \mathcal{A} and \mathcal{B} be families of subsets of an *n*-element set with the property that $|A \cap B|$ is odd for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Prove that $|\mathcal{A}||\mathcal{B}| \leq 2^{n-1}$ and find \mathcal{A} and \mathcal{B} matching this bound.