MATH 8803 Algebraic Methods in Combinatorics (Spring '10) Instructor: Asaf Shapira

Home Assignment 4

Due date: 04/16/10

Please submit organized and well written solutions!

Problem 1. Consider the following variant of the Hadamard code. Given $a \in \{0,1\}^k$ let $f_a(x) = \sum_{i=1}^k a_i x_i$ and let the encoding of a consist of the evaluation (over \mathbb{F}_2) of f_a on all $x \in \mathbb{F}_2^k$. Let $v \in \{0,1\}^{2^k}$ be the encoding of some $x \in \{0,1\}^k$ an suppose v' is obtained from v by changing $\epsilon 2^k$ of the entries of v. Show that we can recover any bit of x with probability at least $1 - 2\epsilon$ by querying only 2 entries of v'.

Problem 2. Let p be an even integer, and suppose let a_1, \ldots, a_m be vectors in \mathbb{R}^n satisfying $\ell_p(a_i - a_j) = 1$ for all i < j. Show that $m \leq 1 + (p-1)n$.

Problem 3. Let A_1, \ldots, A_m be subsets of [n] and suppose that their symmetric differences attain only two sizes. Prove that $m \leq \frac{n(n+1)}{2} + 1$. Give an example of a collection of $\frac{n(n-1)}{2} + 1$ subsets of [n] whose symmetric differences attain only two sizes.

Problem 4. Let S be a subset of Z_3^n and suppose that for every pair of distinct vectors $u, v \in S$ there is an index i for which $v_i = u_i + 1 \pmod{3}$. Show that $|S| \leq 2^n$.

Problem 5. A vector $s \in \{*, 0\}^m$ is a zero pattern of a set of functions f_1, \ldots, f_m in n variables, if there is $x \in \mathbb{R}^n$ such that for every $1 \le i \le m$ we have $f_i(x) = 0$ if and only if $s_i = 0$. Suppose f_1, \ldots, f_m are polynomials of degrees d_1, \ldots, d_m in n variables. Show that they have at most $\binom{n+\sum_{i=1}^m d_i}{n}$ zero-patterns.