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Abstract

The hypergraph regularity lemma – the extension of Szemerédi’s graph regularity lemma

to the setting of k-uniform hypergraphs – is one of the most celebrated combinatorial results

obtained in the past decade. By now there are several (very different) proofs of this lemma,

obtained by Gowers, by Nagle-Rödl-Schacht-Skokan and by Tao. Unfortunately, what all these

proofs have in common is that they yield regular partitions whose order is given by the k-th

Ackermann function.

We show that such Ackermann-type bounds are unavoidable for every k ≥ 2, thus confirming

a prediction of Tao. Prior to our work, the only result of this type was Gowers’ famous lower

bound for graph regularity.

1 Introduction

As part of the proof of his eponymous theorem [35] on arithmetic progressions in dense sets of

integers, Szemerédi developed (a variant of what is now known as) the graph regularity lemma [36].

The lemma roughly states that the vertex set of every graph can be partitioned into a bounded

number of parts such that almost all the bipartite graphs induced by pairs of parts in the partition

are quasi-random. In the past four decades this lemma has become one of the (if not the) most

powerful tools in extremal combinatorics, with applications in many other areas of mathematics.

We refer the reader to [17, 29] for more background on the graph regularity lemma, its many

variants and its numerous applications.

Perhaps the most important and well-known application of the graph regularity lemma is the

original proof of the triangle removal lemma, which states that if an n-vertex graph G contains only

o(n3) triangles, then one can turn G into a triangle-free graph by removing only o(n2) edges (see [3]

for more details). It was famously observed by Ruzsa and Szemerédi [32] that the triangle removal

lemma implies Roth’s theorem [31], the special case of Szemerédi’s theorem for 3-term arithmetic

progressions. The problem of extending the triangle removal lemma to the hypergraph setting was

raised by Erdős, Frankl and Rödl [5]. One of the main motivations for obtaining such a result was

the observation of Frankl and Rödl [8] (see also [34]) that such a result would allow one to extend
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the Ruzsa–Szemerédi [32] argument and thus obtain an alternative proof of Szemerédi’s theorem

for progressions of arbitrary length.

The quest for a hypergraph regularity lemma, which would allow one to prove a hypergraph

removal lemma, took about 20 years. The first milestone was the result of Frankl and Rödl [8], who

obtained a regularity lemma for 3-uniform hypergraphs. About 10 years later, the approach of [8]

was extended to hypergraphs of arbitrary uniformity by Rödl, Skokan, Nagle and Schacht [22, 30].

At the same time, Gowers [13] obtained an alternative version of the regularity lemma for k-uniform

hypergraphs (from now on we will use k-graphs instead of k-uniform hypergraphs). Shortly after,

Tao [38] and Rödl and Schacht [27, 28] obtained two more versions of the lemma.

As it turned out, the main difficulty with obtaining a regularity lemma for k-graphs was defining

the correct notion of hypergraph regularity that would: (i) be strong enough to allow one to prove

a counting lemma, and (ii) be weak enough to be satisfied by every hypergraph (see the discussion

in [12] for more on this issue). And indeed, the above-mentioned variants of the hypergraph

regularity lemma rely on four different notions of quasi-randomness, which to this date are still

not known to be equivalent1 (see [21] for some partial results). What all of these proofs do have

in common however, is that they supply only Ackermann-type bounds for the size of a regular

partition.2 More precisely, if we let Ack1(x) = 2x and then define Ackk(x) to be the x-times

iterated3 version of Ackk−1, then all the above proofs guarantee to produce a regular partition of

a k-graph whose order can be bounded from above by an Ackk-type function.

One of the most important applications of the k-graph regularity lemma was that it gave the

first explicit bounds for the multidimensional generalization of Szemerédi’s theorem, see [13]. The

original proof of this result, obtained by Furstenberg and Katznelson [9], relied on Ergodic Theory

and thus supplied no quantitative bounds at all. Examining the reduction between these theo-

rems [34] reveals that if one could improve the Ackermann-type bounds for the k-graph regularity

lemma, by obtaining (say) Ackk0-type upper bounds (for all k), then one would obtain the first

primitive recursive bounds for the multidimensional generalization of Szemerédi’s theorem. Let us

note that obtaining such bounds just for van der Waerden’s theorem [33] and Szemerédi’s theo-

rem [35] (which are two special case) were open problems for many decades till they were finally

solved by Shelah [33] and Gowers [11], respectively. Further applications of the k-graph regularity

lemma (and the hypergraph removal lemma in particular) are described in [25] and [26] as well as

in Rödl’s recent ICM survey [23].

A famous result of Gowers [10] states that the Ack2-type upper bounds for graph regularity

are unavoidable. Several improvements [7], variants [2, 16, 19] and simplifications [18] of Gowers’

lower bound were recently obtained, but no analogous lower bound was derived even for 3-graph

regularity. The numerous applications of the hypergraph regularity lemma naturally lead to the

question of whether one can improve upon the Ackermann-type bounds mentioned above and obtain

primitive recursive bounds for the k-graph regularity lemma. Tao [37] predicted that the answer to

1This should be contrasted with the setting of graphs in which (almost) all notions of quasi-randomness are not

only known to be equivalent but even effectively equivalent. See e.g. [1].
2Another variant of the hypergraph regularity lemma was obtained in [4]. This approach does not supply any

quantitative bounds.
3Ack2(x) is thus a tower of exponents of height x, Ack3(x) is the so-called wowzer function, etc.
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this question is negative, in the sense that one cannot obtain better than Ackk-type upper bounds

for the k-graph regularity lemma for every k ≥ 2. The main result presented in this paper confirms

this prediction.

Theorem 1. [Main result, informal statement] The following holds for every k ≥ 2: every reg-

ularity lemma for k-graphs satisfying some mild conditions can only guarantee to produce partitions

of size bounded by an Ackk-type function.

Our main result, stated formally as Theorem 3 in Subsection 2.3, establishes an Ackk-type lower

bound for 〈δ〉-regularity of k-graphs, which is a new notion of graph/hypergraph regularity which

we introduce in this paper.

We will demonstrate the effectiveness of Theorem 1 by deriving from it a lower bound for the

k-graph regularity lemma of Rödl and Schacht [27].

Corollary 2 (Lower bound for k-graph regularity). For every k ≥ 2, there is an Ackk-type lower

bound for the k-graph regularity lemma of Rödl and Schacht [27].

As we discuss at the beginning of Section 5, the lower bound stated in Corollary 2 holds even

for a very weak/special case of the k-graph regularity lemma of [27]. We also note that when

specialized to k = 3, the notion of regularity used by Rödl and Schacht [27] is at least as strong as

those used by Frankl and Rödl [8] and by Gowers [12]. Hence as a special case of Corollary 2 we

also obtain4 tight Ack3-type lower bounds for the 3-graph regularity lemmas obtained in [8, 12].

1.1 Barriers and other aspects of the main proof

Before getting into the gory details of the proof, let us informally discuss what we think are some

interesting aspects of the proof of Theorem 1.

Why is it hard to “step up”? The reason why the upper bound for graph regularity is of

tower-type is that the process of constructing a regular partition of a graph proceeds by a sequence

of steps, each increasing the size of the partition exponentially. The main idea behind Gowers’

lower bound for graph regularity [10] is in “reverse engineering” the proof of the upper bound; in

other words, in showing that (in some sense) the process of building the partition using a sequence

of exponential refinements is unavoidable. Now, a common theme in all proofs of the hypergraph

regularity lemma for k-graphs is that they proceed by induction on k; that is, in the process

of constructing a regular partition of the input k-graph H, the proof applies the (k − 1)-graph

regularity lemma on certain (k− 1)-graphs derived from H. This is why one gets Ackk-type upper

bounds. So with [10] in mind, one might guess that in order to prove a matching lower bound one

should “reverse engineer” the proof of the upper bound and show that such a process is unavoidable.

However, this turns out to be false! As we argued in [19], in order to prove an upper bound for

(say) 3-graph regularity it is in fact enough to iterate a relaxed version of graph regularity which

4Since the full proofs of these assertions are given in a companion manuscript we put on the Arxiv [20], we will

not explain here why the 3-graph regularity notion of [27] is indeed stronger than those used in [8, 12].
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we call the “sparse regular approximation lemma” (SRAL for short). Therefore, in order to prove

an Ack3-type lower bound for 3-graph regularity one cannot simply “step up” an Ack2-type lower

bound for graph regularity. Indeed, a necessary condition would be to prove an Ack2-type lower

bound for SRAL. See also the discussion following Lemma 2.7 in Subsection 2.4 on how do we

actually use a graph construction in order to get a hypergraph construction.

A new notion of graph/hypergraph regularity: In a recent paper [19] we proved an Ack2-

type lower bound for SRAL. As it turned out, even this lower bound was not enough to allow us to

step up the graph lower bound into a 3-graph lower bound. To remedy this, in the present paper

we introduce an even weaker notion of graph/hypergraph regularity which we call 〈δ〉-regularity.

(Henceforth, we think of δ as a fixed constant.) This notion seems to be right at the correct level of

“strength”; on the one hand, it is strong enough to allow one to prove Ackk−1-type lower bounds for

(k− 1)-graph regularity, while at the same time weak enough to allow one to induct, that is, to use

it in order to then prove Ackk-type lower bounds for k-graph regularity. Another critical feature

of our new notion of hypergraph regularity is that it has (almost) nothing to do with hypergraphs!

A disconcerting aspect of all proofs of the hypergraph regularity lemma is that they involve a very

complicated nested/inductive structure. Furthermore, one has to introduce an elaborate hierarchy

of constants that controls how regular one level of the partition is compared to the previous one.

What is thus nice about our new notion is that it involves only various kinds of instances of graph

〈δ〉-regularity. As a result, our proof is (relatively!) simple.

How do we find witnesses for k-graph irregularity? The key idea in Gowers’ lower bound [10]

for graph regularity was in constructing a graph G, based on a sequence of partitions P1,P2, . . .

of V (G), with the following inductive property: if a vertex partition Z refines Pi but does not

refine Pi+1 then Z is not ε-regular. The key step of the proof of [10] is in finding witnesses showing

that pairs of clusters of Z are irregular. The main difficulty in extending this strategy to k-graphs

already reveals itself in the setting of 3-graphs. In a nutshell, while in graphs, a witness to irregu-

larity of a pair of clusters A,B ∈ Z is any pair of large subsets A′ ⊆ A and B′ ⊆ B, in the setting

of 3-graphs we have to find three large edge-sets (usually referred to as a triad in the hypergraph

regularity literature) that have an additional property: they must together form a graph contain-

ing many triangles. It thus seems quite hard to extend Gowers’ approach already to the setting of

3-graphs. By working with the much weaker notion of 〈δ〉-regularity, we circumvent this issue since

two of the edges sets in our version of a triad are always complete bipartite graphs.

What is then the meaning of Theorem 1? Our main result, stated formally as Theorem 3,

establishes an Ackk-type lower bound for 〈δ〉-regularity of k-graphs, that is, for a specific new version

of the hypergraph regularity lemma. Therefore, we immediately get Ackk-type lower bounds for

any k-graph regularity lemma which is at least as strong as our new lemma, that is, for any lemma

whose requirements/guarantees imply those that are needed in order to satisfy our new notion of

regularity. In particular, we will prove Corollary 2 by showing that the k-graph regularity notion

used in [27] is at least as strong as 〈δ〉-regularity.
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How strong is our lower bound? Since Theorem 1 gives a lower bound for 〈δ〉-regularity and

Corollary 2 shows that this notion is at least as weak as previously used notions of regularity, it is

natural to ask: (i) is this notion equivalent to one of the other notions? (ii) is this notion strong

enough for proving the hypergraph removal lemma, which was one of the main reasons for developing

the hypergraph regularity lemma? We will prove that the answer to both questions is negative by

showing that already for graphs, 〈δ〉-regularity (for δ a fixed constant) is not strong enough even

for proving the triangle removal lemma. This of course makes our lower bound even stronger as it

already applies to a very weak notion of regularity. This is formally stated as Proposition 6.1 in

Section 6. See also the discussion following Theorem 3 and the one at the beginning of Section 6.

How tight is our bound? Roughly speaking, we will show that for a k-graph with pnk edges,

every 〈δ〉-regular partition has order at least Ackk(log 1/p). In a recent paper [18] we proved that

in graphs, one can prove a matching Ack2(log 1/p) upper bound, even for a slightly stronger notion

than 〈δ〉-regularity. This allowed us to obtain a new proof of Fox’s Ack2(log 1/ε) upper bound

for the graph removal lemma [6] (since the stronger notion allows to count small subgraphs). We

believe that it should be possible to match our lower bounds with Ackk(log 1/p) upper bounds

(even for a slightly stronger notion analogous to the one used in [18]). We think that it should

be possible to deduce from such an upper bound an Ackk(log 1/ε) upper bound for the k-graph

removal lemma. The best known bounds for this problem are (at least) Ackk(poly(1/ε)).

How is this paper related to [20]? For the reader’s convenience we have put on the Arxiv a

companion manuscript [20] in which we give a completely self contained proof of the special case of

Theorem 3 for 3-graphs. First, the definitions given in Section 2 when specialized to k = 3 are the

same notions used in (Section 2 of) [20]. The heart of the proof of Theorem 3 is given by Lemma 3.3

which is proved by induction on k. The (base) case k = 2 follows easily from Lemma 2.7. Hence,

the heart of the matter is the proof of Lemma 3.3 by induction on k. Within this framework, the

argument given in [20] is precisely the deduction of Lemma 3.3 for k = 3 from the case k = 2.

Hence, the reader interested in seeing the inductive proof of Lemma 3.3 “in action”—without the

clutter caused by the complicated definitions related to k-graphs—is advised to check [20]. We

also mention that in [20] we deduce from the 3-graph lower bound a tight bound for the regularity

lemmas of Frankl and Rödl [8] and of Gowers [13]. These proofs can also be considered as special

cases of the arguments we give here in order to prove Corollary 2.

1.2 Paper overview

Broadly speaking, Section 2 serves as the technical introduction to this paper, while Sections 3

and 4 contain the main technical proofs. More concretely, in Section 2 we will first define the

new notion of k-graph regularity, which we term 〈δ〉-regularity, for which we will prove our main

lower bound. We will then give the formal version of Theorem 1 (see Theorem 3). This will be

followed by the statement of the main technical result we will use in this paper, Lemma 2.7, and

an overview of how this technical result is used in the proof of Theorem 3. The proof of Theorem 3

appears in Section 3 and the proof of Lemma 2.7 appears in Section 4. To make it easier to read
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this paper we made sure that these two sections are completely independent of each other in the

sense that the only result of Section 4 that is used in the proof of Theorem 3 is Lemma 2.7. In

Section 5 we describe how Theorem 3 can be used in order to prove Corollary 2, thus establishing

tight Ackk-type lower bounds for a concrete version of the hypergraph regularity lemma. Finally,

in Section 6 we prove Proposition 6.1 by describing an example showing that even in the setting

of graphs, 〈δ〉-regularity is strictly weaker than the usual notion of graph regularity, as it does not

allow one even to count triangles.

2 〈δ〉-regularity and Proof Overview

2.1 Preliminary definitions

Before giving the definition of 〈δ〉-regularity, let us start with some standard definitions regarding

partitions of hypergraphs. Formally, a k-graph is a pair H = (V,E), where V = V (H) is the

vertex set and E = E(H) ⊆
(
V
k

)
is the edge set of H. The number of edges of H is denoted e(H)

(i.e., e(H) = |E|). We denote by Kk
` the complete `-vertex k-graph (i.e., containing all possible

(
`
k

)
edges). The k-graph H is `-partite (` ≥ k) on (disjoint) vertex classes (V1, . . . , V`) if every edge of H

has at most one vertex from each Vi. We denote by H[V ′1 , . . . , V
′
` ] the `-partite k-graph induced on

vertex subsets V ′1 ⊆ V1, . . . , V
′
` ⊆ V`; that is, H[V ′1 , . . . , V

′
` ] = ((V ′1 , . . . , V

′
` ), {e ∈ E(H) | ∀i : e∩Vi ∈

V ′i }). The density d(H) of a k-partite k-graph H is e(H)/
∏k
i=1 |Vi|. The set of edges of G between

disjoint vertex subsets A and B is denoted by EG(A,B); the density of G between A and B is

denoted by dG(A,B) = eG(A,B)/|A||B|, where eG(A,B) = |EG(A,B)|. We use d(A,B) if G is

clear from context. When it is clear from context, we sometimes identify a hypergraph with its edge

set. In particular, we will write V1 × V2 for the complete bipartite graph on vertex classes (V1, V2),

and more generally, V1 × · · · × Vk for the complete k-partite k-graph on vertex classes (V1, . . . , Vk).

For a partition Z of a vertex set V , the complete multipartite k-graph on Z is denoted by

Crossk(Z) =
{
e ⊆ V

∣∣∀W ∈ Z : |e ∩ W | ≤ 1 and |e| = k
}

. For partitions P,Q of the same

underlying set, we say that Q refines P, denoted Q ≺ P, if every member of Q is contained in

a member of P. We say that P is equitable if all its members have the same size.5 We use the

notation x± ε for a number lying in the interval [x− ε, x+ ε].

We now define a k-partition, which is a notion of a hypergraph partition6. A k-partition P is

of the form P = P(1) ∪ · · · ∪ P(k) where P(1) is a vertex partition, and for each 2 ≤ r ≤ k, P(r) is a

partition of Crossr(P(1)) satisfying a condition we will state below. First, to ease the reader in, let

us describe here what a k-partition is for 1 ≤ k ≤ 3. A 1-partition is simply a vertex partition. A

2-partition P = P(1) ∪ P(2) consists of a vertex partition P(1) and a partition P(2) of Cross2(P(1))

such that the complete bipartite graph between any two distinct clusters of P(1) is a union of parts

of P(2). A 3-partition P = P(1)∪P(2)∪P(3) consists of a 2-partition P(1)∪P(2) and a partition P(3)

of Cross3(P(1)) such that for every tripartite graph G whose three vertex clusters lie in P(1) and

5In a regularity lemma one allows the parts to differ in size by at most 1 so that it applies to all (hyper-)graphs.

For our lower bound this is unnecessary.
6This is a standard notion, identical to the one used by Rödl and Schacht ([27], Definition10).
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three bipartite graphs lie in P(2), the 3-partite 3-graph consisting of all triangles in G is a union of

parts of P(3).

Before defining a k-partition in general, we need some terminology. A k-polyad is simply a

k-partite (k − 1)-graph. Thus, a 2-polyad is just a pair of disjoint vertex sets, and a 3-polyad is a

tripartite graph. In the rest of this paragraph let P be a k-polyad on vertex classes (V1, . . . , Vk).

We often identify P with the k-tuple (F1, . . . , Fk) where each Fi is the induced (k − 1)-partite

(k− 1)-graph Fi = P [
⋃
j 6=i Vj ]. We denote by K(P ) the set of k-element subsets of V (P ) that span

a clique (i.e., a Kk−1
k ) in P ; we view K(P ) as a k-graph on V (P ). Note that K(P ) is a k-partite

k-graph. For example, if P is a 2-polyad then K(P ) is a complete bipartite graph (since K1
2 is just a

pair of vertices), and if P is a 3-polyad then K(P ) is the 3-partite 3-graph whose edges correspond

to the triangles in P . For a family of hypergraphs P, we say that the k-polyad P = (F1, . . . , Fk) is

a k-polyad of P if Fi ∈ P for every 1 ≤ i ≤ k.

We are now ready to define a k-partition for arbitrary k.

Definition 2.1 (k-partition). P is a k-partition (k ≥ 1) on V if P = P(1) ∪ · · · ∪ P(k) with P(1) a

partition of V , and for every 2 ≤ r ≤ k, P(r) is a partition of Crossr(P(1)) into r-partite r-graphs

with P(r) ≺ Kr(P) := {K(P ) |P is an r-polyad of P}.

Note that, by Definition 2.1, each r-partite r-graph F ∈ P(r) satisfies F ⊆ K(P ) for a unique

r-polyad P of P. In this context, let U be the function mapping F to P . So for example, if

P = P(1) ∪P(2) ∪P(3) is a 3-partition, for every bipartite graph F ∈ P(2) we have that U(F ) is the

pair of vertex classes of F ; similarly, for every 3-partite 3-graph F ∈ P(3) we have that U(F ) is the

unique 3-partite graph of P(2) whose set of triangles contains the edges of F .

We encourage the reader to verify that Definition 2.1 is indeed compatible with the explicit

description of a 1-, 2- and 3-partition given above.

2.2 〈δ〉-regularity of graphs and hypergraphs

In this subsection we define our new7 notion of 〈δ〉-regularity, first for graphs and then for k-graphs

for any k ≥ 2 in Definition 2.5 below.

Definition 2.2 (graph 〈δ〉-regularity). A bipartite graph G on (A,B) is 〈δ〉-regular if for all subsets

A′ ⊆ A and B′ ⊆ B with |A′| ≥ δ|A| and |B′| ≥ δ|B| we have dG(A′, B′) ≥ 1
2dG(A,B).

A vertex partition P of a graph G is 〈δ〉-regular if one can add/remove at most δ · e(G) edges so

that the bipartite graph induced on each (A,B) with A 6= B ∈ P is 〈δ〉-regular.

For the reader worried that in Definition 2.2 we merely replaced the ε from the definition of

ε-regularity with δ, we refer to the discussion following Theorem 3 below.

The definition of 〈δ〉-regularity for hypergraphs involves the 〈δ〉-regularity notion for graphs,

applied to certain auxiliary graphs which are defined as follows. Henceforth, if P is a (k− 1)-graph

and H is k-graph then we say that H is underlain by P if H ⊆ K(P ).

7For k = 3, related notions of regularity were studied in [24, 39].
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Definition 2.3 (The auxiliary graph GiH). For a k-partite k-graph H on vertex classes (V1, . . . , Vk),

we define a bipartite graph G1
H on the vertex classes (V2 × · · · × Vk, V1) by

E(G1
H) =

{
((v2, . . . , vk), v1)

∣∣ (v1, . . . , vk) ∈ E(H)
}
.

The graphs GiH for 2 ≤ i ≤ k are defined in an analogous manner. More generally, if H is underlain

by the k-polyad P = (F1, . . . , Fk) then we define GiH,P as the induced subgraph GiH,P = GiH [Fi, Vi].

As a trivial example, if H is a bipartite graph then G1
H and G2

H are both isomorphic to H.

Importantly, for a k-partition (as defined in Definition 2.1) to be 〈δ〉-regular it must first satisfy

a requirement on the regularity of its parts.

Definition 2.4 (〈δ〉-good partition). A k-partition P on V is 〈δ〉-good if for every 2 ≤ r ≤ k and

every F ∈ P(r) the following holds; letting P = U(F ) be the r-polyad of P underlying F , for every

1 ≤ i ≤ r the bipartite graph GiF,P is 〈δ〉-regular.

Note that a 1-partition is trivially 〈δ〉-good for any δ. Moreover, a 2-partition P is 〈δ〉-good

if and only if every bipartite graph in P(2) (between any two distinct vertex clusters of P(1)) is

〈δ〉-regular (recall the remark after Definition 2.3).

For a (k − 1)-partition P with P(1) ≺ {V1, . . . , Vk} we henceforth denote, for every 1 ≤ i ≤ k,

Vi(P) =
{
Z ∈ P(1) |Z ⊆ Vi

}
and Ei(P) =

{
E ∈ P(k−1) |E ⊆

∏
j 6=i

Vj

}
.8 (1)

Definition 2.5 (〈δ〉-regular partition). Let H be a k-partite k-graph on vertex classes (V1, . . . , Vk)

and P be a 〈δ〉-good (k − 1)-partition with P(1) ≺ {V1, . . . , Vk}. We say that P is a 〈δ〉-regular

partition of H if for every 1 ≤ i ≤ k, Ei(P) ∪ Vi(P) is a 〈δ〉-regular partition of GiH .

Note that for k = 2, Definition 2.5 reduces to Definition 2.2. For k = 3, a 〈δ〉-regular partition

of a 3-partite 3-graph H on vertex classes (V1, V2, V3) is a 2-partition P = P(1) ∪ P(2) satisfying

that: (i) P is 〈δ〉-good per Definition 2.4; (ii) from the auxiliary graph G1
H , on (V2 × V3, V1),

one can add/remove at most δ-fraction of the edges such that for every graph F ∈ E1(P) (so

F ⊆ V2 × V3) and every vertex cluster V ∈ V1(P) (so V ⊆ V1), the induced bipartite graph

G1
H [F, V ] is 〈δ〉-regular; and (iii) the analogues of (ii) in G2

H and G3
H hold as well.

2.3 Formal statement of the main result

We are now ready to formally state our Ackermann-type lower bound for k-graph 〈δ〉-regularity

(the formal version of Theorem 1 above). Recall that we set Ack1(x) = 2x and then define for every

k ≥ 1 the (k+1)-st Ackermann function Ackk+1(n) to be the n-times composition of Ackk(n), that

is, Ackk+1(n) = Ackk(Ackk(· · · (Ackk(1)) · · · )).

Theorem 3 (Main result). The following holds for every k ≥ 2 and s ∈ N. There exists a k-partite

k-graph H of density at least 2−s−k, and a partition V0 of V (H) with |V0| ≤ 2200k, such that for

every 〈2−16k〉-regular partition P of H, if P(1) ≺ V0 then |P(1)| ≥ Ackk(s).

8∏
j 6=i Vj = V1 × · · · × Vi−1 × Vi+1 × · · · × Vk.
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Let us draw the reader’s attention to an important and perhaps surprising aspect of Theorem 3.

All the known tower-type lower bounds for graph regularity depend on the error parameter ε, that

is, they show the existence of graphs G with the property that every ε-regular partition of G is of

order at least Ack2(poly(1/ε)). This should be contrasted with the fact that our lower bounds for

〈δ〉-regularity (for graphs and more generally k-graphs) holds for a fixed error parameter δ. Indeed,

instead of the dependence on the error parameter, our lower bound depends on the density of the

k-graph. This delicate difference makes it possible for us to execute the inductive part of the proof

of Theorem 3.

2.4 The core construction and proof overview

The graph construction in Lemma 2.7 below is the main technical result we will need in order to

prove Theorem 3. We stress that the proof of this lemma (which appears in Section 4) is completely

independent of the proof of Theorem 3 (which appears in Section 3). We will first need to define

“approximate” refinement (a notion that goes back to Gowers [10]).

Definition 2.6 (Approximate refinements). For sets S and T we write S ⊆β T if |S \ T | < β|S|.
For a partition P we write S ∈β P if S ⊆β P for some P ∈ P. For partitions P and Q of the same

set of size n we write Q ≺β P if ∑
Q∈Q :
Q/∈βP

|Q| ≤ βn .

Note that for Q equitable, Q ≺β P if and only if all but at most β|Q| parts Q ∈ Q satisfy

Q ∈β P. We note that throughout the paper we will only use approximate refinements with

β ≤ 1/2, and so if S ∈β P then S ⊆β P for a unique P ∈ P.

We stress that in Lemma 2.7 below we only use notions related to graphs. In particular, 〈δ〉-
regularity refers to Definition 2.2.

Lemma 2.7. Let L and R be disjoint sets. Let L1 � · · · � Ls and R1 � · · · � Rs be two sequences

of s successively refined equipartitions of L and R, respectively, that satisfy for every i ≥ 1 that:

(i) |Ri| is a power of 2 and |R1| ≥ 2200,

(ii) |Ri+1| ≥ 4|Ri| if i < s,

(iii) |Li| = 2|Ri|/2
i+10

.

Then there exists a sequence of s successively refined edge equipartitions G1 � · · · � Gs of L ×R

such that for every 1 ≤ j ≤ s, |Gj | = 2j, and the following holds for every G ∈ Gj and δ ≤ 2−20.

For every 〈δ〉-regular partition P ∪ Q of G, where P, Q are partitions of L, R, respectively, and

every 1 ≤ i ≤ j, if Q ≺2−9 Ri then P ≺γ Li with γ = max{25
√
δ, 32/ 6

√
|R1|}.

Remark 2.8. Every G ∈ Gj is a bipartite graph of density 2−j since Gj is equitable.

An overview of the proof of Lemma 2.7 is given in Subsection 4.1. Let us end this section by

explaining the role Lemma 2.7 plays in the proof of Theorem 3.
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Using graphs to construct k-graphs: Perhaps the most surprising aspect of the proof of

Theorem 3 is that in order to construct a k-graph we use the graph construction of Lemma 2.7 in

a somewhat unexpected way. In this case, L will be a complete (k − 1)-partite (k − 1)-graph and

the Li’s will be partitions of this complete (k − 1)-graph themselves given by another application

of Lemma 2.7. The size of the partitions will have Ackk−1-type growth, and this application of

Lemma 2.7 will “multiply” the (k − 1)-graph partitions (given by the Li’s) to produce a partition

of the complete k-partite k-graph into k-graphs that are hard for 〈δ〉-regularity. We will take H in

Theorem 3 to be an arbitrary k-graph in this partition.

Why is Lemma 2.7 one-sided? As is evident from the statement of Lemma 2.7, it is one-sided

in nature; that is, under the premise that the partition Q refines Ri we may conclude that P refines

Li. It is natural to ask if one can do away with this assumption, that is, be able to show that,

under the same assumptions, Q refines Ri and P refines Li. As we mentioned in the previous

item, in order to prove an Ackk-type lower bound for the k-graph regularity lemma we have to

apply Lemma 2.7 with a sequence of partitions whose size grows as an Ackk-type function. Now,

in this setting, Lemma 2.7 does not hold without the one-sided assumption, because if it did, then

one would have been able to prove (for every k ≥ 2) an Ackk-type lower bound for graph 〈δ〉-
regularity, and hence also for Szemerédi’s regularity lemma. Put differently, if one wishes to have a

construction that holds with arbitrarily fast growing partition sizes, then one has to introduce the

one-sided assumption.

How do we remove the one-sided assumption? The proof of Theorem 3 proceeds by first

proving a one-sided version of Theorem 3, stated as Lemma 3.3. In order to get a construction that

does not require such a one-sided assumption, we will need one final trick; we will take 2k clusters of

vertices and arrange 2k copies of this one-sided construction along the k-edges of a cycle. This will

give us a “circle of implications” that will eliminate the one-sided assumption. See Subsection 3.2.

3 Proof of Theorem 3

The purpose of this section is to prove the main result, Theorem 3. Its proof crucially relies on

a subtle inductive argument (see Lemma 3.3 below). This section is self-contained save for the

application of Lemma 2.7. The key step of our lower bound proof for k-graph regularity, stated as

Lemma 3.3 and proved in Subsection 3.1, relies on a construction that applies Lemma 2.7 k−1 times.

This lemma only gives a “one-sided” lower bound, in the spirit of Lemma 2.7. In Subsection 3.2

we show how to use Lemma 3.3 in order to complete the proof of Theorem 3.

We first state some properties of k-partitions whose proofs are deferred to the end of this section.

The first property relates δ-refinements of partitions and 〈δ〉-regularity of partitions. The reader is

advised to recall the notation in (1).

Claim 3.1. Let P be a (k − 1)-partition with P(1) ≺ {V1, . . . , Vk}, and let F be a partition of

V1 × · · · × Vk−1 with Ek(P) ≺δ F . If P is 〈δ〉-good then the (k − 2)-partition P ′ obtained by

restricting P to
⋃k−1
i=1 Vi is a 〈3δ〉-regular partition of some F ∈ F .
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The second property is given by following easy (but slightly tedious to state) claim.

Claim 3.2. Let H be a k-partite k-graph on vertex classes (V1, . . . , Vk), and let H ′ be the induced

k-partite k-graph on vertex classes (V ′1 , . . . , V
′
k) with V ′i ⊆ Vi and β ·e(H) edges. If P is a 〈δ〉-regular

partition of H with P(1) ≺
⋃k
i=1{Vi, Vi \ V ′i } then its restriction P ′ to V (H ′) is a 〈δ/β〉-regular

partition of H ′.

3.1 Key inductive proof

Set-up. We next introduce a few more definitions that are needed for the statement of Lemma 3.3.

Let e(i) = 2i+10. We define the following tower-type function t : N→ N;

t(i+ 1) =

{
2t(i)/e(i) if i ≥ 1

2200 if i = 0 .
(2)

It is easy to prove, by induction on i, that t(i) ≥ e(i)t(i − 1) for i ≥ 2 (for the induction step,

t(i + 1) ≥ 2t(i−1) = t(i)e(i−1), so t(i + 1)/e(i + 1) ≥ t(i)e(i−1)−i−11 ≥ t(i)). This means that t is a

monotone increasing function, and that it is always an integer power of 2 (follows by induction as

t(i)/e(i) ≥ 1 is a positive power of 2 and in particular an integer). We record the following facts

regarding t for later use:

t(i) ≥ 4t(i− 1) and t(i) is a power of 2 . (3)

For a function f : N→ N with f(i) ≥ i we denote

f∗(i) = t
(
f(i)

)
/e(i) . (4)

Note that f∗(i) is indeed a positive integer (by the monotonicity of t, f∗(i) ≥ t(i)/e(i) is a positive

power of 2). In fact, f∗(i) ≥ f(i) (as f∗(i) ≥ 4f(i)/e(i) using (3)).

We recursively define the function Ak : N → N for any integer k ≥ 2 as follows: A2(i) = i,

whereas for k ≥ 3,

Ak(i+ 1) =

{
Ak−1(A∗k(i)) if i ≥ 1

223k+2
if i = 0 .

(5)

Note that Ak is well defined since A∗k(i) ∈ N for i ≥ 1 and k ≥ 2, and that Ak, A
∗
k are both

monotone increasing. It is evident that Ak grows like the k-th level Ackermann function; in fact,

one can check that for every k ≥ 2 we have

Ak(i) ≥ Ackk(i) . (6)

Furthermore, we denote, for k ≥ 1,

δk = 2−8k . (7)

We moreover denote, for k ≥ 2,

mk(i) := A∗2(· · · (A∗k(i)) · · · ) . (8)
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We next record a few easy bounds for later use. Recall that

δ1 = 2−8 and δ2 = 2−64 . (9)

Noting the relation δk = δ8
k−1, we have for k ≥ 3 that

δ
1/4
k = δ2

k−1 ≤ δ2δk−1 = 2−64δk−1 . (10)

Noting the relation Ak(1) = δ−4
k for k ≥ 3, we have for k ≥ 3 that

1/ 6
√
Ak(1) ≤ δ1/2

k = δ4
k−1 ≤ δ3

1δk−1 = 2−24δk−1 . (11)

Key inductive proof. The key argument in our lower bound proof for k-graph regularity is the

following result, which is proved by induction on the hypergraph’s uniformity.

Lemma 3.3 (k-graph induction). Let s ∈ N, let V1, . . . ,Vk be k ≥ 2 mutually disjoint sets of

equal size and let V1 � · · · � Vm be a sequence of m = mk(s) successive equitable refinements of

{V1, . . . ,Vk} with |Vh(Vi)| = t(i) for every i, h.9 Then there exists a sequence of s successively

refined equipartitions H1 � · · · � Hs of V1× · · · ×Vk such that for every 1 ≤ j ≤ s, |Hj | = 2j and

every H ∈ Hj satisfies the following property:

If P is a 〈δk〉-regular partition of H, and for some 1 ≤ i ≤ Ak(j) (< m) we have Vh(P) ≺2−9 Vh(Vi)
for every 2 ≤ h ≤ k, then V1(P) ≺2−9 V1(Vi+1).

Note that Vi is well defined in the property described in Lemma 3.3 since i ≤ Ak(j) ≤ m.

Proof. We proceed by induction on k ≥ 2. For the induction basis k = 2 we are given s ∈ N, two

disjoint sets V1,V2 as well as m = A∗2(s) (≥ s+ 1) successive equitable refinements V1 � · · · � Vm
of {V1,V2}. Our goal is to find a sequence of s successively refined equipartitions H1 � · · · � Hs
of V1 ×V2 as in the statement. To prove the induction basis, apply Lemma 2.7 with

L = V1, R = V2 and V1(V2) � · · · � V1(Vs+1), V2(V1) � · · · � V2(Vs) ,

and let

G1 � · · · � Gs with |G`| = 2` for every 1 ≤ ` ≤ s

be the resulting sequence of s successively refined equipartitions of V1 ×V2. These two sequences

indeed satisfy assumptions (i), (ii) in Lemma 2.7 since |V2(Vj)| = t(j) and by (3); moreover, they

satisfy assumption (iii) since for every 1 ≤ j ≤ s we have

|V1(Vj+1)| = t(j + 1) = 2t(j)/e(j) = 2|V2(Vj)|/e(j) ,

where the second equality uses the definition of the function t in (2). We will show that taking

Hj = Gj for every 1 ≤ j ≤ s yields a sequence as required by the statement. Fix 1 ≤ j ≤ s and

G ∈ Gj ; note that G is a bipartite graph on the vertex classes (V1,V2). Moreover, let 1 ≤ i ≤ j

(recall A2(j) = j) and let P be a 〈δ2〉-regular partition of G with V2(P) ≺2−9 V2(Vi). Since

9Since we assume that each Vi refines {V1, . . . ,Vk} then Vh(Vi) is (recall (1)) the restriction of Vi to Vh.
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δ2 ≤ 2−20 by (9), Lemma 2.7 implies that V1(P) ≺x V1(Vi+1) with x = max{25
√
δ2, 32/ 6

√
t(1)}.

Using (9) and (2) we have x ≤ 2−9, completing the proof of the induction basis.

To prove the induction step, recall that we are given s ∈ N, disjoint sets V1, . . . ,Vk and a

sequence of m = mk(s) successive equitable refinements V1 � · · · � Vm of {V1, . . . ,Vk}, and our

goal is to construct a sequence of s successively refined equipartitionsH1 � · · · � Hs of V1×· · ·×Vk

as in the statement. We begin by applying the induction hypothesis with k−1 (which would imply

Proposition 3.4 below). We henceforth put c = 2−9. Now, apply the induction hypothesis with

k − 1 on

s′ := A∗k(s) (in place of s), V1, . . . ,Vk−1 and

k−1⋃
h=1

Vh(V1) � · · · �
k−1⋃
h=1

Vh(Vm) , (12)

and let

F1 � · · · � Fs′ with |F`| = 2` for every 1 ≤ ` ≤ s′ (13)

be the resulting sequence of s′ successively refined equipartitions of V1 × · · · ×Vk−1.

Proposition 3.4 (Induction hypothesis). Let 1 ≤ ` ≤ s′ and F ∈ F`. If P ′ is a 〈δk−1〉-regular

partition of F with P ′(1) ≺ {V1, . . . ,Vk−1}, and for some 1 ≤ i ≤ Ak−1(`) (< mk−1(s)) we have

Vh(P ′) ≺c Vh(Vi) for every 2 ≤ h ≤ k − 1, then V1(P) ≺c V1(Vi+1).

Proof. It suffices to verify that the number m of partitions in (12) is as required by the induction

hypothesis. Indeed, by (8),

mk−1(s′) = A∗2(· · · (A∗k−1(s′)) · · · ) = A∗2(· · · (A∗k(s)) · · · ) = mk(s) = m .

�

For each 1 ≤ j ≤ s let

F(j) = FA∗k(j) and V(j) = Vk(VAk(j)) . (14)

All these choices are well defined since A∗k(j) satisfies 1 ≤ A∗k(1) ≤ A∗k(j) ≤ A∗k(s) = s′ by our choice

of s′ in (12), and since Ak(j) satisfies 1 ≤ Ak(1) ≤ Ak(j) ≤ Ak(s) ≤ m. Observe that we have thus

chosen two subsequences of F1, · · · ,Fs′ and Vk(V1), . . . , Vk(Vm), each of length s. Recalling that

each F(j) is a partition of V1 × · · · ×Vk−1, apply Lemma 2.7 with

L = V1 × · · · ×Vk−1, R = Vk and F(1) � · · · � F(s), V(1) � · · · � V(s) ,

and let

G1 � · · · � Gs with |G`| = 2` for every 1 ≤ ` ≤ s (15)

be the resulting sequence of s successively refined graph equipartitions of (V1 × · · · ×Vk−1)×Vk.

Proposition 3.5 (Core proposition). Let 1 ≤ j ≤ s and G ∈ Gj. If E ∪V is a 〈δk〉-regular partition

of G (where E and V are partitions of V1×· · ·×Vk−1 and Vk respectively), and for some 1 ≤ j′ ≤ j
we have V ≺c V(j′), then E ≺ 1

4
δk−1
F(j′).
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Proof. First we need to verify that we may apply Lemma 2.7 as above. Assumptions (i) and (ii)

follow from the fact that |V(j)| = t(Ak(j)), from (3) and the fact that Ak(1) ≥ 2211 ≥ 2200 for

k ≥ 3 by (5). To verify that assumption (iii) holds, note that |F(j)| = 2A
∗
k(j) by (13), and that

|V(j)| = t(Ak(j)) by the statement’s assumption that |Vk(Vi)| = t(i). Thus, indeed,

|F(j)| = 2A
∗
k(j) = 2t(Ak(j))/e(j) = 2|V(j)|/e(j) ,

where the second equality uses the definition in (4). Moreover, note that δk ≤ δ2 ≤ 2−20 by (9).

We can thus use Lemma 2.7 to infer that the fact that V ≺c V(j′) implies that E ≺x F(j′) with

x = max{25
√
δk, 32/ 6

√
t(Ak(1))}. To see that indeed x ≤ 1

4δk−1, apply (10) as well as the fact that

t(Ak(1)) ≥ Ak(1) and (11). �

For each G ∈ Gj let HG be the k-partite k-graph on vertex classes (V1, . . . ,Vk) with edge set

E(HG) =
{

(v1, . . . , vk) : ((v1, . . . , vk−1), vk) ∈ E(G)
}
,

and note that we have (recall Definition 2.3)

G = GkHG . (16)

For every 1 ≤ j ≤ s let Hj = {HG |G ∈ Gj}, and note that |Hj | = |Gj | = 2j by (15), that Hj is an

equipartition of V1 × · · · ×Vk, and that H1 � · · · � Hs. Our goal is to show that these partitions

satisfy the property guaranteed by the statement.

Henceforth fix 1 ≤ j ≤ s and H ∈ Hj , and write H = HG with G ∈ Gj . To complete the proof

is suffices to show that H satisfies the property in the statement. Assume now that i is such that

1 ≤ i ≤ Ak(j) (17)

and

(i) P is a 〈δk〉-regular partition of H,

(ii) Vh(P) ≺c Vh(Vi) for every 2 ≤ h ≤ k.

In the remainder of the proof we will complete the induction step by showing that

V1(P) ≺c V1(Vi+1) . (18)

It follows from Item (i), by Definition 2.5 and (16), that in particular

Ek(P) ∪ Vk(P) is a 〈δk〉-regular partition of G. (19)

Let

1 ≤ j′ ≤ s (20)

be the unique integer satisfying

Ak(j
′) ≤ i < Ak(j

′ + 1) . (21)
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Note that (20) holds due to (17). Recalling (14), the lower bound in (21) implies that Vk(V i) ≺
Vk(VAk(j′)) = V(j′). Therefore, the assumption Vk(P) ≺c Vk(V i) in Item (ii) implies that

Vk(P) ≺c V(j′) . (22)

Apply Proposition 3.5 on G, using (19), (20) and (22), to deduce that

Ek(P) ≺ 1
4
δk−1
F(j′) = FA∗k(j′) , (23)

where for the equality again recall (14). Let P∗ be the restriction of P to V1 ∪ · · · ∪Vk−1, and let

P ′ = P∗ \ P∗[V1 × · · · ×Vk−1]. Note that P∗ is a (k − 1)-partition on (V1, . . . ,Vk−1) and that

P ′ is a (k − 2)-partition on (V1, . . . ,Vk−1). Since P is a 〈δk〉-regular partition of H (by Item (i)

above), P∗ is in particular 〈δk〉-good. By (23) we may thus apply Claim 3.1 on P∗ to conclude that

P ′ is a 〈δk−1〉-regular partition of some F ∈ FA∗k(j′). (24)

By (24) we may apply Proposition 3.4 with F , P ′, ` = A∗k(j
′) and i, observing (crucially) that i ≤ `

by (21). Note that Item (ii) in particular implies that Vh(P ′) ≺c Vh(Vi) for every 2 ≤ h ≤ k−1. We

thus deduce that V1(P ′) ≺c V1(Vi+1). Since V1(P ′) = V1(P), this proves (18) and thus completes

the induction step and the proof of Lemma 3.3. �

3.2 Putting everything together

We can now prove our main theorem, Theorem 3, which we repeat here for convenience.

Theorem 3 (Main theorem). The following holds for every k ≥ 2 and s ∈ N. There exists a

k-partite k-graph H of density at least 2−s−k, and a partition V0 of V (H) with |V0| ≤ 2200k, such

that if P is a 〈2−16k〉-regular partition of H with P(1) ≺ V0 then |P(1)| ≥ Ackk(s).

Remark 3.6. As can be easily checked, the proof of Theorem 3 also gives that H has the same

number of vertices in all vertex classes.

Proof. Let the k-graph B be the tight 2k-cycle; that is, B is the k-graph on vertex classes

{0, 1, . . . , 2k − 1} with edge set E(B) = {{0, 1, . . . , k − 1}, {1, 2, . . . , k}, . . . , {2k − 1, 0, . . . , k − 2}}.
Note that B is k-partite with vertex classes ({0, k}, {1, k+1}, . . . , {k−1, 2k−1}}. Put m = mk(s−k)

and let n ≥ t(m). Let V0, . . . ,V2k−1 be 2k mutually disjoint sets of size n each. Let V1 � · · · � Vm

be an arbitrary sequence of m successive equitable refinements of {V0, . . . ,V2k−1} with |V ih| = t(i)

for every 1 ≤ i ≤ m and 0 ≤ h ≤ 2k − 1, which exists as n is large enough. Extending the

notation Vx (above Definition 2.5), for every 0 ≤ x ≤ 2k − 1 we henceforth denote the restriction

of the vertex partition V ≺ {V0, . . . ,V2k−1} to Vx by Vx = {V ∈ V |V ⊆ Vx}. For each edge

e = {x, x + 1, . . . , x + k − 1} ∈ E(B) (here and henceforth when specifying an edge, the integers

are implicitly taken modulo 2k) apply Lemma 3.3 with

s, Vx,Vx+1, . . . ,Vx+k−1 and

k−1⋃
j=0

V1
x+j � · · · �

k−1⋃
j=0

Vmx+j .
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Let He denote the resulting k-partite k-graph on (Vx,Vx+1, . . . ,Vx+k−1). Note that d(He) = 2−s.

Let

c = 2−9 and K = Ak(s) + 1 .

Then He has the property that for every 〈δk〉-regular partition P ′ of He and every 1 ≤ i < K,

If Vx+h(P ′) ≺c Vx+h(Vi) for every 1 ≤ h ≤ k − 1, then Vx(P) ≺c Vx(Vi+1). (25)

We construct our k-graph on the vertex set V := V0 ∪ · · · ∪ V2k−1 as E(H) =
⋃
eE(He); that

is, H is the edge-disjoint union of all 2k k-partite k-graphs He constructed above. Note that

H is a k-partite k-graph (on vertex classes (V0 ∪Vk, V1 ∪Vk+1, . . . ,Vk−1 ∪V2k−1)) of density
2k
2k

2−s ≥ 2−s−k, as needed. We will later use the following fact.

Proposition 3.7. Let P be a 〈2−16k〉-regular partition of H with P(1) ≺ {V0, . . . ,V2k−1}, and let

e ∈ E(B). Then the restriction P ′ of P to V (He) is a 〈δk〉-regular partition of He.

Proof. Immediate from Claim 3.2 using the fact that e(He) = 1
2ke(H). �

Now, let P be an 〈2−16k〉-regular partition of H with P(1) ≺ V1. Our goal will be to show that

P(1) ≺c VK . (26)

Proving (26) would complete the proof, by setting V0 in the statement to be V1 here (notice

|V1| = kt(1) = k2200 by (2)); indeed, Claim 4.1, given in Section 4.2 below, would imply that

|P(1)| ≥ 1

4
|VK | = 1

4
· 2k · t(K) ≥ t(K) ≥ t(Ak(s)) ≥ Ak(s) ≥ Ackk(s) ,

where the last inequality uses (6). Assume towards contradiction that P(1) ⊀c VK . By averaging,

P(1)
h ⊀c VKh for some 0 ≤ h ≤ 2k − 1. (27)

For each 0 ≤ h ≤ 2k − 1 let 1 ≤ β(h) ≤ K be the largest integer satisfying P(1)
h ≺c Vβ(h)

h , which

is well defined since P(1)
h ≺c V1

h (in fact P(1) ≺ V1). Put β∗ = min0≤h≤2k−1 β(h), and note that

by (27),

β∗ < K . (28)

Let 0 ≤ x ≤ 2k − 1 minimize β, that is, β(x) = β∗. Therefore:

P(1)
x+k−1 ≺c V

β∗

x+k−1, . . . , P
(1)
x+1 ≺c V

β∗

x+1 and P(1)
x ⊀c Vβ

∗+1
x . (29)

Let e = {x, x+ 1, . . . , x+ k − 1} ∈ E(B). Let P ′ be the restriction of P to V (He) = Vx ∪Vx+1 ∪
· · ·∪Vx+k−1, which is a 〈δk〉-regular partition of He by Proposition 3.7. Since P ′(x+h)

h = P(x+h)
h for

every 0 ≤ h ≤ k−1 we get from (29) a contradiction to (25) with i = β∗. We have thus proved (26)

and so the proof is complete. �
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3.3 Deferred proofs: properties of k-partitions

Henceforth, for a (k − 1)-partite (k − 1)-graph F on (V1, . . . , Vk−1) and a disjoint vertex set V we

denote by F ◦ V the k-partite k-graph on (V1, . . . , Vk−1, V ) given by

F ◦ V := {(v1, . . . , vk) | (v1, . . . , vk−1) ∈ F and vk ∈ V } .

We will use the following additional property of k-partitions.

Claim 3.8. Let P be a (k − 1)-partition with P(1) ≺ (V1, . . . ,Vk), F ∈ Ek(P) and V ∈ Vk(P).

Then there is a set of k-polyads {Pi}i of P such that

F ◦ V =
⋃
i

K(Pi) is a partition of F ◦ V , with Pi = (Pi,1, . . . , Pi,k−1, F ) . (30)

Proof. We proceed by induction on k ≥ 2, noting that the induction basis k = 2 is trivial since in

this case E2(P) = V1(P) so F = V ′ ∈ V1(P), hence F ◦V = V ′×V is simply K(P ) where P is the 2-

polyad of P corresponding to the pair (V ′, V ). For the induction step assume the statement holds for

k ≥ 2 and let us prove it for k+1. Let P be a k-partition on (V1, . . . ,Vk+1), let F ∈ Ek+1(P) and let

V ∈ Vk+1(P), and denote the vertex classes of F by (V1, . . . , Vk) with Vj ⊆ Vj for every 1 ≤ j ≤ k.

Recall that, by Definition 2.1, P(k) ≺ Kk(P). Thus, F ⊆ K(G1, . . . , Gk) with Gj ∈ P(k−1) for every

1 ≤ j ≤ k, where Gj is a (k − 1)-partite (k − 1)-graph on (V1, . . . , Vj−1, Vj+1, . . . , Vk). We have

F ◦ V = K(G1 ◦ V, . . . , Gk ◦ V, F ) ; (31)

indeed, the inclusion ⊆ follows from the fact that F ⊆ K(G1, . . . , Gk), and the reverse inclusion ⊇
is immediate. Now, for every 1 ≤ j ≤ k, let Pj denote the restriction of P to the vertex classes

(V1, . . . ,Vj−1,Vj+1, . . . ,Vk,Vk+1) and apply the induction hypothesis with the (k− 1)-partition

Pj , the (k− 1)-graph Gj and V . It follows that there is a partition Gj ◦V =
⋃
iK(Pj,i) where each

Pj,i is a k-polyad of Pj (and thus of P) on (V1, . . . , Vj−1, Vj+1, . . . , Vk, V ). Since Kk(Pj) � P
(k)
j ,

again by Definition 2.1, for each i and j we have a partition K(Pj,i) =
⋃
` Fj,i,` with Fj,i,` ∈ P

(k)
j ,

where each Fj,i,` is a k-partite k-graph on (V1, . . . , Vj−1, Vj+1, . . . , Vk, V ). Summarizing, for every

1 ≤ j ≤ k we have the partition Gj ◦ V =
⋃
i,` Fj,i,`, and so it follows using (31) that we have the

partition

F ◦ V = K
(⋃
i,`

F1,i,`, . . . ,
⋃
i,`

Fk,i,`, F
)

=
⋃

i1,...,ik
`1,...,`k

K(F1,i,`, . . . , Fk,i,`, F ) .

As each (k+ 1)-tuple (F1,i,`, . . . , Fk,i,`, F ) corresponds to a (k+ 1)-polyad of P, this completes the

inductive step. �

Before proving Claim 3.1 we will also need the following two easy claims.

Claim 3.9. Let G1, . . . , G` be mutually edge-disjoint bipartite graphs on the same vertex classes

(Z,Z ′). If every Gi is 〈δ〉-regular then G =
⋃`
i=1Gi is also 〈δ〉-regular.
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Proof. Let S ⊆ Z, S′ ⊆ Z ′ with |S| ≥ δ|Z|, |S′| ≥ δ|Z ′|. Then

dG(S, S′) =
eG(S, S′)

|S||S′|
=
∑̀
i=1

eGi(S, S
′)

|S||S′|
=
∑̀
i=1

dGi(S, S
′) ≥

∑̀
i=1

1

2
dGi(Z,Z

′) =
1

2
dG(Z,Z ′) ,

where the second and last equalities follow from the mutual disjointness of the Gi, and the inequality

follows from the 〈δ〉-regularity of each Gi. Thus, G is 〈δ〉-regular, as claimed. �

Claim 3.10. If Q ≺δ P then there exist P ∈ P and Q that is a union of members of Q such that

|P4Q| ≤ 3δ|P |.

Proof. For each P ∈ P let Q(P ) = {Q ∈ Q |Q ⊆δ P}, and denote PQ =
⋃
Q∈Q(P )Q. We have∑

P∈P
|P4PQ| =

∑
P∈P
|PQ \ P |+

∑
P∈P
|P \ PQ| =

∑
P∈P

∑
Q∈Q :
Q⊆δP

|Q \ P |+
∑
P∈P

∑
Q∈Q :
Q*δP

|Q ∩ P |

≤
∑
P∈P

∑
Q∈Q :
Q⊆δP

δ|Q|+
( ∑
Q∈Q :
Q/∈δP

|Q|+
∑
Q∈Q :
Q∈δP

δ|Q|
)
≤ 3δ

∑
Q∈Q
|Q| = 3δ

∑
P∈P
|P | ,

where the last inequality uses the statement’s assumption Q ≺δ P to bound the middle summand.

By averaging, there exists P ∈ P such that |P4PQ| ≤ 3δ|P |, thus completing the proof. �

Proofs of properties. We are now ready to prove the properties of k-partitions stated at the

beginning of Section 3.

Proof of Claim 3.1. Put E = Ek(P), and let us henceforth use r = k − 1. Since E ≺δ F ,

Claim 3.10 implies that there exist F ∈ F (an r-partite r-graph on (V1, . . . ,Vr)), as well as an

r-partite r-graph FE that is a union of members of E , such that |F4FE | ≤ 3δ|F |. Denote by Q the

(r− 1)-partition P ′ obtained by restricting P to
⋃r
i=1 Vi, and note that Q is 〈δ〉-good since Q ⊆ P

and, by assumption, P is 〈δ〉-good. Our goal is to prove that Q is a 〈3δ〉-regular partition of F .

Recalling Definition 2.5, note that it suffices to show, without loss of generality, that Er(Q)∪Vr(Q) is

a 〈δ〉-regular partition of the bipartite graph GrF . We have |GrF4GrFE | = |F4FE | ≤ 3δ|F | = 3δ|GrF |,
that is, GrFE is obtained from GrF by adding/removing at most 3δ|GrF | edges. Therefore, to complete

the proof it suffices to show that for every Z ∈ Er(Q) and Z ′ ∈ Vr(Q), the induced bipartite graph

GrFE [Z,Z
′] is 〈δ〉-regular (recall Definition 2.2).

Apply Claim 3.8 on the (r − 1)-partition Q with Z and Z ′. Since E ≺ Kk−1(Q) (recall Defini-

tion 2.1), this means that Z ◦Z ′ is a (disjoint) union of members E of E all underlain by r-polyads

of the form (P1, . . . , Pr−1, Z). Since Q is 〈δ〉-good (recall Definition 2.4), for each such E we in par-

ticular have that GrE [Z,Z ′] (= GrE,U(E)) is 〈δ〉-regular. It follows that GrFE [Z,Z
′] is a disjoint union

of 〈δ〉-regular bipartite graphs on (Z,Z ′). Claim 3.9 thus implies that GrFE [Z,Z
′] is a 〈δ〉-regular

bipartite graph. As explained above, this completes the proof. �

We end this subsection with the easy proof of Claim 3.2.
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Proof of Claim 3.2. Recall Definition 2.5. Clearly, P ′ is 〈δ〉-good. We will show that E1(P ′) ∪
V1(P ′) is a 〈δ/β〉-regular partition of G1

H′ . The argument for GiH′ for every 2 ≤ i ≤ k will be

analogous, hence the proof would follow. Observe that G1
H′ is an induced subgraph of G1

H , namely,

G1
H′ = GiH [V ′2 × · · · × V ′k, V ′1 ]. By assumption, e(H ′) = βe(H), and thus e(G1

H′) = βe(G1
H). By

the statement’s assumption on P(1) and since E1(P) ∪ V1(P) is a 〈δ〉-regular partition of G1
H , we

deduce—by adding/removing at most δe(G1
H) = (δ/β)e(G1

H′) edges of G1
H′—that E1(P ′) ∪ V1(P ′)

is a 〈δ/β〉-regular partition of G1
H′ . As explained above, this completes the proof. �

4 Proof of Lemma 2.7

The purpose of this section is to prove Lemma 2.7. This section, which deals exclusively with graphs

(rather than hypergraphs), is organized as follows. In Subsection 4.1 we give a short overview of

our construction and analysis with pointers to the main claims in this section, in Subsection 4.2 we

introduce a few auxiliary notions and prove a few simple lemmas, in Subsection 4.3 we specify our

construction, in Subsection 4.4 we prove two key properties of our construction and in Subsection 4.5

we prove Lemma 2.7.

4.1 Proof overview

Construction. In our construction of the sequence of edge equitpartition G1 � · · · � Gs of L×R

for Lemma 2.7, each graph in each Gj is a blowup of a bipartite graph whose vertex classes are the

partitions (Lj ,Rj). To obtain Gj , we subdivide each graph in Gj−1 (where G0 is the trivial partition

{L ×R} with one part) into two subgraphs with the same number of edges. The way we do this

is, roughly speaking, blowup the graph from Lj−1 ∪Rj−1 into Lj ∪Rj (i.e., replace every “vertex”

in Lj−1 ∪ Rj−1 by a cluster in Lj ∪ Rj and replace every “edge” by a complete bipartite graph),

and subdivide each of the complete bipartite graphs into a random biregular bipartite subgraph of

density 1
2 and its complement (see Claim 4.7 below).

Analysis. In order to prove that every graph G ∈ Gj satisfies the guarantee of Lemma 2.7 we

use two key properties of our construction. The first key property (Claim 4.10 below) is that

G is somewhat quasirandom, where the measure of quasirandomness depends inversely on |R1|.
The second key property (Claim 4.12 below) is essentially that for every subset P ⊆ L satisfying

P ⊆δ L ∈ Lk−1 yet P /∈δ Lk for some k ≤ j, a constant fraction of the clustersR ∈ Rk “neighboring”

L in G are such that in order to make the induced bipartite graph G[P,R] 〈δ〉-regular one has to

add or remove a constant fraction of its edges. Recall that what we need to prove in Lemma 2.7

is, in the contrapositive, that a vertex partition P ∪ Q of G (P partitions L, Q partitions R)

satisfying Q ≺2−9 Qi yet P ⊀γ Li—with γ = poly(δ, |R1|−1) and some i ≤ j—cannot be 〈δ〉-
regular. Applying the second key property on all clusters P ∈ P, each with its appropriate k,

allows us to deduce, using the first key property, that in order for all induced bipartite graphs

G[P,Q], with P ∈ P and Q ∈ Q, to be 〈δ〉-regular, one has to add or remove more than a δ-fraction

of the edges of G. This proves that P ∪Q is not a 〈δ〉-regular partition of G, as needed.
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4.2 Construction preliminaries

In this subsection we prove a sequence of simple lemmas that will be used later in this section.

Approximate refinements. We will need the following claim.

Claim 4.1. If Q ≺1/2 P and P is equitable then |Q| ≥ 1
4 |P|.

Proof. We claim that the underlying set U has a subset U∗ of size |U∗| ≥ 1
4 |U | such that the

partitions Q∗ = {Q ∩ U∗ |Q ∈ Q} \ {∅} and P∗ = {P ∩ U∗ |P ∈ P} \ {∅} of U∗ satisfy Q∗ ≺ P∗.
Indeed, let U∗ =

⋃
QQ∩PQ where the union is over all Q ∈ Q satisfying Q ⊆1/2 PQ for a (unique)

PQ ∈ P. As claimed, |U∗| =
∑

Q∈1/2P |Q∩PQ| ≥
∑

Q∈1/2P
1
2 |Q| ≥

1
4 |U |, using Q ≺1/2 P for the last

inequality. Now, since P is equitable, |P∗| ≥ 1
4 |P|. Thus, |Q| ≥ |Q∗| ≥ |P∗| ≥ 1

4 |P|, as desired. �

Quasirandom graphs. A bipartite graph G = (V,U,E) of density p is (ε)-regular if for all sets

A ⊆ U , B ⊆ V with |S| ≥ ε|V |, |T | ≥ ε|U | we have

|d(S, T )− p| ≤ εp .

The next lemma—which, importantly, applies to arbitrarily sparse graphs—will be later used

to prove that the graph we construct is quasirandom by bounding from above the average codegree.

Formally, codeg(v, v′) is the number of vertices that neighbor both v and v′.

Lemma 4.2. Let G = (V,U,E) be a biregular bipartite graph of density p where for every v ∈ V ,∑
v′∈V

max{codeg(v, v′)− p2|U |, 0} ≤ α · p2|U ||V | .

Then G is (2α1/6)-regular.

Proof. Put ε = 2α1/6. Let S ⊆ V , T ⊆ U with |S| ≥ ε|V |, |T | ≥ ε|U |. Our goal is to show that

d(S, T ) = (1± ε)p. Let u be a uniformly random vertex from U , and let the random variable D be

the degree of u into S, that is, D = e(S, u). Then

E[D] =
1

|U |
∑
u∈U

e(S, u) =
1

|U |
∑
v∈S

degG(v) = p|S| ,

where the last equality uses the biregularity of G. Furthermore,

E[D2] =
1

|U |
∑
u∈U

e(S, u)2 =
1

|U |
∑
v,v′∈S

codeg(v, v′) .

Therefore,

Var[D] =
1

|U |
∑
v,v′∈S

codeg(v, v′)− (p|S|)2 =
1

|U |
∑
v,v′∈S

(
codeg(v, v′)− p2|U |

)
≤ 1

|U |
∑
v∈S

∑
v′∈V

max{codeg(v, v′)− p2|U |, 0} ≤ αp2|S||V | ,
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where the last inequality follows from the statement’s assumption. Set, with foresight, x = α1/3/ε.

By Chebyshev’s inequality,

P
(∣∣D − p|S|∣∣ ≥ xp|S|) ≤ Var[D]

(xp|S|)2
≤ α

x2ε
= ε2x .

Since e(S, T ) =
∑

u∈T e(S, u), we have

(|T | − ε2x|U |) · p|S|(1− x) ≤ e(S, T ) ≤ |T | · p|S|(1 + x) + ε2x|U | · p|V | ,

where the right inequality again uses the biregularity of G. Therefore,

1− 2x ≤ (1− εx)(1− x) ≤ d(S, T )

p
≤ (1 + x) + x = 1 + 2x .

Since 2x ≤ ε by our choice of ε = 2α1/6, the proof follows. �

Balanced graphs. Here we define another notion of quasirandom bipartite graphs. We say that

a bipartite graph G on (an ordered pair) (X,Y) is10 β-balanced if for every x 6= x′ ∈ X, the number

of vertices in Y that are either neighbors of x, x′ or non-neighbors of x, x′ is at most (1
2 +β)|Y|. We

say that G is complement-closed if there is an involution φ : Y → Y such that N(φ(y)) = X\N(y)

for every y ∈ Y.

Definition 4.3. Let Γ be a bipartite graph on (X,Y), let X be a partition of X, let Y be a partition

of Y, and let F be a family of subsets of Y where each member of F is a union of parts of Y. We

say that Γ is (X ,Y,F , α, β)-balanced if the following four conditions hold:

(i) (Equitable) for every X ∈ X and y ∈ Y we have |N(y) ∩X| = 1
2 |X|,

(ii) (β-balanced) for every F ∈ F the graph Γ[X, F ] is β-balanced,

(iii) (Pseudorandom) for every X ∈ X , F ∈ F and y 6= y′ ∈ F , |N(y)∩N(y′)∩X| ≤ (1 +α)1
4 |X|,

(iv) (Complement-closed) for every Y ∈ Y the graph Γ[X, Y ] is complement-closed.

Remark 4.4. Condition (iv) in Definition 4.3 in particular implies that for every F ∈ F the

induced bipartite graph Γ[X, F ] is complement-closed, as F is assumed to be a union of parts of Y.

Remark 4.5. Any balanced graph Γ is biregular, since the vertices in Y all have degree 1
2 |X| by

condition (i), and the vertices in X all have degree 1
2 |Y| by condition (iv).

We note that condition (ii) of Definition 4.3 can be shown to follow from condition (iii) for a

suitable α = α(β) by using Claim 4.2, but we opted for including the two conditions for clarity.

Lemma 4.6. Let X,Y be disjoint sets, let X be partition of X into parts each of even size m, let

Y be a partition of Y into parts each of even size, and let F be a family of subsets of Y where

each is of size k and is a union of parts of Y. Let α ≥ m−1/3 and suppose 221 ≤ k ≤ m and

max{|X |, |F|} ≤ m ≤ 2k/600. Then there exists an (X ,Y,F , α, 1
16)-balanced bipartite graph Γ on

(X,Y).

10That is to say, this definition is not symmetric with respect X,Y.
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Proof. The proof idea is quite simple—an appropriate random bipartite graph satisfies the first

three conditions in Definition 4.3, and “closing” it under complementation additionally guarantees

the last condition. The precise details follow.

For each part Y ∈ Y let Y = Y1∪Y2 be an arbitrary bipartition (recall that |Y | is even). For each

i ∈ {1, 2} put Yi = {Yi : Y ∈ Y} and Yi =
⋃
Y ∈Y Yi, and let φ : Y2 → Y1 be a bijection mapping

Y2 to Y1 for each Y ∈ Y. Furthermore, for each F ∈ F let Fi = F ∩Yi, and put Fi = {Fi |F ∈ F}.
Since every member of F is a union of parts of Y and of size k, we have that each member of F1

and of F2 is of size k/2, with φ mapping F2 to F1 for each F ∈ F . We first prove that there is a

bipartite graph Γ1 on (X,Y1) satisfying the following three conditions:

(A) for every X ∈ X and y ∈ Y1 we have |N(y) ∩X| = 1
2 |X|,

(B) for every F ∈ F1 the graph Γ[X, F ] is β-balanced,

(C) for every X ∈ X , F ∈ F1 and y 6= y′ ∈ F we have |N(y) ∩N(y′) ∩X| = (1± α)1
4 |X|.

We construct Γ1 in a random fashion by choosing, independently for each X ∈ X and y ∈ Y1,

precisely |X|/2 uniformly random neighbors of y in X (recall |X| = m is even). It suffices to show

that Γ1 satisfies conditions (B) and (C) with positive probability. To prove (B), fix F ∈ F1 and

x 6= x′ ∈ X. For every y ∈ F , the probability that either x, x′ ∈ N(y) or x, x′ /∈ N(y) is easily

seen to be at most 1/2. By Chernoff’s inequality,11 the number of y ∈ F satisfying the above is

at most (1
2 + 1

16)|F | except with probability at most exp(−2|F |/(16)2) = exp(−|F |/27). Therefore,

the probability that condition (B) does not hold is, by the union bound, at most

|F1|
(
|X|
2

)
· exp

(
− (k/2)

27

)
≤
(
2k/600

)3 · exp
(
− k

28

)
<

1

2
,

where the last inequality uses the assumption k ≥ 221. To prove (C), fix X ∈ X , F ∈ F1 and

y 6= y′ ∈ F . By construction, the number of neighbors of y′ that lie in N(y) ∩ X follows a

hypergeometric distribution. Thus, we may apply the Chernoff bound (see, e.g., Section 6 in [14]

or Theorem 2.10 in [15]) and deduce that |N(y)∩N(y′)∩X| = (1
2 ±

1
2α)|N(y)∩X| (= 1

4(1±α)|X|)
except with probability at most 2 exp(−2(1

4α)2|X|) = 2 exp(−α2|X|/8). Therefore, the probability

that condition (C) does not hold is, by the union bound, at most

|X ||F1|
(
k/2

2

)
· 2 exp

(
− 1

8
α2m

)
≤ m4 · exp

(
− 1

8
m1/3

)
<

1

2
,

where the last inequality uses the assumption m ≥ 221. We deduce from the above, again by the

union bound, that Γ satisfies conditions (B) and (C) with positive probability, proving the existence

of Γ1 as desired.

Consider now the isomorphic copy of Γ1 on the vertex classes (X,Y2) that is determined by φ,

and let Γ2 be its complement. We claim that Γ2 also satisfies conditions (A), (B) and (C), with

Y2 and F2 replacing Y1 and F1, respectively. Indeed, condition (A) clearly holds, condition (B)

follows from the symmetry in the definition of a β-balanced graph, and one can easily verify that

11We use the basic version stating that P[Bin(n, p) ≥ pn+ t] ≤ exp(−2t2/n); see, e.g., [14].
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condition (C) follows from conditions (A) and (C) satisfied by Γ1 (using NΓ2(y) ∩NΓ2(y′) ∩X =

X \ (NΓ1(φ−1(y)) ∪NΓ1(φ−1(y′))) and the inclusion-exclusion formula).

To complete the proof we claim that the (edge-disjoint) union Γ = Γ1∪Γ2 is an (X ,Y,F , α, 1
16)-

balanced graph on (X,Y), as needed. Note that condition (iv) is immediate from the definition

of Γ2, condition (i) follows from (A), and condition (ii) follows from (B) since Γ is a union of

β-balanced graphs sharing the vertex class X. As for condition (iii), let X ∈ X , F ∈ F and

y 6= y′ ∈ F . If y, y′ ∈ Y1 or y, y′ ∈ Y2 then we are done by condition (C) which is satisfied by Γ1

and Γ2. Hence, suppose y ∈ Y1 while y′ ∈ Y2. Observe that NΓ(y′) = X \ NΓ1(φ(y′)). Thus, if

φ(y′) = y then |NΓ(y) ∩ NΓ(y′)| = 0 which completes the proof, and otherwise, since Γ1 satisfies

conditions (A) and (C), we complete the proof as in the end of the previous paragraph. �

4.3 Core construction

We now turn to define our construction for Lemma 2.7. Let L and R be disjoint sets, not necessarily

of the same size. Let L1 � · · · � Ls and R1 � · · · � Rs each be a sequence of s successively refined

equipartitions of L and R, respectively, satisfying the three conditions in Lemma 2.7. We construct

a sequence of s successively refined edge equipartitions G1 � · · · � Gs of L×R with |Gi| = 2i. For

convenience, set G0 = {L × R} to be the trivial partition, which consists only of the complete

bipartite graph on L,R. The construction is iterative, where for every i ≥ 1 the partition Gi will

be obtained from Gi−1 by subdividing the edge set of each graph Gi−1 ∈ Gi−1 into two biregular

bipartite graphs of density 2−i (note that this property is satisfied by G0).12 Furthermore, Gi will

have the property that dGi(L,R) ∈ {0, 1} for every L ∈ Li and R ∈ Ri. We can thus define for

every Gi ∈ Gi a bipartite graph G̃i on the vertex classes (Li,Ri), where (L,R) ∈ E(G̃i) if and only

if dGi(L,R) = 1. In other words, the graph Gi is a blowup13 of G̃i. In particular, we will frequently

refer to a part L ∈ Li or R ∈ Ri both as a cluster of vertices of Gi or as a vertex of G̃i.

Fix an i ≥ 1 and one of the graphs Gi−1 ∈ Gi−1. We will now show how to partition Gi−1 (more

precisely E(Gi−1)) into two biregular bipartite graphs Gi and Gi−1 \Gi, both of density 2−i. It will

be more convenient to (indirectly) define Gi by defining G̃i. We henceforth abbreviate N
G̃i−1

(·) by

Ni−1(·). This means, for example, that if R ∈ Ri−1 and L ∈ Li−1 and R ∈ Ni−1(L) then Gi−1

contains the complete bipartite graph on (L,R). We henceforth denote P[X] = {P ∈ P |P ⊆ X}
the restriction of a partition P to a set X.

For L ∈ Li−1 let Ni(L) be the family of clusters of Ri contained in a cluster of Ri−1 adjacent

to L in G̃i−1; more formally,

Ni(L) :=
⋃

R∈Ni−1(L)

Ri[R] . (32)

Note that, since G̃i−1 is biregular of density 2i−1, we have

|Ni(L)| = d(G̃i−1)|Ri−1| ·
|Ri|
|Ri−1|

= d(Gi−1)|Ri| =
|Ri|
2i−1

. (33)

12To be clear, all our graphs are bipartite on the vertex classes (L,R).
13This in particular means that for (the single graph) G0 ∈ G0 we have that G̃0 is K1,1, i.e., the single-edge graph.
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We will next use Lemma 4.6 in order to find a bipartite graph Γi on the vertex classes (Li,Ri)
that is (Xi,Yi,Fi, αi, 1

16)-balanced, where Xi = {Li[L] |L ∈ Li−1}, Yi = {Ri[R] |R ∈ Ri−1},
Fi = {Ni(L) |L ∈ Li−1} and

αi = |Li|−1/6 . (34)

In the rest of this paragraph we explain why we can indeed apply Lemma 4.6. We will use the

assumptions (i), (ii) and (iii) of Lemma 2.7, and in particular the following inequality which they

imply:

|Li| = 2|Ri|/2
i+10 ≥ 22|Ri−1|/2i+9

= |Li−1|2 . (35)

To prove our claim we observe the following; Fi is ki-uniform with ki = |Ri|/2i−1 by (33); the

members of Xi and of Yi are of size mi = |Li|/|Li−1| and |Ri|/|Ri−1|, respectively, with both

numbers being powers of 2 and thus even; since mi ≥
√
|Li| by (35), we have 221 ≤ ki ≤ mi (by

item (iii) of Lemma 2.7) and αi = |Li|−1/6 ≥ m
−1/3
i ; |Xi| = |Fi| = |Li−1| ≤

√
|Li| ≤ mi; and,

finally, mi ≤ |Li| ≤ 2ki/600. We thus conclude that the above graph Γi indeed exists.

Recall that our intention is to construct a graph G̃i on vertex classes (Li,Ri) and that the

above-constructed Γi is also a graph on (Li,Ri). We define G̃i as the intersection of G̃i−1 and Γi.

More precisely,

E(G̃i) = { (L′, R′) ∈ E(Γi) |L′ ⊆ L,R′ ⊆ R with (L,R) ∈ E(G̃i−1)} . (36)

Having defined G̃i we have thus defined a graph Gi ⊆ Gi−1. In order to obtain Gi from Gi−1 we

simply repeat the above for every Gi−1 ∈ Gi−1, that is, we set

Gi =
⋃

Gi−1∈Gi−1

{Gi, Gi−1 \Gi} .

Fix Gi ∈ Gi. The following claim summarizes two important properties of Gi.

Claim 4.7. Let L ∈ Li−1. Then

(i) Gi[L,R] is biregular of density 1
2 for every R ∈ Ni−1(L) (so Gi is biregular of density 2−i),

(ii)
∣∣Ni(R

′
1) ∩Ni(R

′
2) ∩ Li[L]

∣∣ ≤ (1 + αi)
1
4

∣∣Li[L]
∣∣ for every R′1 6= R′2 ∈ Ni(L).

Proof. Since the induced bipartite graph Gi−1[L,R] is complete, by (36) the induced bipartite

graph G̃i[L,R] is precisely Γi[L,R]. Conditions (i) and (iv) in Definition 4.3 imply the biregularity

of G̃i[L,R]. Recalling that Gi is a blow-up of G̃i, and since Gi−1 is biregular of density 2−(i−1),

property (i) follows. Property (ii) immediately follows from condition (iii) in Definition 4.3 and

our choice of Γi. �

We furthermore have the following property coming from the balancedness of Γi.

Claim 4.8. Let L ∈ Li−1. For every λ = (λL′)L′∈Li with λL′ ≥ 0 and ‖λ‖1 = 1, at least 1
62−i|Ri|

of the clusters R′ ∈ Ni(L) satisfy that∑
L′ /∈Ni(R′)

λL′ ≥
1

8
(1− ‖λ‖∞) and

∑
L′∈Ni(R′) :

L′⊆L

λL′ ≥
1

2
−

∑
L′∈Li :
L′*L

λL′ . (37)
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For the proof of Claim 4.8 we will need the following lemma from [18] (which improved upon a

similar lemma from [10]).

Lemma 4.9 (restatement of Lemma 2.3 in [18]). Let G be a bipartite graph on (X,Y) that is
1
16 -balanced. For every λ = (λ1, . . . , λ|X|) with λx ≥ 0 and ‖λ‖1 = 1, at least 1

6 |Y| of the vertices

y ∈ Y satisfy

min
{ ∑
x∈NG(y)

λx,
∑

x/∈NG(y)

λx

}
≥ 1

8
(1− ‖λ‖∞) .

Proof of Claim 4.8. We first observe that Γi[Li, Ni(L)] is 1
16 -balanced and complement-closed;

this follows from conditions (ii), (iv) in Definition 4.3 and our choice of Γi (for (iv) recall Re-

mark 4.4). By Lemma 4.9 (without needing the complement-closed requirement) there are at least
1
6 |Ni(L)| clusters R′ ∈ Ni(L) satisfying that

min
{ ∑
L′∈NΓi

(R′)

λL′ ,
∑

L′ /∈NΓi
(R′)

λL′
}
≥ 1

8
(1− ‖λ‖∞) . (38)

Now, observe that if R′ satisfies (38) but does not satisfy∑
L′∈NΓi

(R′)

λL′ ≥
1

2
(39)

then its “complementary counterpart” φ(R′) does satisfy both (38) and (39). This means that at

least 1
12 |Ni(L)| clusters R′ ∈ Ni(L) satisfy both (38) and (39). We claim that each of these R′

satisfies (37). Indeed, by construction (36), if L′ /∈ NΓi(R
′) then L′ /∈ Ni(R

′), hence∑
L′ /∈Ni(R′)

λL′ ≥
∑

L′ /∈NΓi
(R′)

λL′ ≥
1

8
(1− ‖λ‖∞) .

Moreover, by (36), since R′ ∈ Ni(L), we have for every L′ ⊆ L that L′ ∈ NΓi(R
′) if and only if

L′ ∈ Ni(R
′). Hence, by (39),∑

L′∈Ni(R′) :
L′⊆L

λL′ =
∑

L′∈NΓi
(R′) :

L′⊆L

λL′ =
∑

L′∈NΓi
(R′)

λL′ −
∑

L′∈NΓi
(R′) :

L′*L

λL′ ≥
1

2
−

∑
L′∈Li :
L′*L

λL′ .

This proves our claim. Since 1
12 |Ni(L)| = 1

62−i|Ri| by (33), the proof follows. �

Having collected some simple properties, in the following subsection we prove two key properties

of our construction which will be used to prove Lemma 2.7.

4.4 Key properties of core construction

For the rest of this subsection fix 1 ≤ ` ≤ s, fix G ∈ G` and put p = d(G) = 2−`. Our goal in this

subsection is to prove the two key properties of G stated in Claim 4.10 and Claim 4.12 below. The

first key property of G is that, although it is hard to regularize it, G is in fact somewhat regular.

Specifically, the measure of regularity is determined by |R1|.
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Claim 4.10 (Key Property I). For every S ⊆ L and T ⊆ R with |S| ≥ (4/|R1|1/6)|L| and

|T | ≤ 1
256 |R|, we have eG(S, T ) ≤ 1

200p|S||R|.

Proof. We will prove that G is (ε)-regular with ε = 4/|R1|1/6. First, we show that this will

complete the proof. Note that by assumption (i) of Lemma 2.7, ε ≤ 1/512. Let S ⊆ L and T ⊆ R

with |S| ≥ ε|L| and |T | ≤ |R|/512. If |T | ≥ ε|R| then e(S, T ) ≤ (1 + ε)p|S||T | ≤ p|S||R|/200, and

we are done. Otherwise, let T ′ ⊆ R be an arbitrary superset of T of size ε|R|. Then e(S, T ) ≤
e(S, T ′) ≤ (1 + ε)p|S||T ′| = ε(1 + ε)p|S||R| ≤ p|S||R|/200, and we are done again. This completes

the proof.

We now prove that G is indeed (ε)-regular. Put R0 = {R} and L0 = {L}. For R,R′ ∈ Ri
with 0 ≤ i ≤ ` we denote by 0 ≤ r(R,R′) ≤ i the largest integer such that R,R′ ⊆ R̂ for some

R̂ ∈ Rr(R,R′). We henceforth abbreviate codeg
G̃i

(R,R′) by codegi(R,R
′). Recall αj from (34). We

prove, by induction on 0 ≤ i ≤ `, that for every R,R′ ∈ Ri we have

codegi(R,R
′) ≤ 2r4−i|Li|

i∏
j=r+1

(1 + αj) where r = r(R,R′) . (40)

For the proof we assume R 6= R′, as otherwise r(R,R′) = i and codegi(R,R
′) = deg

G̃i
(R), hence

the required bound codegi(R,R
′) = 2−i|Li| follows from (i) in Claim 4.7. The induction basis

i = 0 is trivially true since R0 does not contain two distinct members. For the induction step,

let R 6= R′ ∈ Ri. Let R̂, R̂′ ∈ Ri−1 satisfy R ⊆ R̂ and R′ ⊆ R̂′, and let L̂ ∈ Li−1 be a common

neighbor of R̂ and R̂′ in G̃i−1. By (ii) in Claim 4.7 together with the fact that R 6= R′, the number

of common neighbors in G̃i of R,R′ that lie in L̂ is at most (1 + αi)
1
4 |L̂| = (1 + αi)

1
4(|Li|/|Li−1|).

Observe that r(R̂, R̂′) = r(R,R′), again using the fact that R 6= R′. Let r = r(R,R′). It follows

that

codegi(R,R
′) ≤ codegi−1(R̂, R̂′) · (1 + αi)

1

4

|Li|
|Li−1|

≤ 2r4−i+1|Li−1|
i−1∏

j=r+1

(1 + αj) · (1 + αi)
1

4

|Li|
|Li−1|

= 2r4−i|Li|
i∏

j=r+1

(1 + αj) ,

where the second inequality uses the induction hypothesis. This completes the inductive proof.

Note that Assumption (ii) in Lemma 2.7 implies that

|Ri| ≥ 4i−1|R1| . (41)

Put α = 2
∑`

j=1 αj . By (34), (41) and Assumptions (i) and (iii) of Lemma 2.7 we have

∑̀
j=1

αj ≤
∑̀
j=1

1

|Lj |1/6
≤
∑̀
j=1

1

2|Rj |/2
j+13 ≤

∑̀
j=1

1

2|R1|2j−15 ≤
2

2|R1|/214 ≤
2

|R1|
(≤ 1) . (42)

For v, v′ ∈ R, with v ∈ R ∈ R` and v′ ∈ R′ ∈ R`, we write r(v, v′) := r(R,R′). Since G is a blowup

of G̃`, we have codegG(v, v′) = codeg`(R,R
′) · |L|/|L`|. It follows from the case i = ` of (40) (recall
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4−` = p2) that

codegG(v, v′) ≤ 2rp2|L|
∏̀

j=r+1

(1 + αj) ≤ 2rp2|L|(1 + α) where r = r(R,R′) , (43)

using the bound
∏`
j=1(1 + αj) ≤ exp(

∑`
j=1 αj) ≤ 1 + 2

∑`
j=1 αj , as

∑`
j=1 αj ≤ 1 by (42).

Fix v ∈ R and note that (43) implies that

∑
v′∈R

max{codegG(v, v′)− p2|L|, 0} ≤ p2|L|
∑̀
r=0

∑
v′∈R :
r(v,v′)=r

(
(1 + α)2r − 1

)
. (44)

Observe that the number of vertices v′ ∈ R satisfying r(v, v′) = r is at most |R|/|Rr|. We have

1

|R|
∑̀
r=0

∑
v′∈R :
r(v,v′)=r

(
(1 + α)2r − 1

)
≤ α+

∑̀
r=1

2r+1

|Rr|
≤ α+

8

|R1|

∞∑
r=1

2r

4r
≤ α+

8

|R1|
≤ 12

|R1|
, (45)

where the second inequality uses (41) and the third inequality uses (42). Summarizing (44) and (45),

we have for every v ∈ R that∑
v′∈R

max{codegG(v, v′)− p2|L|, 0} ≤ 12

|R1|
· p2|L||R| .

Therefore, Lemma 4.2 implies that G is (ε)-regular with ε = 2(12/|R1|)1/6 ≤ 4/|R1|1/6. As ex-

plained in the first paragraph, this completes the proof. �

We will need the following auxiliary property, where we recall that G is any member of G` and

p = d(G) = 2−`.

Claim 4.11. Let 1 ≤ i ≤ ` and let Gi ∈ Gi be the unique graph with E(G) ⊆ E(Gi). If L ∈ Li,
R ∈ Ri satisfy dGi(L,R) = 1 then every vertex u ∈ L satisfies dG(u,R) = 2ip.

Proof. For each i ≤ j ≤ ` let Gj ∈ Gj be the unique graph with E(G) ⊆ E(Gj). Note that

E(G) ⊆ E(G`−1) ⊆ · · · ⊆ E(Gi). We prove by induction on i ≤ j ≤ ` that dGj (Lj , R) = 2i−j for

every Lj ∈ Lj with Lj ⊆ L. We claim that the case j = ` of the induction would complete the

proof. Indeed, for every vertex u ∈ L we have u ∈ L` ∈ L` for some L` ⊆ L; hence, recalling that

G is a blowup of the graph G̃ on (L`,R`), we would get

dG(u,R) = dG(L`, R) = 2i−` = 2ip ,

as needed. We now prove our inductive claim. The induction basis j = i is trivial since necessarily

Lj = L. For the induction step, let Lj ∈ Lj and suppose Lj ⊆ Lj−1 ∈ Lj−1. By the induction

hypothesis, dGj−1(Lj−1, R) = 2i−j+1. By (i) in Claim 4.7, for each Rj−1 ∈ Nj−1(Lj−1) we have

dGj (Lj , Rj−1) = 1
2 . By the construction of Gj from Gj−1, we deduce that dGj (Lj , R) = 2i−j , which

completes the induction step and the proof. �
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The second key property of G is as follows.

Claim 4.12 (Key Property II). Let 1 ≤ i ≤ `. Suppose P ⊆ L satisfies P ∈ 1
4
Li−1 and P /∈γ Li.

Then there exists 1
62−i|Ri| clusters R ∈ Ri satisfying the following:

(i) dG(P,R) ≥ 1
42ip,

(ii) there is P1 ⊆ P with |P1| ≥ 1
8γ|P | such that dG(P1, R) = 0.

Proof. For each L′ ∈ Li let λL′ = |P ∩ L′|/|P |. Put λ = (λL′)L′∈Li ∈ [0, 1]|Li| and note that

‖λ‖1 = 1. Let L ∈ Li−1 be the unique cluster satisfying P ⊆1/4 L. We have ‖λ‖∞ ≤ 1 − γ and∑
L′∈Li : L′*L λL′ ≤

1
4 . Therefore, by Claim 4.8 there are at least 1

62−i|Ri| clusters R′ ∈ Ni(L) for

which ∑
L′ /∈Ni(R′)

λL′ ≥
1

8
(1− ‖λ‖∞) ≥ 1

8
γ and

∑
L′∈Ni(R′),L′⊆L

λL′ ≥
1

2
−

∑
L′∈Li : L′*L

λL′ ≥
1

4
.

Fix R′ ∈ Ni(L) as above. To complete the proof it suffices to show that R′ satisfies Properties (i)

and (ii) in the statement. Denote

P1(R′) = P ∩
⋃

L′ /∈Ni(R′)

L′ and P2(R′) = P ∩
⋃

L′∈Ni(R′),L′⊆L

L′ .

Thus, we have

|P1(R′)| ≥ 1

8
γ|P | and |P2(R′)| ≥ 1

4
|P | .

Let Gi ∈ Gi be the unique graph with E(G) ⊆ E(Gi). We have eG(L′, R′) = 0 for every L′ /∈ Ni(R
′),

implying

eG(P1(R′), R′) = 0 ,

which proves that R′ satisfies Property (ii). Next, we claim that dG(u,R′) = 2ip for every u ∈
P2(R′). Indeed, letting u ∈ L′ ∈ Ni(R

′) (recall the definition of P2(R′)), we have dGi(L
′, R′) = 1,

thus applying Claim 4.11 on L′ and R′ proves our claim. We deduce that

eG(P,R′) ≥ eG(P2(R′), R′) = |P2(R′)| · 2ip|R′| ≥ 1

4
2ip|P ||R′| ,

which proves that R′ satisfies Property (i). This completes the proof. �

4.5 Proof of Lemma 2.7

We are now ready to prove our main result in this section, Lemma 2.7. For convenience, we restate

it below where G is any graph of G`, for any 1 ≤ ` ≤ s. We remind the reader that 〈δ〉-regularity

below refers to Definition 2.2.

Lemma 4.5. Let δ ≤ 2−20. Suppose P ∪ Q is a 〈δ〉-regular partition of G, where P and Q are

partitions of L and R respectively, and Q ≺2−9 Rt for some 1 ≤ t ≤ `. Then P ≺γ Lt with

γ = max{25
√
δ, 32/ 6

√
|R1|}.
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Proof. Suppose towards contradiction that P ⊀γ Lt. Let G′ be a graph satisfying that for every

cluster pair (P,Q) ∈ P ×Q and subsets S ⊆ P and S′ ⊆ Q with |S| ≥ δ|P | and |S′| ≥ δ|Q| we have

dG′(S, S
′) ≥ 1

2dG′(P,Q). We need to show that G′ is not δ-close to G, that is, |E(G′)∆E(G)| >
δ · e(G). For subsets S ⊆ L, T ⊆ R we denote ∆(S, T ) = |EG′(S, T )4EG(S, T )|. Note that

|E(G′)4E(G)| =
∑

P∈P ∆(P,R), hence our goal is to prove∑
P∈P

∆(P,R) > δ · e(G) . (46)

Put L0 = {L}. For each 1 ≤ i ≤ t let

Di =
{
P ∈ P

∣∣∣P ∈γ Li−1 and P /∈γ Li
}
.

Observe that D = {P ∈ P |P /∈γ Lt} is the disjoint union D =
⋃t
i=1Di, since P ∈ D implies

P ∈ Di for a unique i (as P ∈γ Li implies P ∈γ Li−1) and since P ⊆0 L0 for every P ∈ P. We have∑
P∈D
|P | =

∑
P∈P : P /∈γLt

|P | > γ|L| , (47)

where the inequality uses our assumption P ⊀γ Lt.
Fix 1 ≤ i ≤ t and put c = 2−9. Let R∗i =

⋃
(Q ∩ R) where the union is over all R ∈ Ri and

Q ∈ Q satisfying Q ⊆c R. We have

|R \R∗i | =
∑
R∈Ri

∑
Q∈Q :
Q*cR

|Q ∩R| ≤
∑
Q∈Q :
Q/∈cRi

|Q|+
∑
Q∈Q :
Q∈cRi

c|Q| ≤ 2−8|R| , (48)

where the last inequality bounds the first summand using the fact that Q ≺c Ri, which follows

from the statement’s assumption Q ≺c Rt together with the fact that Rt ≺ Ri. We also record the

fact that, again since Ri ≺ Rt, we have

R∗t ⊆ R∗i . (49)

Fix P ∈ Di and put p = d(G). Our goal is to prove the lower bound on ∆(P,R) stated in (54)

below. Note that P ∈ 1
4
Li−1 (since γ ≤ 1

4 by the statement’s assumptions) and P /∈γ Li. It follows

by applying Claim 4.12 on P that there exist 1
62−i|Ri| clusters R ∈ Ri where for every such R

there is a subset P1 = P1(R) ⊆ P such that the following hold:

(i) |P1| ≥ 1
8γ|P | ≥ δ|P |,

(ii) dG(P1, R) = 0,

(iii) dG(P,R) ≥ 1
42ip.

Fix a cluster R ∈ Ri as above. Put γ′ = 2−5γ. Our goal toward proving (54) is to prove the lower

bound on ∆(P,R) stated in (53) below. First, let Q ∈ Q and assume Q ⊆c R. Then

eG′(P1, Q ∩R) = |P1| · |Q ∩R| · dG′(P1, Q ∩R)

≥ 1

8
γ|P | · 1

2
|Q| · 1

2
dG′(P,Q) = γ′ · eG′(P,Q) ≥ γ′ · eG′(P,Q ∩R) ,

(50)
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where the first inequality follows from the assumption on the regularity of P ∪Q at the beginning

of the proof, together with (i) and our assumption |Q ∩R| ≥ (1− c)|Q| ≥ 1
2 |Q|. Let R∗ = R ∩R∗i .

We have by definition that R∗ decomposes into sets Q ∩ R such that Q ∈ Q satisfies Q ⊆c R.

Therefore,

∆(P1, R
∗) = eG′(P1, R

∗) =
∑
Q∈Q :
Q⊆cR

eG′(P1, Q ∩R)

≥ γ′
∑
Q∈Q :
Q⊆cR

eG′(P,Q ∩R) = γ′ · eG′(P,R∗) ,
(51)

where the first equality follows from fact that eG(P1, R
∗) = 0 by (ii), and the inequality follows

from (50). Now, to bound the right hand side of (51) we do the following, where we henceforth

write P2 = P \ P1;

eG′(P,R
∗) ≥ eG′(P2, R

∗) ≥ eG(P2, R
∗)−∆(P2, R

∗)

=
(
eG(P2, R)− eG(P2, R \R∗i )

)
−∆(P2, R

∗)

≥ 1

4
2ip|P ||R| − eG(P,R \R∗i )−∆(P2, R) ,

(52)

where the second inequality uses the bound ∆(S, T ) ≥ eG(S, T )− eG′(S, T ), and the last inequality

bounds the first term using (ii) (implying eG(P2, R) = eG(P,R)) and (iii). Since ∆(P,R) =

∆(P1, R) + ∆(P2, R), the combination of (51) and (52) implies the lower bound

∆(P,R) ≥ γ′
(1

4
2ip|P ||R| − eG(P,R \R∗i )

)
. (53)

Summarizing, for every P ∈ Di we have

∆(P,R) ≥
∑
R

∆(P,R) ≥ γ′
( 1

24
p|P ||R| − eG(P, R \R∗t )

)
, (54)

with the sum over the 1
62−i|Ri| clusters R ∈ Ri as above, where the second inequality follows

from (53) using the fact that |R| = |R|/|Ri| for every R ∈ Ri, as well as the fact that R\R∗i ⊆ R\R∗t
by (49).

Let D =
⋃
P∈D P and recall that, by (47), |D| ≥ γ|L|. Summing over all P ∈ D, we finally get

∑
P∈D

∆(P,R) =
t∑
i=1

∑
P∈Di

∆(P,R) ≥ γ′
( 1

24
p|D||R| − eG(D,R \R∗t )

)
≥ γ′

( 1

24
p|D||R| − 1

200
p|D||R|

)
> 2−5γ′ · p|D||R| ≥ 2−10γ2 · p|L||R| ,

where the first inequality uses (54), the second inequality uses Claim 4.10 together with (48) and

the fact that |D| ≥ γ|L| ≥ 4|R1|−1/6|L| by the choice of γ, and the last inequality again uses

|D| ≥ γ|L|.
We therefore deduce that

∑
P∈D∆(P,R) > δ · e(G), again by the choice of γ. This proves (46),

thus completing the proof. �
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5 Ackermann-type Lower Bounds for the Rödl-Schacht Regularity

Lemma

The purpose of this section is to apply Theorem 3 in order to prove Corollary 2, giving level-k

Ackermann-type lower bounds for the k-graph regularity lemma of Rödl and Schacht [27]. We

remind the reader that in [20] one can find an analogous section which deduces wowzer-type lower

bound for the 3-graph regularity lemmas of Frankl and Rödl [8] and of Gowers [12]. We begin

with the required definitions. The definitions we state here are essentially equivalent to (though

shorter than) those in [27]. We will rely on the definitions in Subsection 2.1, and in particular, the

definition of a k-partition.

For a k-graph H, the density of a (k − 1)-graph S in H is

dH(S) =
|H ∩ K(S)|
|K(S)|

,

where dH(S) = 0 if |K(S)| = 0. The notion of ε-regularity for k-graphs is defined as follows.

Definition 5.1 (ε-regular k-graph). A k-partite k-graph H is (ε, d)-regular—or simply ε-regular—

in a k-polyad P with H ⊆ K(P ) if for every S ⊆ P with |K(S)| ≥ ε|K(P )| we have dH(S) = d± ε.

A partition of a k-graph H is simply a (k − 1)-partition on V (H).

Definition 5.2 (ε-regular partition). A partition P of a k-graph H is ε-regular if
∑

P |K(P )| ≤
ε|V (H)|k where the sum is over all k-polyads P of P for which H ∩ K(P ) is not ε-regular in P .

Henceforth, an (r, a1, . . . , ar)-partition is simply an r-partition P (recall Definition 2.1) where

|P(1)| = a1 and for every 2 ≤ i ≤ r, P(i) subdivides each K ∈ Ki(P) into ai parts.

Definition 5.3 (f -equitable partition). Let f : [0, 1] → [0, 1]. An (r, a1, . . . , ar)-partition P is f -

equitable if P(1) is equitable and for every 2 ≤ i ≤ r, every i-graph F ∈ P(i) is (ε, 1/ai)-regular in

U(F ), where ε = f(d0) and d0 = min{1/a2, . . . , 1/ar}.

5.1 The lower bound

The k-graph regularity of Rödl and Schacht [27] states, roughly, that for every ε > 0 and every

function f : N → (0, 1], every k-graph has an ε-regular f -equitable equipartition P where |P|
(the total number of elements in the (k − 1)-partition P) is bounded by a level-k Ackermann-type

function. In fact, Rödl-Schacht’s k-graph regularity lemma (Theorem 2.3 in [27]) uses a considerably

stronger notion of regularity of a partition that involves an additional function r which we shall not

discuss here (this stronger notion was crucial in [27] for allowing them to prove a counting lemma).

Our lower bound below applies even to the weaker notion stated above, which corresponds to taking

r ≡ 1.

The proof of Corollary 2 will follow quite easily from Theorem 3 together with Claim 5.4 below.

Claim 5.4 basically shows that a 〈δ〉-regularity “analogue” of Rödl and Schacht’s notion of regularity

implies graph 〈δ〉-regularity. The proof of Claim 5.4 is deferred to the Appendix A. Henceforth

we say that a graph partition is perfectly 〈δ〉-regular if all pairs of distinct clusters are 〈δ〉-regular

without modifying any of the graph’s edges.
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Claim 5.4. Let H be a k-partite k-graph on vertex classes (V1, . . . ,Vk), and let P be an f -equitable

partition of H with P(1) ≺ {V1, . . . ,Vk}, f(x) = δ4(x/2)2k+3
and |V (H)| ≥ n0(δ, |P|). Suppose

that for each k-polyad P of P, every S ⊆ P with |K(S)| ≥ δ|K(P )| has dH(S) ≥ 2
3dH(P ). Then

Ek(P) ∪ Vk(P) is a perfectly 〈2
√
δ〉-regular partition of GkH .

Although quite technical, the rough idea behind the proof of Claim 5.4 is rather simple. In order

to argue about the bipartite graphs in the statement’s partition of GkH , one should consider “semi-

complete” k-polyads, that is, k-polyads of the form F ◦ V (see Subsection 3.3). Using Claim 3.8,

one partitions such a k-polyad into k-polyads of P, for which the statement’s regularity assumption

applies. The so-called dense counting lemma of [28] implies that these k-polyads span approximately

the expected number of k-cliques. By going over all the aforementioned k-polyads of P, this can

be used to deduce the regularity of the corresponding bipartite graph, GkH [F, V ], as needed.

We now formally restate and prove Corollary 2. We mention that, as will be immediate from the

proof, our lower bound not only applies to the hypergraph regularity lemma of Rödl and Schacht

but also to the hypergraph regular approximation lemma [27].

Theorem 4 (Lower bound for the Rödl-Schacht k-graph regularity lemma). Let s ≥ k ≥ 2 and

put c = 2−32k . For every s ∈ N there exists a k-partite k-graph H of density p = 2−s−k, and a

partition V0 of V (H) with |V0| ≤ k2200, such that if P is an ε-regular f -equitable partition of H

with ε ≤ cp, f(x) ≤ c4(x/2)2k+3
, |V (H)| ≥ n0(k, |P|) and P(1) ≺ V0, then |P(1)| ≥ Ackk(s).

Remark 5.5. One can easily remove the assumption P(1) ≺ V0 by taking the common refinement

of P(1) with V0 (and adjusting P appropriately). Since |V0| = O(k), this has only a minor effect

on the parameters of P and thus one gets essentially the same lower bound. We omit the details of

this routine transformation.

Proof of Theorem 4. Put αk = 2−16k (recall c = 2−32k). The bound |P(1)| ≥ Ackk(s) would

follow from Theorem 3 if we show that H is 〈αk〉-regular relative to the (k − 1)-partition P.

Henceforth put δ = (αk/2)2. We will later use the inequalities

c ≤
αkk
7kk
≤ δ . (55)

First we claim that P is 〈αk〉-good (recall Definition 2.4). Let 2 ≤ r ≤ k − 1, let F ∈ P(r) be

an r-partite r-graph on (V1, . . . , Vr), and denote by P = U(F ) the r-polyad underlying F . We

will show that the bipartite graph GrF,P is 〈αk〉-regular, and since an analogous argument will hold

for GiF,P for every 1 ≤ i ≤ r, this would prove our claim. Recalling Definition 2.3, we have that

GrF,P = GrF [E, Vr] with E := P [V1, . . . , Vr−1] ∈ Er(P). Now, suppose P is a (k − 1, a1, . . . , ak−1)-

partition, put dr = 1/ar for each 2 ≤ r ≤ k − 1, and put d0 = min{1/a2, . . . , 1/ak−1}. Recalling

Definition 5.3, since P is f -equitable we have that F is (f(d0), dr)-regular in P . Thus, recalling

Definition 5.1, for every S ⊆ P with |K(S)| ≥ δ|K(P )| (note δ ≥ c ≥ f(d0) using (55)) we have

dF (S) ≥ dr − f(d0) ≥ dF (P ) − 2f(d0) ≥ 2
3dF (P ). Let the (r − 1)-partition P ′ be obtained by

restricting P to V1 ∪ · · · ∪ Vr (so in particular Vi(P ′) = {Vi}), and note that P is an r-polyad of

P ′. Observe that dF (S) ≥ 2
3dF (P ) trivially holds for any r-polyad P ′ of P ′ other than P as well,
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since dF (P ′) = 0 as F ⊆ K(P ). Apply Claim 5.4, with (the almost trivial choice of) the r-partite

r-graph F and the f -equitable (r−1)-partition P ′ of F , to deduce that Er(P ′)∪{Vr} is a perfectly

〈αk〉-regular (i.e., 〈2
√
δ〉-regular) partition of GrF . Since E ∈ Er(P ′), this in particular implies that

GrF [E, Vr] is 〈αk〉-regular, which proves our claim as explained above.

It remains to show that H is 〈αk〉-regular relative to the 〈αk〉-good (k − 1)-partition P. Let

H ′ be obtained from H by removing all its (k-)edges underlain by k-polyads of P such that either

dH(P ) ≤ 6ε or the k-graph H ∩K(P ) is not ε-regular in P . By Definition 5.2, the number of edges

removed from H to obtain H ′ is at most

ε|V (H)|k + 6ε|V (H)|k ≤ 7 · cp|V (H)|k ≤ (αkp/k
k)|V (H)|k = αk · e(H) ,

where the inequalities use the statement’s assumption on ε, c and (55), and the equality uses the

fact that all k vertex classes of H are of the same size (see Remark 3.6). Thus, in H ′, every

non-empty k-polyad of P is ε-regular and of density at least 6ε. Again by Definition 5.2, for

every k-polyad P of P and every S ⊆ P with |K(S)| ≥ δ|K(P )| (≥ ε|K(P )| by (55)) we have

dH(S) ≥ dH(P ) − 2ε ≥ 2
3dH(P ). Apply Claim 5.4, this time with H and P. It follows that

Ek(P)∪Vk(P) is an 〈αk〉-regular partition of GkH . An analogous argument applies for GiH for every

1 ≤ i ≤ k, thus completing the proof. �

6 〈δ〉-regularity does not suffice for triangle counting

As observed following the statement of Theorem 3, our lower bound for 〈δ〉-regularity holds even

when δ is a fixed14 constant and the edge density is small. As Proposition 6.1 below states, this

setting15 is not strong enough even for counting triangles in graphs. Namely, we construct for every

fixed δ > 0 and small enough p, a graph of density p which is 〈δ〉-regular yet does not even contain

a single triangle. The precise statement is the following.

Proposition 6.1. For every 0 < p ≤ 10−3δ5 and large enough n there is a n-vertex tripartite graph

of density at least p, whose every pair of classes span a 〈δ〉-regular graph, and yet is triangle free.

We use the following well-known lemma, where we denote by ‖v‖1 the `1-norm of a vector v

(for a proof see, e.g., Lemma 4.3 in [16]).

Lemma 6.2. Every vector x ∈ [0, 1]n with ‖x‖1 ∈ N is a convex combination of binary vectors

y ∈ {0, 1}n each with ‖y‖1 = ‖x‖1.

We will also apply the following version of the Chernoff bound.

Lemma 6.3 (Multiplicative Chernoff bound). Let X1, . . . , Xn be mutually independent Bernoulli

random variables, and put X =
∑n

i=1Xi, µ = E[X]. For every δ ∈ [0, 1] we have

P(X 6= (1± δ)µ) ≤ 2 exp
(
− 1

3
δ2µ
)
.

14As noted following Theorem 3, the fact that Theorem 3 holds even with a fixed δ = δ(k) (which is allowed to be

much larger than the edge density p) is crucial for our inductive proof strategy.
15On the other hand, if δ is small compared to the density then a tripartite 〈δ〉-regular graph does indeed have

many triangles, using a standard proof of the counting lemma.

33



Proof of Proposition 6.1. We will in fact construct a graph satisfying an even somewhat stronger

property than 〈δ〉-regularity (namely, the constant 1
2 is Definition 2.2 will be replaced by 1 − δ).

Consider a random tripartite graph on vertex classes (V1, V2, V3), each of size k, obtained by inde-

pendently retaining each edge with probability q := 3p (≤ 1), where k is any integer satisfying

64δ−2q−1 ≤ k ≤ 1

4
δ3q−2 . (56)

Note that k is well defined in (56) by the statement’s bound on p. Let X be the random variable

counting the triangles in the graph. One can easily check that

E[X] = k3q3 and Var[X] ≤ k3q3 + 3

(
k

2

)
k2q5 .

Chebyshev’s inequality thus implies that

P[X ≥ δ3k2q] ≤ Var[X]

(δ3k2q − E[X])2
≤
k3q3(1 + 3

2kq
2)

k4q2(δ3 − kq2)2
≤ q

k
· 8δ−6 ≤ 1

8
q2δ−4 =

9

8
p2δ−4 <

1

2
,

where the third inequality uses the upper bound kq2 ≤ 1
4δ

3 (≤ 1
4) from (56), the fourth inequality

uses the lower bound from (56), and the last inequality uses the statement’s bound on p. Next, by

using Lemma 6.3 together with the union bound we deduce that

∀1 ≤ a < b ≤ 3 ∀S ⊆ Va, T ⊆ Vb with |S| ≥ δ|Va|, |T | ≥ δ|Vb| : d(S, T ) =
(
1± 1

3
δ
)
q (57)

except with probability at most

3 · 22k · 2 exp
(
− 1

27
δ2qk2

)
≤ 1

2
,

where the inequality uses the lower bound kq ≥ 64δ−2 from (56). We deduce from all of the above

that there exists a tripartite graph that has k vertices in each vertex class, at most δ3k2q triangles

and satisfies (57). By removing an edge from each triangle, one-third of them from each of the three

pairs of vertex classes, we obtain a triangle-free graph G0 such that for every a < b and subsets

S ⊆ Va, T ⊆ Vb with |S| ≥ δ|Va|, |T | ≥ δ|Vb| we have

e(S, T ) ≥
(
1−1

3
δ
)
q|S||T |−1

3
δ3k2q ≥

(
1−2

3
δ
)
q|S||T | ≥

1− 2
3δ

1 + 1
3δ
d(Va, Vb)|S||T | ≥ (1−δ)d(Va, Vb)|S||T |

where the first and third inequalities follows from the lower and upper bound in (57), respectively.

In particular, we deduce from the inequality e(S, T ) ≥ (1− 2
3δ)q|S||T | above that d(Va, Vb) ≥ 1

3q = p.

Summarizing, G0 is triangle free, has density at least p and satisfies

∀a < b ∀S ⊆ Va, T ⊆ Vb with |S| ≥ δ|Va|, |T | ≥ δ|Vb| : d(S, T ) ≥ (1− δ)d(Va, Vb) . (58)

To obtain from G0 a graph on a large enough number of vertices we simply take a blow-up,

replacing each vertex v of G0 by a set G(v) of m new vertices and every edge by a complete bipartite

graph, for m ∈ N suitably large. The resulting tripartite graph G is clearly triangle free and of
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density d(G0) ≥ p. It thus remains to prove that any two vertex classes of G span a bipartite graph

satisfying the desired regularity property. Let a < b and let Va, Vb denote the vertex classes of G

corresponding to Va, Vb. Note that |Va| = |Vb| = k and |Va| = |Vb| = mk. Let S ⊆ Va, T ⊆ Vb with

|S| = δ|Va| and |T | = δ|Vb|. To complete the proof it suffices to show that

d(S, T ) ≥ (1− δ)d(Va, Vb) . (59)

Consider the two vectors s, t ∈ [0, 1]k defined as follows:

s = (|S ∩G(u)|/m)u∈Va and t = (|T ∩G(v)|/m)v∈Vb .

Note that ‖s‖1 = |S|/m = δk and ‖t‖1 = |T |/m = δk. Assume without loss of generality that

δk ∈ N. By Lemma 6.2 applied on s,

s =
∑
i

αisi with si ∈ {0, 1}k, ‖si‖1 = |S|/m and αi ≥ 0,
∑
i

αi = 1 .

By Lemma 6.2 applied on t,

t =
∑
j

βjtj with tj ∈ {0, 1}k, ‖tj‖1 = |T |/m and βj ≥ 0,
∑
j

βj = 1 .

Let A denote the k × k bi-adjacency matrix of G0[Va, Vb]. Observe that eG(S, T ) = (ms)TA(mt).

Moreover, observe that for every i, j we have that sTi Atj is the number of edges of G0 between the

subsets of Va, Vb corresponding to si, tj , respectively. Note that these subsets are of size ‖si‖1 , ‖tj‖1,

respectively, which are both at least δk. Thus, by (58),

sTi Atj ≥ (1− δ)d(Va, Vb) ‖si‖1 ‖tj‖1 = (1− δ)d(Va, Vb)|S||T |/m2 .

We deduce that

e(S, T ) = m2 · sTAt = m2
(∑

i

αisi

)T
A
(∑

j

βjtj

)
= m2

∑
i,j

αiβjs
T
i Atj

≥
(∑

i

αi

)(∑
j

βj

)
(1− δ)d(Va, Vb)|S||T | = (1− δ)d(Va, Vb)|S||T | .

This gives (59) and thus completes the proof. �

Acknowledgment: We are grateful to an anonymous referee for a careful reading of the paper.
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[22] B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs,

Random Struct. Alg. 28 (2006), 113–179. 1
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[36] E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter. CNRS, 1978, 399–401. 1

[37] T. Tao, A variant of the hypergraph removal lemma, J. Combin. Theory Ser. A 113 (2006),

1257–1280. 1
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A Proof of Claim 5.4

A.1 Basic facts

In order to prove Claim 5.4 we will need several auxiliary results and definitions. We begin with

the notion of complexes. Henceforth, the rank of a (not necessarily uniform) hypergraph P is

maxe∈P |e|. For r ≥ 2 we denote P (r) =
{
e ∈ P

∣∣ |e| = r
}

and P (1) = V (P ).

Definition A.1 (complex). A k-complex (k ≥ 2) is a k-partite hypergraph P of rank k − 1 where

P (r) ⊆ K(P (r−1)) for every 2 ≤ r ≤ k − 1.

Definition A.2 (f -regular complex). Let f : [0, 1] → [0, 1]. A k-complex P on vertex classes

(V1, . . . , Vk) is (f, d2, . . . , dk−1)-regular, or simply f -regular, if for every 2 ≤ r ≤ k − 1 and every

r vertex classes Vi1 , . . . , Vir we have that P (r)[Vi1 , . . . , Vir ] is (ε, dr)-regular in P (r−1)[Vi1 , . . . , Vir ],

where ε = f(d0) and d0 = min{d2, . . . , dk−1}.

Note that by using the notion of complexes one can equivalently define an f -equitable partition

(recall Definition 5.3) as follows; an (r, a1, . . . , ar)-partition P is f -equitable if P(1) is equitable and,

if r ≥ 2, every r-complex of P is (f, 1/a2, . . . , 1/ar)-regular.

We now state the dense counting lemma of [28] specialized to complexes. We henceforth fix the

following notation for k ≥ 3, γ > 0;

Fk,γ(x) :=
γ3

12

(x
2

)2k+1

. (60)

The statement we use below follows from combining Theorem 10 and Corollary 14 in [28], and

generalized to the case where the vertex classes are not necessarily of the same size. For a k-polyad F

and an edge e ∈ F , we denote the set of k-cliques in F containing e by K(F, e) = {e′ ∈ K(F ) | e ⊆ e′}.
For a k-complex P we abbreviate K(P ) := K(P (k−1)).

Fact 1 (Dense counting lemma for k-complexes). Let γ > 0 and let P be a k-complex (k ≥ 3) that

is (Fk,γ , d2, . . . , dk−1)-regular with ni ≥ n0(γ, d2, . . . , dk−1) vertices in the i-th vertex class. Then

|K(P )| = (1± γ)

k−1∏
i=2

d
(ki)
i ·

k∏
i=1

ni .
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Moreover,16 let P (k−1) = (P1, . . . , Pk). We have for all edges e ∈ Pk but at most γ|Pk| that

|K(P, e)| = (1± γ)
k−1∏
i=2

d
(k−1
i−1)
i · nk .17

We will also need a slicing lemma for complexes.

Lemma A.3 (Slicing lemma for complexes). Let P be a k-complex (k ≥ 3) on vertex classes

(V1, . . . , Vk) and let V ′k ⊆ Vk with |V ′k| ≥ δ|Vk|. If P is (f, d2, . . . , dk−1)-regular with f(x) ≤
δ
2Fk−1, 1

4
(x) and |V (P )| ≥ n0(d2, . . . , dk−1) then the induced k-complex Q = P [V1, . . . , Vk−1, V

′
k] is

(f∗, d2, . . . , dk−1)-regular with f∗ = 2
δ · f .

For the proof we will need the notation P (≤i) = {e ∈ P | |e| ≤ i} where P is any hypergraph.

Proof. We proceed by induction on k. We begin with the induction basis k = 3. Let P =

(P1, P2, P3) be an (f, d2)-regular 3-complex on vertex classes (V1, V2, V3), meaning that each bipar-

tite graph Pi (which is obtained from P by removing Vi and its adjacent edges) is (ε, d)-regular with

d = d2 and ε = f(d). Put Q = (Q1, Q2, Q3). We will show that the bipartite graphs Q1 = P1[V2, V
′

3 ]

and Q2 = P2[V1, V
′

3 ] are each (ε/δ, d)-regular. Since f(x)/δ ≤ f∗(x), and since Q3 = P3 is (ε, d)-

regular by assumption, this would imply that Q is (f∗, d2)-regular, as needed. To prove that Q1

is (ε/δ, d)-regular, let S ⊆ V2 ∪ V ′3 with |K(S)| ≥ (ε/δ)|V2||V ′3 |. Then |K(S)| ≥ ε|V2||V3|, hence

dQ1(S) = dP1(S) = d± ε, as desired. Similarly, to prove that Q2 is (ε/δ, d)-regular, let S ⊆ V1 ∪ V ′3
with |K(S)| ≥ (ε/δ)|V1||V ′3 |. Then |K(S)| ≥ ε|V1||V3|, hence dQ2(S) = dP2(S) = d± ε. This proves

the induction basis.

It remains to prove the induction step. Let P be a (k+1)-complex on vertex classes (V1, . . . , Vk+1)

and let V ′k+1 ⊆ Vk+1 with |V ′k+1| ≥ δ|Vk+1|, and suppose P is (f, d2, . . . , dk)-regular with

f(x) ≤ δ

2
Fk, 1

4
(x) . (61)

We need to show that the induced (k+1)-complexQ = P [V1, . . . , Vk, V
′
k+1] is (f∗, d2, . . . , dk)-regular.

Put d0 = min{d2, . . . , dk−1}, P (k) = (P1, . . . , Pk+1) and Q(k) = (Q1, . . . , Qk+1). Let i ∈ [k+ 1], and

observe that the regularity assumption on P translates to the following assumptions on Pi:

(i) the k-complex P
(≤k−1)
i is (f, d2, . . . , dk−1)-regular,

(ii) the k-partite k-graph P
(k)
i is (f(d0), dk)-regular in P

(k−1)
i .

16In [28], the statement of the ‘moreover’ part (Corollary 2.3, dense extension lemma) allows for γ|P (k−1)| ex-

ceptional edges in P (k−1) rather than only in Pk, which is nevertheless essentially equivalent to our statement.

Furthermore, they allow for counting not only k-cliques, in which case they do not need all Pi to be regular.
17To obtain the bound Fk,γ from the proof of Corollary 2.3 in [28] (with h = k− 1 and ` = k), one can verify that:

• ε(F , γ, d0) in Theorem 2.2 can be bounded by γ(d0/2)|F
(h)|, and so ε(K

(k−1)
k , γ, d0) ≤ γ(d0/2)2k

,

• β in Fact 2.4 can be bounded by γ3/4,

• εGDCL(D(F (h), f), β
3
, d0) in the proof of Corollary 2.3 can be bounded by β

3
(d0/2)2k+1

, using the first item

and the fact that D(F (h), f) has at most 2k − (k − 1) = k + 1 vertices.
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To prove that Q is (f∗, d2, . . . , dk)-regular we need to show that Qi satisfies the following conditions:

(i) the k-complex Q
(≤k−1)
i is (f∗, d2, . . . , dk−1)-regular,

(ii) the k-partite k-graph Q
(k)
i is (f∗(d0), dk)-regular in Q

(k−1)
i .

We henceforth assume i 6= k + 1, since otherwise Qi = Pi and so the above conditions follow from

the above assumptions together with the fact that f(x) ≤ f∗(x). Apply the induction hypothesis

with the k-complex P
(≤k−1)
i and V ′k+1, using assumption (i), the fact that f(x) ≤ δ

2Fk−1, 1
4
(x)

by (61) and the statement’s assumption on |V (P )|. It follows that the k-complex Q
(≤k−1)
i =

P
(≤k−1)
i [V1, . . . , Vi−1, Vi+1, . . . , Vk, V

′
k+1] is (f∗, d2, . . . , dk)-regular, thus proving condition (i).

Apply Fact 1 (dense counting lemma) with γ = 1/2 and the k-complex P
(≤k−1)
i , using assump-

tion (i), the fact that f(x) ≤ Fk, 1
2
(x) by (61) and the statement’s assumption on |V (P )|, to deduce

that

|K(P
(k−1)
i )| ≤ 3

2

k−1∏
j=2

d
(kj)
j ·

∏
1≤j≤k+1:

j 6=i

|Vj | .

On the other hand, applying Fact 1 with γ = 1/4 and the k-complex Q
(≤k−1)
i , using condition (i),

the fact that f∗(x) = 2
δf(x) ≤ Fk, 1

4
(x) by (61) and the statement’s assumption on |V (P )|, implies

that

|K(Q
(k−1)
i )| ≥ 3

4

k−1∏
j=2

d
(kj)
j ·

∏
1≤j≤k :
j 6=i

|Vj | · δ|Vk+1| ≥
δ

2
|K(P

(k−1)
i )| . (62)

We now prove condition (ii). Let S ⊆ Q
(k−1)
i satisfy |K(S)| ≥ f∗(d0)|K(Q

(k−1)
i )|. Then |K(S)| ≥

f(d0)|K(P
(k−1)
i )| by (62). Therefore d

Q
(k)
i

(S) = d
P

(k)
i

(S) = dk ± f(d0), where the last equality uses

assumption (ii). This proves condition (ii), thus completing the induction step and the proof. �

A.2 Proof of Claim 5.4

Proof. Put G = GkH , δ′ = 2
√
δ, and let E ∈ Ek(P) and V ∈ Vk(P). Note that E is a (k − 1)-

partite (k − 1)-graph, and let (V1, . . . , Vk−1) denote its vertex classes. Thus, Vj ⊆ Vj for every

1 ≤ j ≤ k − 1, and V ⊆ Vk. Moreover, let E′ ⊆ E, V ′ ⊆ V with |E′| ≥ δ′|E|, |V ′| ≥ δ′|V |. To

complete the proof our goal is to show that dG(E′, V ′) ≥ 1
2dG(E, V ) (recall Definition 2.2).

Consider the following k-partite k-graph and subgraph thereof:

K = {(v1, . . . , vk) | (v1, . . . , vk−1) ∈ E and vk ∈ V } = E ◦ V ,

K ′ = {(v1, . . . , vk) | (v1, . . . , vk−1) ∈ E′ and vk ∈ V ′} = E′ ◦ V ′ .

We claim that

dG(E, V ) =
|H ∩K|
|K|

and dG(E′, V ′) =
|H ∩K ′|
|K ′|

. (63)
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Proving (63) would mean that to complete the proof it suffices to show that

|H ∩K ′|
|K ′|

≥ 1

2

|H ∩K|
|K|

. (64)

To prove (63) first note that

|K| = |E||V | and |K ′| = |E′||V ′| . (65)

Furthermore,

eG(E, V ) =
∣∣{ ((v1, . . . , vk−1), vk) ∈ G

∣∣ (v1, . . . , vk−1) ∈ E, vk ∈ V
}∣∣

=
∣∣{ (v1, . . . , vk−1, vk) ∈ H

∣∣ (v1, . . . , vk−1) ∈ E, vk ∈ V
}∣∣ = |H ∩K| ,

and similarly, eG(E′, V ′) = |H ∩K ′|. Therefore, using (65), we indeed have

dG(E, V ) =
eG(E, V )

|E||V |
=
|H ∩K|
|K|

and dG(E′, V ′) =
eG(E′, V ′)

|E′||V ′|
=
|H ∩K ′|
|K ′|

.

Having completed the proof of (63), it remains to prove (64). By Claim 3.8 there is a set of

k-polyads {Pi}i of P on (V1, . . . , Vk−1, V ) such that

K =
⋃
i

K(Pi) is a partition, with Pi = (Pi,1, . . . , Pi,k−1, E) . (66)

For each k-polyad Pi = (Pi,1, . . . , Pi,k−1, E), let P ′i be the induced k-polyad P ′i = Pi[V1, . . . , Vk−1, V
′].

Write P ′i = (P ′i,1, . . . , P
′
i,k, E), and let Qi be the k-polyad Qi = (P ′i,1, . . . , P

′
i,k−1, E

′). Note that Qi
satisfies K(Qi) = K(Pi) ∩K ′. It therefore follows from (66) that

K ′ =
⋃
i

(K(Pi) ∩K ′) =
⋃
i

K(Qi) is a partition. (67)

Suppose P is a (k − 1, a1, a2, . . . , ak−1)-partition, and denote dj = 1/aj and

d =

k−1∏
j=2

d
(k−1
j−1)
j .

Put γ = 1
8δ
′ (≤ 1

8 , as otherwise there is nothing to prove). We will next apply the dense counting

lemma (Fact 1) to prove the estimates:

|K(Pi)| ≤ (1 + γ)d|K| (68)

and

|K(Qi)| ≥
(
1− γ)d|K ′| . (69)

Note that proving these estimates would in particular imply the bound

|K(Qi)| ≥ δ|K(Pi)| ; (70)
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indeed, from the assumptions |E′| ≥ δ′|E|, |V ′| ≥ δ′|V | and (65) we have that |K ′| ≥ (δ′)2|K|,
hence we deduce from (68) and (69) the lower bound

|K(Qi)|
|K(Pi)|

≥ 1− γ
1 + γ

(δ′)2 ≥ 3

4
· (2
√
δ)2 ≥ δ ,

where we used the inequality
1− γ
1 + γ

≥ 1− 2γ ≥ 3

4
. (71)

In order to prove (68) and (69) we first need to introduce some notation. Put m = n/a1 where

n = |V (H)| is the size of the vertex set, and put

γ′ =
1

2
γδ′d

(
=

1

4
δd
)
, d0 = min{d2, . . . , dk−1} .

Note that d ≥ d2k
0 . Using the statement’s assumption on f we have (recall (60))

f(d0) = δ4
(d0

2

)2k+3

≤ δ

26
·
(1

4
δd2k

0

)3(d0

2

)2k+1

≤ δ

2
· γ
′3

12

(d0

2

)2k+1

=
δ

2
Fk,γ′(d0) . (72)

In particular,

f(d0) ≤ γ′d0 ≤ γ′dk−1 . (73)

Note that if P is an `-polyad of P, for any 2 ≤ ` ≤ k, then, since P is f -equitable, the unique

`-complex of P containing P is (f, d2, . . . , d`−1)-equitable. Applying Fact 1 (dense counting lemma)

with γ′ implies, using the fact that f(x) ≤ Fk,γ′(x) ≤ F`,γ′(x) by (72) and the statement’s assump-

tion on n, that

|K(P )| = (1± γ′)
`−1∏
j=2

d
(`j)
j ·m

` . (74)

Let PE be the unique (k−1)-polyad of P such that E ⊆ K(PE). Then |E| = dE(PE)|K(PE)|, and

since P is f -equitable, E is (dk−1, f(d0))-regular in PE . In particular, |E| ≥ (dk−1−f(d0))|K(PE)|.
By (74),

|K(PE)| ≥ (1− γ′)
k−2∏
j=2

d
(k−1
j )

j ·mk−1 .

Thus,

|E| ≥ (dk−1 − f(d0))|K(PE)| ≥ (1− γ′)dk−1|K(PE)| ≥ (1− 2γ′)

k−1∏
j=2

d
(k−1
j )

j ·mk−1 , (75)

where the second inequality uses (73). Furthermore, for every Pi as above we have (recall Pi is a

k-polyad of P), again by (74), that

|K(Pi)| ≤ (1 + γ′)
k−1∏
j=2

d
(kj)
j ·mk = (1 + γ′)d

k−1∏
j=2

d
(k−1
j )

j ·mk ≤ 1 + γ′

1− 2γ′
d|E||V | ≤ (1 + 4γ′)d|K| ,
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where the penultimate inequality uses (75), and the last inequality uses (65) and the fact that

γ′ ≤ γ ≤ 1
8 . This proves (68).

Next we prove (69). Let Pi be the unique k-complex of P containing the k-polyad Pi, and

let Pi
′

be the induced k-complex Pi
′

= Pi[V1, . . . , Vk−1, V
′]. Apply Lemma A.3 (slicing lemma)

on Pi, using the fact that |V ′| ≥ δ′|V | and f(x) ≤ δ
2Fk−1, 1

4
by (72), to deduce that Pi

′
is

(2
δf, d2, . . . , dk−1)-regular. Let the k-complex Qi be obtained from the k-complex Pi

′
by replacing

E (= P [V1, . . . , Vk−1]) with E′, and note that the (k − 1)-uniform hypergraph Qi
(k−1)

is precisely

the k-polyad Qi. Apply Fact 1 (dense counting lemma, the “moreover” part) with γ′ on Pi
′
, using

the fact that 2
δf(x) ≤ Fk,γ′(x) by (72) and the statement’s assumption on n, to deduce that

|K(Qi)| ≥ |E′| · (1− γ′)d|V ′| − γ′|E| · |V ′| ≥
(
1− γ′ − 1

δ′d
γ′
)
d|E′||V ′| ≥

(
1− γ)d|K ′| ,

where the second inequality uses the assumption that |E′| ≥ δ′|E| and the third inequality uses (65).

This proves (69).

Finally, recall that our goal is to prove (64). We have

|H ∩K| =
∑
i

|H ∩ K(Pi)| =
∑
i

dH(Pi) · |K(Pi)| ≤ (1 + γ)|K| · d
∑
i

dH(Pi) ,

where the first equality uses (66) and the inequality is by (68). Put d′ = d
∑

i dH(Pi). Then

|H ∩K|
|K|

≤ (1 + γ)d′ . (76)

Observe that for every i, the statement’s assumption on P implies, together with (70), that

dH(Qi) ≥
2

3
dH(Pi) . (77)

We have

|H ∩K ′| =
∑
i

|H ∩ K(Qi)| =
∑
i

dH(Qi) · |K(Qi)|

≥
∑
i

2

3
dH(Pi) · |K(Qi)| ≥

2

3
(1− γ)|K ′| · d

∑
i

dH(Pi) ,

where the first equality uses (67), the first inequality uses (77) and the second inequality uses (69).

This means that

|H ∩K ′|
|K ′|

≥ 2

3
(1− γ)d′ ≥ 2

3
· 1− γ

1 + γ

|H ∩K|
|K|

≥ 1

2

|H ∩K|
|K|

,

where the second inequality uses (76) and the third inequality uses (71). We have thus proved (64)

and are therefore done. �
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