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Abstract

Given a fixed k-uniform hypergraph F , the F -removal lemma states that every hypergraph
with few copies of F can be made F -free by the removal of few edges. Unfortunately, for general
F , the constants involved are given by incredibly fast growing Ackermann-type functions. It is
thus natural to ask for which F can one prove removal lemmas with polynomial bounds. One
trivial case where such bounds can be obtained is when F is k-partite. Alon proved that when
k = 2 (i.e. when dealing with graphs), only bipartite graphs have a polynomial removal lemma.
Kohayakawa, Nagle and Rödl conjectured in 2002 that Alon’s result can be extended to all k > 2,
namely, that the only k-graphs F for which the hypergraph removal lemma has polynomial bounds
are the trivial cases when F is k-partite. In this paper we prove this conjecture.

1 Introduction

The hypergraph removal lemma is one of the most important results of extremal combinatorics. It
states that for every fixed integer k, k-uniform hypergraph (k-graph for short) F and positive ε, there
is δ = δ(F, ε) > 0 so that if G is an n-vertex k-graph with at least εnk edge-disjoint1 copies of F ,
then G contains δnv(F ) copies of F . This lemma was first conjectured by Erdős, Frankl and Rödl [5]
as an alternative approach for proving Szemerédi’s theorem [15]. The quest to proving this lemma,
which involved the development of the hypergraph extension of Szemerédi’s regularity lemma [16],
took more than two decades, culminating in several proofs, first by Gowers [8] and Rödl–Skokan–
Nagle–Schacht [11, 13] and later by Tao [17]. For the sake of brevity, we refer the reader to [12] for
more background and references on the subject.

While the hypergraph removal lemma has far-reaching qualitative applications, its main drawback
is that it supplies very weak quantitative bounds. Specifically, for a general k-graph F , the function
1/δ(F, ε) grows like the kth Ackermann function. It is thus natural to ask for which k-graphs F one
can obtain more sensible bounds. Further motivation for studying such questions comes from the
area of graph property testing [7], where graph and hypergraph removal lemmas are used to design
fast randomized algorithms.

Suppose first that k = 2. In this case it is easy to see that if F is bipartite then δ(F, ε) grows
polynomially with ε. Indeed, if G has εn2 edge-disjoint copies of F then it must have at least
εn2 edges, which implies by the well-known Kövári–Sós–Turán theorem [10], that G has at least
poly(ε)nv(F ) copies of F . In the seminal paper of Ruzsa and Szemerédi [14] in which they proved
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1The lemma’s assumption is sometimes stated as G being ε-far from F -freeness, meaning that one should remove
at least εnk edges to turn G into an F -free hypergraph. It is easy to see that up to constant factors, this notion is
equivalent to having εnk edge-disjoint copies of F .
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the first version of the graph removal lemma, they also proved that when F is the triangle K3,
the removal lemma has a super-polynomial dependence on ε. A highly influential result of Alon [1]
completed the picture by extending the result of [14] to all non-bipartite graphs F .

Moving now to general k > 2, it is natural to ask for which k-graphs the function δ(F, ε) depends
polynomially on ε. Let us say that in this case the F -removal lemma is polynomial. It is easy to
see that like in the case of graphs, the F -removal lemma is polynomial whenever F is k-partite.
This follows from Erdős’s [4] well-known hypergraph extension of the Kövári–Sós–Turán theorem.
Motivated by Alon’s result [1] mentioned above, Kohayakawa, Nagle and Rödl [9] conjectured in 2002
that the F -removal lemma is polynomial if and only if F is k-partite. They further proved that the
F -removal lemma is not polynomial when F is the complete k-graph on k+ 1 vertices. Alon and the
second author [2] proved that a more general condition guarantees that the F -removal lemma is not
polynomial, but fell short of covering all non-k-partite k-graphs. In the present paper we complete
the picture, by fully resolving the problem of Kohayakawa, Nagle and Rödl [9].

Theorem 1. For every k-graph F , the F -removal lemma is polynomial if and only if F is k-partite.

As a related remark, we note that for k ≥ 3, the analogous problem for the induced F -removal
lemma (that is, a characterization of k-graphs for which the induced F -removal lemma has polynomial
bounds) was recently settled in [6], following a nearly-complete characterization given in [2].

Before proceeding, let us recall the notion of a core, which plays an important role in the proof
of Theorem 1. Recall that for a pair of k-graphs F1, F2, a homomorphism from F1 to F2 is a map
ϕ : V (F1) → V (F2) such that for every e ∈ E(F1) it holds that {ϕ(x) : x ∈ e} ∈ E(F2). The core
of a k-graph F is the smallest (with respect to the number of edges) subgraph of F to which there
is a homomorphism from F . It is not hard to show that the core of F is unique up to isomorphism.
Also, note that the core of a k-graph F is a single edge if and only if F is k-partite. In particular, if
a k-graph is not k-partite, then neither is its core. We say that F is a core if it is the core of itself.

Alon’s [1] approach relies on the fact that the core of every non-bipartite graph has a cycle. It
is then natural to try and prove Theorem 1 by finding analogous sub-structures in the core of every
non-k-partite k-graphs. Indeed, this was the approach taken in [2, 9]. The main novelty in this
paper, and what allows us to handle all cases of Theorem 1, is that instead of directly inspecting the
k-graph F , we study the properties of a certain graph associated with F . More precisely, given a
k-graph F = (V,E), we consider its 2-shadow, which is the graph on the same vertex set V in which
{u, v} is an edge if and only if u, v belong to some e ∈ E. The proof of Theorem 1 relies on the two
lemmas described below.

Lemma 1.1. Suppose a k-graph F is a core and its 2-shadow contains a cycle C such that |V (C)∩e| ≤
2 for every e ∈ E(F ). Then the F -removal lemma is not polynomial. In particular, if the 2-shadow
of F contains an induced cycle of length at least 4, then the F -removal lemma is not polynomial.

Note that this is a generalization of Alon’s result mentioned above since the 2-shadow of every
non-bipartite graph F (which is of course F itself in this case) must contain a cycle. Our second
lemma is the following.

Lemma 1.2. Suppose a k-graph F is a core and its 2-shadow contains a clique of size k + 1. Then
the F -removal lemma is not polynomial.

Note that this is a generalization of the result of Kohayakawa, Nagle and Rödl [9] mentioned
above since the 2-shadow of the complete k-graph on k + 1 vertices is a clique of size k + 1.

The proofs of Lemmas 1.1 and 1.2 appear in Section 2, but let us first see why they together allow
us to handle all non-k-partite k-graphs, thus proving Theorem 1.
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Proof of Theorem 1. The if part was discussed above. As to the only if part, suppose F is a
k-graph which is not k-partite and assume first that F is a core. Let G denote the 2-shadow of F . If
G contains an induced cycle of length at least 4, then the result follows from Lemma 1.1. Suppose
then that G contains no such cycle, implying that G is chordal. Since F is not k-partite, G is not
k-colorable. Since G is assumed to be chordal, and chordal graphs are well-known to be perfect, this
means that G has a clique of size k + 1. Hence, the result follows from Lemma 1.1.

To prove the result when F is not necessarily a core, one just needs to observe that if F ′ is the
core of F , then (i) as noted earlier, F ′ is not k-partite, and (ii) since the F ′ removal lemma is not
polynomial (by the previous paragraph), then neither is the F removal-lemma (see Claim 2.1 for the
short proof of this fact). �

2 Proofs of Lemmas 1.1 and 1.2

We start by introducing some recurring notions. Recall that the b-blowup of a k-graph H = (V,E)
is the k-graph obtained by replacing every vertex v ∈ V with a b-tuple of vertices Sv, and then
replacing every edge e = {v1, . . . , vk} ∈ E with all possible bk edges Sv1 × Sv2 × · · ·Svk . Note that
if H ′ is the b-blowup of H, then the map sending Sv to v is a homomorphism from H ′ to H. We
will frequently refer to this as the natural homomorphism from H ′ to H. We say that a k-graph H
is homomorphic to a k-graph F if there is a homomorphism from the former to the latter. We first
prove the following assertion, which was used in the proof of Theorem 1.

Claim 2.1. Let F be a k-graph and let C be a subgraph of F so that F is homomorphic to C. Then,
if the C-removal lemma is not polynomial, then neither is the F -removal lemma.

Proof. Since the C-removal lemma is not polynomial, there is a function δ : (0, 1) → (0, 1) such
that 1/δ(ε) grows faster than any polynomial in 1/ε, and such that for every ε > 0 and large enough
n there is an n-vertex k-graph H1 which contains a collection C of εnk edge-disjoint copies of C but
only δnv(C) copies of C altogether. Let H be the v(F )-blowup of H1. Note that the v(F )-blowup
of C contains a copy of F . Also, copies of F corresponding to different copies of C from C are
edge-disjoint. Hence, H has a collection of εnk = ε(v(H)/v(F ))k = Ω(ε · v(H)k) = ε′v(H)k edge-
disjoint copies of F , for a suitable ε′ = Ω(ε). Let us bound the total number of copies of F in H.
Since C is a subgraph of F , each copy of F must contain a copy of C. Let ϕ : V (H) → V (H1)
be the natural homomorphism from H to H1 (as defined above). For each copy C ′ of C in H,
consider the subgraph ϕ(C ′) of H1. The number of copies C ′ of C with v(ϕ(C ′)) < v(C) is at most
v(F )v(C) ·O(nv(C)−1) ≤ δnv(C), provided that n is large enough. The number of copies C ′ of C with
ϕ(C ′) ∼= C is at most v(F )v(C) · δnv(C) = O(δnv(C)), because H1 contains at most δnv(C) copies of
C. So in total, H contains at most O(δnv(C)) copies of C. This means that H contains at most
O(δnv(C)) · v(H)v(F )−v(C) = O(δ · v(H)v(F )) = δ′v(H)v(F ) copies of F , for a suitable δ′ = O(δ). Note
that 1/δ′ is super-polynomial in 1/ε′. This shows that the F -removal lemma is not polynomial. �

Since the core of F satisfies the properties of C in the above claim, it indeed establishes the
assertion which we used when proving Theorem 1, namely that it suffices to prove the theorem when
F is a core.

It thus remains to prove Lemmas 1.1 and 1.2. We begin preparing these proofs with some auxiliary
lemmas. Throughout the rest of this section we will assume that F in Theorem 1 has no isolated
vertices since removing isolated vertices does not make the removal lemma easier/harder. The
following is a key property of cores that we will use in this section.
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Claim 2.2. Let F be a core k-graph, let H be a k-graph, and let ϕ : H → F be a homomorphism.
Then for every copy F ′ of F in H, the map ϕ|V (F ′) is an isomorphism2 from F ′ to F .

Proof. We first claim that every homomorphism ϕ from a core F to itself is an isomorphism. Indeed,
first note that since we assume that F has no isolated vertices, then if ϕ is not injective then ϕ’s
image has less than E(F ) edges induced on it, which contradicts the minimality of F . Now, since
ϕ is an injection, and since it maps edges to edges, it must map non-edges to non-edges, and is
therefore an isomorphism. The assertion of the claim now follows from the fact that ϕ|V (F ′) is a
homomorphism from F ′ to F . �

We now describe our approach for proving Lemma 1.1 (the approach for Lemma 1.2 is analogous).
Let I ⊆ V (F ) be a set of vertices so that the 2-shadow of F induces on I a graph containing a cycle,
and so that |e ∩ I| ≤ 2 for every e ∈ E(F ). Let S be the graph induced on I by the 2-shadow of
F . We first use the approach of [1] in order to construct a graph consisting of many edge-disjoint
copies of S yet containing few copies of S altogether. The second step is then to extend the graph
thus constructed into a k-graph containing many edge-disjoint copies of F yet few copies of F . The
following lemma will help us in performing this extension. For ` ≥ 1, two sets are called `-disjoint if
their intersection has size at most `− 1. Two subgraphs of a hypergraph are called `-disjoint if their
vertex-sets are `-disjoint.

Lemma 2.3. Let r, s, k, ` ≥ 0 satisfy k ≥ ` and r ≥ k− `. Let V1, . . . , Vs, Vs+1, . . . , Vs+r be pairwise-
disjoint sets of size n each. Let S ⊆ V1 × · · · × Vs be a family of `-disjoint sets. Then there is a
family F ⊆ V1 × · · · × Vs+r with the following properties:

1. For every F ∈ F it holds that F |V1×···×Vs ∈ S.

2. |F| ≥ Ωr,s,k(|S|nk−`).

3. For every pair of distinct F1, F2 ∈ F , if |F1 ∩ F2| ≥ k then

#{s+ 1 ≤ i ≤ s+ r : F1(i) = F2(i)} ≤ k − `− 1

Proof. We construct the family F as follows. For each S ∈ S and each r-tuple A ∈ Vs+1×· · ·×Vs+r,
add S ∪ A to F with probability 1

Cnr−k+` , where C is a large constant to be chosen later. Item 1 is
satisfied by definition. Let us estimate the number of pairs F1, F2 ∈ F violating Item 3; denote this
number by B. Suppose that F1 = S1∪A1 and F2 = S2∪A2 violate Item 3. Then d := |A1∩A2| ≥ k−`
and |S1 ∩ S2| ≥ k − d. The number of choices of A1, A2 ∈ Vs+1 × · · · × Vs+r with |A1 ∩ A2| = d is
at most nr ·

(
r
d

)
· nr−d. Also, for 0 ≤ t ≤ `, the number of choices of S1, S2 ∈ S with |S1 ∩ S2| ≥ t

is at most |S| ·
(
s
t

)
· n`−t, because the sets in S are pairwise `-disjoint. Note that k − d ≤ `. We

can also allow t to be negative by replacing t with max{0, t} in the above formula. Finally, the

probability that S1 ∪A1, S2 ∪A2 ∈ F is
(

1
Cnr−k+`

)2
. Hence, the number B of violations to Item 3 is,

in expectation, at most

E[B] ≤
r∑

d=k−`

[
nr ·

(
r

d

)
· nr−d · |S| ·

(
s

max{0, k − d}

)
· n`−max{0,k−d} ·

(
1

Cnr−k+`

)2
]

= Os,r,k

(
1

C2

)
· |S| · nk−`.

2Just to clarify, we do not claim that ϕ|V (F ′) is an isomorphism between F and the graph induced by H on V (F ′).
Rather, ϕ|V (F ′) is an isomorphism between F and the graph (V (F ′), E(F ′)).
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On the other hand, the expected size of F is |S| ·nr · 1
Cnr−k+` = 1

C · |S| ·n
k−`. So by choosing C to be

large enough (as a function of s, r, k), we can guarantee that E[|F|−B] ≥ 1
2C ·|S|·n

k−`. By fixing such
a choice of F and deleting one set F ∈ F from each violation, we get the required conclusion. �

The following well-known fact is an easy corollary of Lemma 2.3.

Lemma 2.4. Let 1 ≤ k ≤ r, and let V1, . . . , Vr be pairwise-disjoint sets of size n each. Then there
is F ⊆ V1 × · · · × Vr, |F| ≥ Ω(nk), such that the sets in F are k-disjoint.

Proof. Apply Lemma 2.3 with s = ` = 0 and S = {∅}. �

The next lemma shows why constructing a k-graph with a sublinear number of edge disjoint copies
of F can be boosted to prove Lemmas 1.1 and 1.2. The lemma makes crucial use of the fact that F
is a core.

Lemma 2.5. Let F be a core k-graph, and suppose that for a constant C and for every large enough n,
there is a k-graph H which is homomorphic to F , has a collection of nk/eC

√
logn edge-disjoint copies

of F , but has at most nv(F )−1 copies of F altogether. Then the F -removal lemma is not polynomial.

Proof. Let ε > 0 and let n be large enough. Let m be the largest integer satisfying eC
√

logm ≤ 1/ε.
It is easy to check that m ≥ (1/ε)Ω(log(1/ε)). Let H be the k-graph guaranteed to exist by the
assumption of the lemma, but with m in place of n. So H has m vertices, contains a collection F of
mk/eC

√
logn ≥ εmk edge-disjoint copies of F , but has at most mv(F )−1 copies of F altogether.

Let G be the n
m -blowup of H. Each F ′ ∈ F gives rise to Ω(( n

m)k) k-disjoint (and hence also
edge-disjoint) copies of F in G, by Lemma 2.4 applied with r = v(F ) and with n

m in place of n.
Copies arising from different F ′1, F

′
2 ∈ F are edge-disjoint, because the copies in F are edge-disjoint.

Altogether, this gives a collection of εmk · Ω(( n
m)k) = Ω(εnk) edge-disjoint copies of F in G.

Let us upper-bound the total number of copies of F in G. By assumption, there is a homomor-
phism ϕ from H to F . Let ψ be the “natural” homomorphism from G to H (as described in the
beginning of the section). Then ϕ ◦ ψ is a homomorphism from G to F . By Claim 2.2, for every
copy F ′ of F in G the map ϕ ◦ ψ|V (F ′) is an isomorphism between F ′ and F . We claim that this
means that ψ maps every copy F ′ of F in G onto a copy of F in H. Indeed, ψ|V (F ′) must be injective
(otherwise ϕ ◦ψ|V (F ′) would not be an isomorphism), and since ψ|V (F ′) must map edges to edges (on
account of being a homomorphism) its image must contain a copy of F . We thus see that every copy
of F in G must come from the blown-up copies of F in H. But each copy of F in H gives rise to
( n
m)v(F ) copies of F in G. Hence, the total number of copies of F in G is at most

mv(F )−1 · (n/m)v(F ) = nv(F )/m ≤ εΩ(log(1/ε)) · nv(F ) .

This shows that the F -removal lemma is not polynomial. �

Let S be a k-graph on [s] and let G be an s-partite k-graph with sides V1, . . . , Vs. A canonical copy
of S in G is a copy consisting of vertices v1 ∈ V1, . . . , vs ∈ Vs in which vi plays the role of i ∈ V (S)
for each i = 1, . . . , s. The following result appears implicitly in [1]. For the sake of completeness, we
include a proof.

Lemma 2.6. Let S be a graph on [s] containing a cycle. Then for every large enough n, there is an
s-partite graph G with sides V1, . . . , Vs, each of size n, such that G has a collection of n2/eO(

√
logn)

2-disjoint canonical copies of S, but at most ns−1 canonical copies of S altogether.
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Proof. Without loss of generality, suppose that (1, 2, . . . , t, 1) is a cycle in S (otherwise permute
the coordinates) where t ≥ 3. Take a set B ⊆ [n/s], |B| ≥ n/eO

√
logn, with no non-trivial solution

to the linear equation y1 + · · · + yt−1 = (t − 1)yt with y1, . . . , yt ∈ B (where a solution is trivial
if y1 = y2 = . . . = yt). The existence of such a set B is by a simple generalization of Behrend’s
construction [3] of sets avoiding 3-term arithmetic progressions, see [1, Lemma 3.1]. Take pairwise-
disjoint sets V1, . . . , Vs of size n each, and identify each Vi with [n]. For each x ∈ [n/s] and y ∈ B,
add to G a canonical copy Sx,y of S on the vertices vi = x + (i − 1)y ∈ Vi, i = 1, . . . , s. Note that
x+(i−1)y ≤ x+(s−1)y ≤ n, so vi indeed “fits” into Vi = [n]. The copies Sx,y (where x ∈ [n/s], y ∈ B)
are 2-disjoint. Indeed, if Sx1,y1 , Sx2,y2 intersect in Vi and in Vj , then x1 + (i− 1)y1 = x2 + (i− 1)y2

and x1 + (j− 1)y1 = x2 + (j− 1)y2, and solving this system of equations gives x1 = x2, y1 = y2. The
number of copies Sx,y is n

s · |B| ≥ n
2/eO

√
logn.

Let us bound the total number of canonical copies of S in G. Fix a canonical copy with vertices
v1, . . . , vs, vi ∈ Vi. Then v1, . . . , vt, v1 is a cycle in G. For 1 ≤ j ≤ t− 1, let xj ∈ [n/s], yj ∈ B such
that vij , vij+1 ∈ Sxj ,yj . Similarly, let xt ∈ [n/s], yt ∈ B such that vi1 , vit ∈ Sxt,yt . Then we have
vij+1−vij = yj for every 1 ≤ j ≤ t−1, and vit−vi1 = (t−1)yt. So y1 + · · ·+yt−1 = (t−1)yt. By our
choice of B, we have y1 = · · · = yt =: y. Now, for each 1 ≤ j ≤ t−1 we have xj = vij+1−j ·y = xj+1,
so x1 = · · · = xt =: x. So we see that for each canonical copy v1, . . . , vs of S, there are x ∈ [n/s], y ∈ B
such that vi1 , . . . , vit ∈ Sx,y. The number of choices for x, y is (n/s)|B| ≤ n2. Hence, the number of
canonical copies of S is at most n2 · ns−t ≤ ns−1. �

Recall that K
(s−1)
s is the (s− 1)-graph with vertices 1, . . . , s and all s possible edges. The following

construction appears implicitly in [9] (see also [2]). Again, for completeness, we include a proof.

Lemma 2.7. Let s ≥ 3. For every large enough n, there is an s-partite (s − 1)-graph G with sides
V1, . . . , Vs, each of size n, such that G has a collection of ns−1/eO(

√
logn) (s − 1)-disjoint canonical

copies of K
(s−1)
s , but at most ns−1 copies of K

(s−1)
s altogether.

Proof. Take a set B ⊆ [n/s], |B| ≥ n/eO
√

logn, with no non-trivial solution to y1 + y2 = 2y3,
y1, y2, y3 ∈ B. Take pairwise-disjoint sets V1, . . . , Vs of size n each, and identify each Vi with [n]. For

each x1, . . . , xs−2 ∈ [n/s] and y ∈ B, add to G a copy Kx1,...,xs−2,y of K
(s−1)
s on the vertices

x1 ∈ V1, x2 ∈ V2, . . . xs−2 ∈ Vs−2, y +

s−2∑
i=1

xi ∈ Vs−1, 2y +
s−2∑
i=1

xi ∈ Vs

It is easy to see that these copies are (s−1)-disjoint, because fixing any s−1 of the s coordinates allows
to solve for x1, . . . , xs−2, y. Also, the number of copies thus places is (n/s)s−2 · |B| ≥ ns−1/eO

√
logn.

Let us show that the are no other copies of K
(s−1)
s in G. This would imply that the total number

of copies of K
(s−1)
s in G is (n/s)s−2 · |B| ≤ ns−1. So suppose that v1 ∈ V1, . . . , vs ∈ Vs form a copy

of K
(s−1)
s . Let x(i) = (xi1, . . . , x

i
s−2) ∈ [n/s]s−2 and yi ∈ B, i = 1, 2, 3, be such that {v2, . . . , vs} ∈

Kx(1),y1
, {v1, . . . , vs−1} ∈ Kx(2),y2

and {v1, . . . , vs−2, vs} ∈ Kx(3),y3
. Then x

(2)
1 = x

(3)
1 = v1 and

x
(1)
j = x

(2)
j = x

(3)
j = vj for every 2 ≤ j ≤ s− 2. (1)

Also, vs−vs−1 = y1, vs−1−v1 = x
(2)
2 + · · ·+x(2)

s−2 +y2 and vs−v1 = x
(3)
2 + · · ·+x(3)

s−2 +2y3. Combining
these three equations and using (1), we get y1 + y2 = 2y3, and so y1 = y2 = y3 =: y by our choice of

B. Also, x
(1)
1 = vs−1 − (v2 + · · ·+ vs−2 + y) = x

(2)
1 . So x(1) = x(2) = x(3). �
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We now prove two lemmas, 2.8 and 2.9, which imply Lemmas 1.1 and 1.2, respectively. Recall
that for a k-graph F and 2 ≤ ` ≤ k, the `-shadow of F , denoted ∂`F , is the `-graph consisting of all
f ∈

(V (F )
`

)
such that there is e ∈ E(F ) with f ⊆ e.

Lemma 2.8. Let k ≥ 2, let F be a core k-graph and suppose that there is a set I ⊆ V (F ) such that
(∂2F )[I] contains a cycle and |e∩ I| ≤ 2 for every e ∈ E(F ). Then for every large enough n there is
a k-graph H which is homomorphic to F , has a collection of nk/eO(

√
logn) edge-disjoint copies of F ,

but has at most nv(F )−1 copies of F altogether.

Proof. It will be convenient to write |I| = s, |V (F )| = s + r, and to assume that I = [s] and
V (F ) = [s+ r]. Let S := (∂2F )[I], that is, the graph induced by F ’s 2-shadow on I. By assumption,
S contains a cycle. Take disjoint sets V1, . . . , Vr+s of size n each. Let G be the s-partite graph with
sides V1, . . . , Vs given by Lemma 2.6. Let S be a collection of n2/eO(

√
logn) 2-disjoint canonical copies

of S in G. Apply Lemma 2.3 to3 S with ` = 2 to obtain a family F ⊆ V1 × · · · × Vs+r satisfying
Items 1-3 in that lemma. Note that r ≥ k − 2 = k − ` (because each edge of F contains at most
two vertices from I = [s]), so the conditions of Lemma 2.3 are satisfied. Define the hypergraph H
by placing a canonical copy of F on each F ′ ∈ F . We claim that these copies of F are edge-disjoint.
Indeed, suppose by contradiction that the copies on F1, F2 ∈ F share an edge e. Then |F1 ∩F2| ≥ k.
By Item 3 of Lemma 2.3, we have #{s + 1 ≤ i ≤ s + r : F1(i) = F2(i)} ≤ k − 3. This implies that
#{1 ≤ i ≤ s : e ∩ Vi 6= ∅} ≥ 3. But this means that in F there is an edge which intersects I = [s] in
at least 3 vertices, in contradiction to the assumption of the lemma. So the copies in F are indeed
edge-disjoint. Their number is |F| ≥ Ω(|S|nk−2) ≥ nk/eO(

√
logn), by Item 2 of Lemma 2.3.

To complete the proof, it remains to show that H has at most ns+r−1 copies of F . Observe
that H is homomorphic to F ; indeed, the map ϕ which sends Vj 7→ j, j = 1, . . . , s + r, is such a
homomorphism. Let F ∗ be a copy of F in H. Since F is a core and ϕ is a homomorphism from H to
F , we can apply Claim 2.2 to conclude that F ∗ must have the form v1, . . . , vs+r, with vi ∈ Vi playing
the role of i for each i = 1, . . . , s + r. We claim that v1, . . . , vs form a canonical copy of S in4 G.
To see this, fix any {i, j} ∈ E(S) and let us show that {vi, vj} ∈ E(G). Since S = (∂2F )[I], there
must be an edge e ∈ E(F ) containing i, j. Then {va : a ∈ e} ∈ E(F ∗) ⊆ E(H) =

⋃
F ′∈F E(F ′). Let

F ′ ∈ F such that {va : a ∈ e} ∈ E(F ′). By Item 1 of Lemma 2.3, we have S′ := F ′|V1×···×Vs ∈ S.
Now, S′ is the vertex set of a canonical copy of S in G, and hence {vi, vj} ∈ E(G), as required. This
proves our claim that v1, . . . , vs form a canonical copy of S in G. Summarizing, every copy of F in
H contains the vertices of a canonical copy of S in G. By the guarantees of Lemma 2.6, the number
of canonical copies of S in G is at most ns−1. Hence, the number of copies of F in H is at most
ns−1 · nr = ns+r−1, as required. �

Lemma 2.9. Let F be a core k-graph and suppose that there are 3 ≤ s ≤ k + 1 and a set I ⊆ V (F )

such that (δs−1F )[I] ∼= K
(s−1)
s and |e ∩ I| ≤ s− 1 for every e ∈ E(F ). Then for every large enough

n there is a k-graph H which is homomorphic to F , has a collection of nk/eO(
√

logn) edge-disjoint
copies of F , but has at most nv(F )−1 copies of F altogether.

Proof. The proof is very similar to that of Lemma 2.8. Assume that I = [s], V (F ) = [s+ r]. Take
disjoint sets V1, . . . , Vr+s of size n each. Let G be the s-partite (s − 1)-graph with sides V1, . . . , Vs

given by Lemma 2.7. Let S be a collection of ns−1/eO(
√

logn) (s− 1)-disjoint copies of K
(s−1)
s in G.

3Strictly speaking we apply Lemma 2.3 to the vertex sets of the copies of S.
4Note that by definition of S, the 2-shadow of F ∗ creates a copy of S in the 2-shadow of H. The first key point is

that this copy of S must appear in G. Also, note that this fact is trivial if F ∗ is one of the canonical copies of F we
placed in H when defining it. The second key point is that this holds for every copy F ∗ of F in H.
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Apply Lemma 2.3 to S with ` = s − 1 to obtain a family F ⊆ V1 × · · · × Vs+r satisfying Items 1-3
in that lemma. Define the hypergraph H by placing a canonical copy of F on each F ′ ∈ F . These
copies of F are edge-disjoint. Indeed, suppose by contradiction that the copies on F1, F2 ∈ F share
an edge e. Then |F1 ∩ F2| ≥ k, and hence #{s+ 1 ≤ i ≤ s+ r : F1(i) = F2(i)} ≤ k − `− 1 = k − s
by Item 3 of Lemma 2.3. But then #{1 ≤ i ≤ s : e ∩ Vi 6= ∅} = s, meaning that there is
an edge in F which contains I = [s], a contradiction to the assumption of the lemma. We have
|F| ≥ Ω(|S|nk−s+1) ≥ nk/eO(

√
logn), using Item 2 of Lemma 2.3.

The map Vj 7→ j, j = 1, . . . , s+ r is a homomorphism from H to F . Let us bound the number of
copies of F in H. By Claim 2.2, every copy F ∗ of F must be of the form v1, . . . , vs+r, with vi ∈ Vi
playing the role of i for each i = 1, . . . , s + r. We claim that v1, . . . , vs span a copy of K

(s−1)
s in G.

So let J ∈
(

[s]
s−1

)
. Since (∂s−1F )[I] ∼= K

(s−1)
s , there is an edge e ∈ E(F ) with J ⊆ e. Since F ∗ is a

canonical copy of F , we have {vi : i ∈ E} ∈ E(F ∗) ⊆ E(H) =
⋃

F ′∈F E(F ′). Let F ′ ∈ F such that
{vi : i ∈ e} ∈ E(F ′). By Item 1 of Lemma 2.3, we have S′ := F ′|V1×···×Vs ∈ S. Now, S′ is a canonical

copy of K
(s−1)
s in G, and hence {vi : i ∈ J} ∈ E(G), as required. So we see that every copy of F in

H contains the vertices of a copy of K
(s−1)
s in G. By the guarantees of Lemma 2.6, G has at most

ns−1 copies of K
(s−1)
s . Hence, H has at most ns−1 · nr = ns+r−1 copies of F , as required. �

Observe that Lemma 1.1 follows by combining Lemmas 2.5 and 2.8. Let us prove Lemma 1.2.

Proof of Lemma 1.2. Let X be a clique of size k + 1 in ∂2F . Let I be a smallest set in X which
is not contained in an edge of F . Note that I is well-defined (because X itself is not contained in
any edge of F , as |X| = k + 1). Also, |I| ≥ 3 because every pair of vertices in X is contained in

some edge, as X is a clique in ∂2F . Put s = |I|. Then (∂s−1F )[I] ∼= K
(s−1)
s and |e ∩ I| ≤ s − 1 for

every e ∈ E(F ), by the choice of I. Now the assertion of Lemma 1.2 follows by combining Lemmas
2.5 and 2.9. �
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[15] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith.
27 (1975), 199–245.
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