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Abstract

Given a fixed k-uniform hypergraph F', the F-removal lemma states that every hypergraph
with few copies of F' can be made F-free by the removal of few edges. Unfortunately, for general
F, the constants involved are given by incredibly fast growing Ackermann-type functions. It is
thus natural to ask for which F' can one prove removal lemmas with polynomial bounds. One
trivial case where such bounds can be obtained is when F' is k-partite. Alon proved that when
k = 2 (i.e. when dealing with graphs), only bipartite graphs have a polynomial removal lemma.
Kohayakawa, Nagle and R6dl conjectured in 2002 that Alon’s result can be extended to all & > 2,
namely, that the only k-graphs F' for which the hypergraph removal lemma has polynomial bounds
are the trivial cases when F' is k-partite. In this paper we prove this conjecture.

1 Introduction

The hypergraph removal lemma is one of the most important results of extremal combinatorics. It
states that for every fixed integer k, k-uniform hypergraph (k-graph for short) F' and positive ¢, there
is 6 = §(F,e) > 0 so that if G is an n-vertex k-graph with at least en® edge-disjoint! copies of F,
then G contains dn*®) copies of F. This lemma was first conjectured by Erdés, Frankl and Rodl [5]
as an alternative approach for proving Szemerédi’s theorem [15]. The quest to proving this lemma,
which involved the development of the hypergraph extension of Szemerédi’s regularity lemma [16],
took more than two decades, culminating in several proofs, first by Gowers [8] and Roédl-Skokan—
Nagle—Schacht [11, 13] and later by Tao [17]. For the sake of brevity, we refer the reader to [12] for
more background and references on the subject.

While the hypergraph removal lemma has far-reaching qualitative applications, its main drawback
is that it supplies very weak quantitative bounds. Specifically, for a general k-graph F, the function
1/6(F,¢) grows like the k' Ackermann function. It is thus natural to ask for which k-graphs F one
can obtain more sensible bounds. Further motivation for studying such questions comes from the
area of graph property testing [7], where graph and hypergraph removal lemmas are used to design
fast randomized algorithms.

Suppose first that £ = 2. In this case it is easy to see that if F' is bipartite then §(F,e) grows
polynomially with e. Indeed, if G has en? edge-disjoint copies of F then it must have at least
en? edges, which implies by the well-known Kovari-Sés-Turdn theorem [10], that G has at least
poly(e)n¥) copies of F. In the seminal paper of Ruzsa and Szemerédi [14] in which they proved
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the first version of the graph removal lemma, they also proved that when F' is the triangle Ks,
the removal lemma has a super-polynomial dependence on e. A highly influential result of Alon [1]
completed the picture by extending the result of [14] to all non-bipartite graphs F'.

Moving now to general k > 2, it is natural to ask for which k-graphs the function 6(F, e) depends
polynomially on . Let us say that in this case the F-removal lemma is polynomial. It is easy to
see that like in the case of graphs, the F-removal lemma is polynomial whenever F' is k-partite.
This follows from Erdds’s [4] well-known hypergraph extension of the Kovari-Sés—Turdn theorem.
Motivated by Alon’s result [1] mentioned above, Kohayakawa, Nagle and Rédl [9] conjectured in 2002
that the F-removal lemma is polynomial if and only if F' is k-partite. They further proved that the
F-removal lemma is not polynomial when F' is the complete k-graph on k + 1 vertices. Alon and the
second author [2] proved that a more general condition guarantees that the F-removal lemma is not
polynomial, but fell short of covering all non-k-partite k-graphs. In the present paper we complete
the picture, by fully resolving the problem of Kohayakawa, Nagle and Radl [9].

Theorem 1. For every k-graph F, the F-removal lemma is polynomial if and only if F' is k-partite.

As a related remark, we note that for & > 3, the analogous problem for the induced F-removal
lemma (that is, a characterization of k-graphs for which the induced F-removal lemma has polynomial
bounds) was recently settled in [6], following a nearly-complete characterization given in [2].

Before proceeding, let us recall the notion of a core, which plays an important role in the proof
of Theorem 1. Recall that for a pair of k-graphs F1, F5, a homomorphism from F; to F3 is a map
¢ : V(F1) — V(Fy) such that for every e € E(F}) it holds that {¢(z) : © € e} € E(F3). The core
of a k-graph F' is the smallest (with respect to the number of edges) subgraph of F' to which there
is a homomorphism from F. It is not hard to show that the core of F' is unique up to isomorphism.
Also, note that the core of a k-graph F' is a single edge if and only if F' is k-partite. In particular, if
a k-graph is not k-partite, then neither is its core. We say that F' is a core if it is the core of itself.

Alon’s [1] approach relies on the fact that the core of every non-bipartite graph has a cycle. It
is then natural to try and prove Theorem 1 by finding analogous sub-structures in the core of every
non-k-partite k-graphs. Indeed, this was the approach taken in [2, 9]. The main novelty in this
paper, and what allows us to handle all cases of Theorem 1, is that instead of directly inspecting the
k-graph F', we study the properties of a certain graph associated with F. More precisely, given a
k-graph F = (V, E), we consider its 2-shadow, which is the graph on the same vertex set V' in which
{u,v} is an edge if and only if u, v belong to some e € E. The proof of Theorem 1 relies on the two
lemmas described below.

Lemma 1.1. Suppose a k-graph F' is a core and its 2-shadow contains a cycle C' such that |V (C)Ne| <
2 for every e € E(F). Then the F-removal lemma is not polynomial. In particular, if the 2-shadow
of F' contains an induced cycle of length at least 4, then the F-removal lemma is not polynomial.

Note that this is a generalization of Alon’s result mentioned above since the 2-shadow of every
non-bipartite graph F' (which is of course F itself in this case) must contain a cycle. Our second
lemma is the following.

Lemma 1.2. Suppose a k-graph F is a core and its 2-shadow contains a clique of size k + 1. Then
the F-remowval lemma is not polynomial.

Note that this is a generalization of the result of Kohayakawa, Nagle and Rodl [9] mentioned
above since the 2-shadow of the complete k-graph on k + 1 vertices is a clique of size k + 1.

The proofs of Lemmas 1.1 and 1.2 appear in Section 2, but let us first see why they together allow
us to handle all non-k-partite k-graphs, thus proving Theorem 1.



Proof of Theorem 1. The if part was discussed above. As to the only if part, suppose F' is a
k-graph which is not k-partite and assume first that F'is a core. Let G denote the 2-shadow of F. If
G contains an induced cycle of length at least 4, then the result follows from Lemma 1.1. Suppose
then that G contains no such cycle, implying that G is chordal. Since F' is not k-partite, G is not
k-colorable. Since G is assumed to be chordal, and chordal graphs are well-known to be perfect, this
means that G has a clique of size k + 1. Hence, the result follows from Lemma 1.1.

To prove the result when F' is not necessarily a core, one just needs to observe that if F’ is the
core of F, then (i) as noted earlier, F” is not k-partite, and (i) since the F’ removal lemma is not
polynomial (by the previous paragraph), then neither is the F' removal-lemma (see Claim 2.1 for the
short proof of this fact). [

2 Proofs of Lemmas 1.1 and 1.2

We start by introducing some recurring notions. Recall that the b-blowup of a k-graph H = (V, E)
is the k-graph obtained by replacing every vertex v € V with a b-tuple of vertices 5,, and then
replacing every edge e = {v1,...,v;} € E with all possible b* edges S,, x Sy, X ---S,,. Note that
if H' is the b-blowup of H, then the map sending S, to v is a homomorphism from H' to H. We
will frequently refer to this as the natural homomorphism from H’ to H. We say that a k-graph H
is homomorphic to a k-graph F if there is a homomorphism from the former to the latter. We first
prove the following assertion, which was used in the proof of Theorem 1.

Claim 2.1. Let F be a k-graph and let C be a subgraph of F' so that F' is homomorphic to C'. Then,
if the C'-removal lemma is not polynomial, then neither is the F-removal lemma.

Proof. Since the C-removal lemma is not polynomial, there is a function 6 : (0,1) — (0,1) such
that 1/6(e) grows faster than any polynomial in 1/e, and such that for every ¢ > 0 and large enough
n there is an n-vertex k-graph H; which contains a collection C of en® edge-disjoint copies of C' but
only 6n°(©) copies of C' altogether. Let H be the v(F)-blowup of H;. Note that the v(F)-blowup
of C contains a copy of F. Also, copies of F' corresponding to different copies of C' from C are
edge-disjoint. Hence, H has a collection of en® = e(v(H)/v(F))* = Qe - v(H)*) = ¢'v(H)* edge-
disjoint copies of F, for a suitable ¢/ = Q(g). Let us bound the total number of copies of F' in H.
Since C' is a subgraph of F', each copy of F' must contain a copy of C. Let ¢ : V(H) — V(H;)
be the natural homomorphism from H to H; (as defined above). For each copy C’ of C in H,
consider the subgraph ¢(C”) of Hy. The number of copies C’ of C' with v(¢(C")) < v(C) is at most
v(F)V(©) . O(n*(©)~1) < 6n¥(©)| provided that n is large enough. The number of copies C’ of C' with
©(C") = C is at most v(F)(©) . 5n¥(C) = O(6n*()), because H; contains at most dn"(©) copies of
C. So in total, H contains at most O(6n"(“)) copies of C. This means that H contains at most
O(0n¥(©)) . p(H)*F)=v(C) = O(§ - v(H)*F)) = §'v(H)*¥) copies of F, for a suitable &' = O(J). Note
that 1/0” is super-polynomial in 1/¢’. This shows that the F-removal lemma is not polynomial. B

Since the core of F' satisfies the properties of C' in the above claim, it indeed establishes the
assertion which we used when proving Theorem 1, namely that it suffices to prove the theorem when
F' is a core.

It thus remains to prove Lemmas 1.1 and 1.2. We begin preparing these proofs with some auxiliary
lemmas. Throughout the rest of this section we will assume that F' in Theorem 1 has no isolated
vertices since removing isolated vertices does not make the removal lemma easier/harder. The
following is a key property of cores that we will use in this section.



Claim 2.2. Let F be a core k-graph, let H be a k-graph, and let ¢ : H — F' be a homomorphism.
Then for every copy F' of F in H, the map Oy (Fry 1S an isomorphism? from F' to F.

Proof. We first claim that every homomorphism ¢ from a core F to itself is an isomorphism. Indeed,
first note that since we assume that F' has no isolated vertices, then if ¢ is not injective then ¢’s
image has less than E(F') edges induced on it, which contradicts the minimality of F. Now, since
© is an injection, and since it maps edges to edges, it must map non-edges to non-edges, and is
therefore an isomorphism. The assertion of the claim now follows from the fact that ¢y is a
homomorphism from F’ to F. [

We now describe our approach for proving Lemma 1.1 (the approach for Lemma 1.2 is analogous).
Let I C V(F) be a set of vertices so that the 2-shadow of F' induces on I a graph containing a cycle,
and so that e N I| < 2 for every e € E(F). Let S be the graph induced on I by the 2-shadow of
F. We first use the approach of [1] in order to construct a graph consisting of many edge-disjoint
copies of S yet containing few copies of S altogether. The second step is then to extend the graph
thus constructed into a k-graph containing many edge-disjoint copies of F' yet few copies of F. The
following lemma will help us in performing this extension. For £ > 1, two sets are called £-disjoint if
their intersection has size at most £ — 1. Two subgraphs of a hypergraph are called ¢-disjoint if their
vertex-sets are (-disjoint.

Lemma 2.3. Letr,s,k, £ >0 satisfy k >0 andr > k—4{. Let Vi, ..., Vs, Vsa1, ..., Vsipr be pairwise-
disjoint sets of size n each. Let S C Vi X --- X Vi be a family of (-disjoint sets. Then there is a
family F C Vi x -+ X Vgip with the following properties:

1. For every F' € F it holds that F|v, x..xv, € S.
2. |]:’ > Qr,s,k(’S‘nkig)'
3. For every pair of distinct Fy, Fy € F, if |F1 N Fy| > k then

#{s+1<i<s+r:F(i)=FR{)}<k—0-1

Proof. We construct the family F as follows. For each S € § and each r-tuple A € Vi1 X -+ X Vgip,
add SU A to F with probability W, where C' is a large constant to be chosen later. Item 1 is
satisfied by definition. Let us estimate the number of pairs Fy, F» € F violating Item 3; denote this
number by B. Suppose that F} = S1UA; and Fy = SoUAj violate Item 3. Then d := |A1NAg| > k—¢
and |S1 N S| > k — d. The number of choices of Ay, Ay € Viyq X -+ X Vgip with |[A; N Ag| = d is
at most n” - (2) -n"~%. Also, for 0 < t < ¢, the number of choices of Si,Ss € S with [S; N Sy| > ¢
is at most |S| - (§) - n’~!, because the sets in S are pairwise (-disjoint. Note that k —d < £. We
can also allow ¢ to be negative by replacing ¢ with max{0,¢} in the above formula. Finally, the
probability that S1U A1, SoU Ay € F is (W)2 Hence, the number B of violations to Item 3 is,
in expectation, at most

r 2
T, r L r—d . s . f—max{0,k—d} ;
ElB) < Zz[” <d> w18l (max{o,k—d}) ! <Cn7"—’f+f>]

1
= Osm,k <C2> . |S‘ .kt

2Just to clarify, we do not claim that ©|v(Fy is an isomorphism between F and the graph induced by H on V (F’).
Rather, ¢y (/) is an isomorphism between F' and the graph (V(F'), E(F')).




On the other hand, the expected size of F is |S|-n" - z—t7 = & - |S|-nF~. So by choosing C' to be
large enough (as a function of s,r, k), we can guarantee that E[|F|—B] > 55-|S|-n*~*. By fixing such
a choice of F and deleting one set F' € F from each violation, we get the required conclusion. |

The following well-known fact is an easy corollary of Lemma 2.3.

Lemma 2.4. Let 1 < k <r, and let V1,...,V, be pairwise-disjoint sets of size n each. Then there
is F C Vi x -+ x Vp, |F| > Q(n¥), such that the sets in F are k-disjoint.

Proof. Apply Lemma 2.3 with s = ¢ =0 and S = {0}. [ |

The next lemma shows why constructing a k-graph with a sublinear number of edge disjoint copies
of I’ can be boosted to prove Lemmas 1.1 and 1.2. The lemma makes crucial use of the fact that F’
is a core.

Lemma 2.5. Let F' be a core k-graph, and suppose that for a constant C' and for every large enough n,
there is a k-graph H which is homomorphic to F', has a collection of nk/eCVlog” edge-disjoint copies
of F, but has at most n?E) =1 copies of F altogether. Then the F-removal lemma is not polynomial.

Proof. Let € > 0 and let n be large enough. Let m be the largest integer satisfying eCVlogm < 1/e.
It is easy to check that m > (1/¢)?(°8(1/9)) Let H be the k-graph guaranteed to exist by the
assumption of the lemma, but with m in place of n. So H has m vertices, contains a collection F of
mkF/ eCViogn > gk edge-disjoint copies of F', but has at most m?¥)=1 copies of F altogether.

Let G be the Z-blowup of H. Each F' € F gives rise to Q((2)*) k-disjoint (and hence also
edge-disjoint) copies of F' in G, by Lemma 2.4 applied with r = v(F) and with > in place of n.
Copies arising from different F], i, € F are edge-disjoint, because the copies in F are edge-disjoint.
Altogether, this gives a collection of em” - Q((2)F) = Q(en) edge-disjoint copies of F in G.

Let us upper-bound the total number of copies of F' in G. By assumption, there is a homomor-
phism ¢ from H to F. Let ¥ be the “natural” homomorphism from G to H (as described in the
beginning of the section). Then ¢ o % is a homomorphism from G to F. By Claim 2.2, for every
copy F’ of F in G the map ¢ o Yy (rry 18 an isomorphism between F’" and F. We claim that this
means that 1) maps every copy F’ of F in G onto a copy of F in H. Indeed, Yy (pry must be injective
(otherwise o Yy (Fry would not be an isomorphism), and since Yy (Fry must map edges to edges (on
account of being a homomorphism) its image must contain a copy of F'. We thus see that every copy
of F'in G must come from the blown-up copies of F' in H. But each copy of F' in H gives rise to
(%)”(F) copies of F' in . Hence, the total number of copies of F' in G is at most

m?E) =1 (nfm) ) = () ) < oe(1/2) L pu(F)

This shows that the F-removal lemma is not polynomial. |

Let S be a k-graph on [s] and let G be an s-partite k-graph with sides Vi, ..., Vs. A canonical copy
of S in G is a copy consisting of vertices v; € Vi,...,vs € V5 in which v; plays the role of i € V(S)
for each i = 1,...,s. The following result appears implicitly in [1]. For the sake of completeness, we
include a proof.

Lemma 2.6. Let S be a graph on [s] containing a cycle. Then for every large enough n, there is an
s-partite graph G with sides Vi,..., Vs, each of size n, such that G has a collection of n2/eo(vl°g”)
2-disjoint canonical copies of S, but at most n®~! canonical copies of S altogether.



Proof. Without loss of generality, suppose that (1,2,...,¢,1) is a cycle in S (otherwise permute
the coordinates) where ¢ > 3. Take a set B C [n/s], |B| > n/ePV1°8™  with no non-trivial solution
to the linear equation y; + -+ 4+ -1 = (¢t — 1)y with y1,...,9 € B (where a solution is trivial
if y1 = y2 = ... = y). The existence of such a set B is by a simple generalization of Behrend’s
construction [3] of sets avoiding 3-term arithmetic progressions, see [1, Lemma 3.1]. Take pairwise-
disjoint sets Vi,..., Vs of size n each, and identify each V; with [n]. For each = € [n/s] and y € B,
add to G a canonical copy S, of S on the vertices v; = x + (i — 1)y € V;, i = 1,...,s. Note that
z+(i—1)y < z+(s—1)y < n, sov; indeed “fits” into V; = [n]. The copies S, , (where z € [n/s],y € B)
are 2-disjoint. Indeed, if Sy, 4, Sz,,y, intersect in V; and in Vj, then 1 4+ (i — L)y1 = 22 + (i — 1)y
and z1+ (j — 1)y1 = 22+ (j — 1)y2, and solving this system of equations gives 1 = z2,y1 = y2. The
number of copies S, is % - |B| > n?/eOvien,

Let us bound the total number of canonical copies of S in G. Fix a canonical copy with vertices
V1, .., 0, U; € Vi Then vi,...,v,v1 isacyclein G. For 1 < j <t—1, let z; € [n/s],y; € B such
that v, vi,,, € Sy, ;. Similarly, let x; € [n/s],y; € B such that v;,v;, € Sz, . Then we have
Vijy —vi; = yj forevery 1 <j <t—1,and v;, —v;; = (t—1)y;. Soy1 +---+y—1 = (t—1)y;. By our

choice of B, we have y; = --- =y, =: y. Now, for each 1 < j <{—1we have z; =v;; , —j -y = xj41,
soxrp =--- =z =: x. So we see that for each canonical copy vy, ...,vs of S, there are x € [n/s],y € B
such that v;,,...,v;, € Syy. The number of choices for z,y is (n/s)|B| < n?. Hence, the number of
canonical copies of S is at most n2.-ns—t < nps—L [ |

Recall that K §‘H) is the (s — 1)-graph with vertices 1,...,s and all s possible edges. The following
construction appears implicitly in [9] (see also [2]). Again, for completeness, we include a proof.

Lemma 2.7. Let s > 3. For every large enough n, there is an s-partite (s — 1)-graph G with sides
Vi,...,Vs, each of size n, such that G has a collection of n®~'/e9WVIogn) (s _ 1)-disjoint canonical

1)

copies of K§S’1), but at most n*~1 copies of Ks(sf altogether.

Proof. Take a set B C [n/s], |B| > n/e®V!8™ with no non-trivial solution to y; + yo = 2y3,
y1,Y2,ys € B. Take pairwise-disjoint sets Vi, ..., V5 of size n each, and identify each V; with [n]. For

each z1,...,25_2 € [n/s] and y € B, add to G a copy Kz, 4, oy Of Késil) on the vertices
s—2 s—2
TIEVE, wp€Ve, ... me2€Via, y+» mEVia, W+ meVi
i=1 i=1

It is easy to see that these copies are (s—1)-disjoint, because fixing any s—1 of the s coordinates allows
to solve for @1, ..., zs_2,y. Also, the number of copies thus places is (n/s)52 - |B| > n~1/eOVign,
Let us show that the are no other copies of K §S‘1) in G. This would imply that the total number
of copies of KLEH) in G is (n/s)*"2-|B| < n*"'. So suppose that v; € V1,...,vs € Vs form a copy

of KS(S_I). Let 2 = (2%, ...,25 ) € [n/s]* 2 and y; € B, i = 1,2,3, be such that {ve,...,vs} €
K, 4 {vi,..., 051} € K, ,, and {v1,...,vs—2,v5} € K, - Then x?) = x§3) = v1 and

2 3 .
T —x§):x§-)zvjf0revery2§]§872. (1)

Also, vs—v5_1 = Y1, Vs—1 — V] = :1:52) +.- -+:cg2_)2+y2 and vg—v1 = a:gg) +-- -+m§?2+2y3. Combining
these three equations and using (1), we get y; + y2 = 2ys3, and so y; = y2 = y3 =: y by our choice of
B. Also, :cgl) =vs_1 — (Va4 Fvs_a+y) = xgz). So z(M) = 2(2) = £, [ |



We now prove two lemmas, 2.8 and 2.9, which imply Lemmas 1.1 and 1.2, respectively. Recall
that for a k-graph F and 2 < ¢ < k, the ¢-shadow of F, denoted O, F, is the ¢-graph consisting of all
fe (V(KF)) such that there is e € E(F) with f Ce.

Lemma 2.8. Let k > 2, let F be a core k-graph and suppose that there is a set I C V(F') such that
(02 F)[I] contains a cycle and |eNI| < 2 for every e € E(F). Then for every large enough n there is
a k-graph H which is homomorphic to F', has a collection of nk/eo(‘/m) edge-disjoint copies of F,
but has at most n®F)=L copies of F altogether.

Proof. It will be convenient to write |I| = s, |V(F)| = s + r, and to assume that I = [s] and
V(F) = [s+r]. Let S:= (02F)[I], that is, the graph induced by F’s 2-shadow on I. By assumption,
S contains a cycle. Take disjoint sets Vi,..., V.15 of size n each. Let G be the s-partite graph with
sides V1, ..., V; given by Lemma 2.6. Let S be a collection of n?/ eOWVlogn) 2-disjoint canonical copies
of S in G. Apply Lemma 2.3 to® S with £ = 2 to obtain a family F C V; x --- x V., satisfying
Items 1-3 in that lemma. Note that r > k — 2 = k — ¢ (because each edge of F' contains at most
two vertices from I = [s]), so the conditions of Lemma 2.3 are satisfied. Define the hypergraph H
by placing a canonical copy of F' on each F’ € F. We claim that these copies of F are edge-disjoint.
Indeed, suppose by contradiction that the copies on Fy, Fy € F share an edge e. Then |F} N Fy| > k.
By Item 3 of Lemma 2.3, we have #{s+ 1 <i < s+r: Fi(i) = F5(i)} < k — 3. This implies that
#{1<i<s:enV;#0} > 3. But this means that in F' there is an edge which intersects I = [s] in
at least 3 vertices, in contradiction to the assumption of the lemma. So the copies in F are indeed
edge-disjoint. Their number is |F| > Q(|S|n*~2) > nk/eOV1081) by Ttem 2 of Lemma 2.3.

To complete the proof, it remains to show that H has at most n*T"~! copies of F. Observe
that H is homomorphic to F; indeed, the map ¢ which sends V; — j, j = 1,...,s+r, is such a
homomorphism. Let F* be a copy of F'in H. Since F' is a core and ¢ is a homomorphism from H to
F, we can apply Claim 2.2 to conclude that F* must have the form vy, ..., vs4,, with v; € V; playing
the role of i for each i = 1,...,s +r. We claim that vy,...,v, form a canonical copy of S in* G.
To see this, fix any {i,j} € E(S) and let us show that {v;,v;} € E(G). Since S = (02F')[I], there
must be an edge e € E(F) containing i, j. Then {v, :a € e} € E(F*) C E(H) = Upcr E(F'). Let
F’ € F such that {v, : a € e} € E(F’). By Item 1 of Lemma 2.3, we have S’ := F'|y, x..xv, € S.
Now, S’ is the vertex set of a canonical copy of S in G, and hence {v;,v;} € E(G), as required. This
proves our claim that vy, ..., vs form a canonical copy of S in G. Summarizing, every copy of F' in
H contains the vertices of a canonical copy of S in G. By the guarantees of Lemma 2.6, the number
of canonical copies of S in G is at most n*~!. Hence, the number of copies of F in H is at most

n*~l.n” = n*t""1 as required. [

Lemma 2.9. Let F' be a core k-graph and suppose that there are 3 < s <k+1 and a set I C V(F)
such that (6s—1F)[I] = K8 and leNI| <s—1 for every e € E(F). Then for every large enough
n there is a k-graph H which is homomorphic to F', has a collection of nk/eo(‘/@) edge-disjoint
copies of F, but has at most n"E)~1 copies of F altogether.

Proof. The proof is very similar to that of Lemma 2.8. Assume that I = [s], V(F) = [s + r]. Take
disjoint sets Vi, ..., V.4 of size n each. Let G be the s-partite (s — 1)-graph with sides V1, ...,V

given by Lemma 2.7. Let S be a collection of ns~1/e0(V1og™) (5 — 1)-disjoint copies of K8 Y inG.

3Strictly speaking we apply Lemma 2.3 to the vertex sets of the copies of S.

4Note that by definition of S, the 2-shadow of F* creates a copy of S in the 2-shadow of H. The first key point is
that this copy of S must appear in G. Also, note that this fact is trivial if F™* is one of the canonical copies of F' we
placed in H when defining it. The second key point is that this holds for every copy F* of F in H.



Apply Lemma 2.3 to § with £ = s — 1 to obtain a family F C Vj X --- X Vs, satisfying Items 1-3
in that lemma. Define the hypergraph H by placing a canonical copy of F' on each F’ € F. These
copies of I’ are edge-disjoint. Indeed, suppose by contradiction that the copies on Fi, Fy € F share
an edge e. Then |Fi N Fy| >k, and hence #{s+1<i<s+r: Fi(i)=F()}<k—{l—-1=k—s
by Item 3 of Lemma 2.3. But then #{1 < i < s : enNV; # 0} = s, meaning that there is

an edge in F' which contains I = [s], a contradiction to the assumption of the lemma. We have
|F| > Q(|S|nF—5t1) > nk/eOWlogn) ysing Ttem 2 of Lemma 2.3.
The map V; — j, j = 1,...,s+r is a homomorphism from H to F. Let us bound the number of

copies of F'in H. By Claim 2.2, every copy F* of F' must be of the form vy, ..., vs4,, with v; € V;
playing the role of ¢ for each ¢ = 1,...,s +r. We claim that vq,...,vs span a copy of Kgs*l) in G.
So let J € (S[fll). Since (0s—1F)[I] = K8V, there is an edge e € E(F) with J C e. Since F* is a
canonical copy of F, we have {v; : i € E} € E(F*) C E(H) = Upcr E(F'). Let F' € F such that
{v; i € e} € E(F'). By Item 1 of Lemma 2.3, we have S’ := F'|y; x..xv, € S. Now, S’ is a canonical

copy of K&V in G, and hence {v; : i € J} € E(G), as required. So we see that every copy of F' in

H contains the vertices of a copy of K 8(8‘1) in G. By the guarantees of Lemma 2.6, G has at most

s—1 s—1 s+r—1

n copies of K ,Ss‘l). Hence, H has at most n*~* -n" =n copies of F', as required. |

Observe that Lemma 1.1 follows by combining Lemmas 2.5 and 2.8. Let us prove Lemma 1.2.

Proof of Lemma 1.2. Let X be a clique of size k + 1 in 0o F. Let I be a smallest set in X which
is not contained in an edge of F. Note that I is well-defined (because X itself is not contained in
any edge of F, as |X| = k+1). Also, |I| > 3 because every pair of vertices in X is contained in
some edge, as X is a clique in 0o F. Put s = |I|. Then (0s_1F)[I] = K8 and lenI| <s—1for
every e € E(F), by the choice of I. Now the assertion of Lemma 1.2 follows by combining Lemmas
2.5 and 2.9. u

References

[1] N. Alon, Testing subgraphs in large graphs, Random Structures Algorithms 21 (2002), 359-370.

[2] N. Alon and A. Shapira, Linear equations, arithmetic progressions and hypergraph property
testing, Theory of Computing Vol 1 (2005), 177-216.

[3] F. A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc.
Natl. Acad. Sci. U.S.A. 32 (1946), 331-332.

[4] P. Erdds, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964),
183—190.

[5] P. Erdés, P. Frankl and V. R&dl, The asymptotic number of graphs not containing a fixed
subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), 113
121.

[6] L. Gishboliner and I. Tomon, On 3-graphs with no four vertices spanning exactly two edges,
arXiv preprint arXiv:2109.04944, 2021.

[7] O. Goldreich, Introduction to Property Testing, Cambridge University Press, 2017.



8]

W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of
Math. 166 (2007), 897-946.

Y. Kohayakawa, B. Nagle and V. Rodl, Efficient testing of hypergraphs, Proc. of the Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP) 2002, 1017-1028.

T. Kovari, V. S6s and P. Turdn, On a problem of K. Zarankiewicz. In Colloquium Mathe-
maticum, 1954, 50-57.

B. Nagle, V. Rodl and M. Schacht, The counting lemma for regular k-uniform hypergraphs,
Random Structures Algorithms 28 (2006), 113-179.

V. Rodl, Quasi-randomness and the regularity method in hypergraphs, Proceedings of the In-
ternational Congress of Mathematicians (ICM) 1 (2015), 571-599.

V. Rédl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Al-
gorithms 25 (2004), 1-42.

I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Com-
binatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II, 939-945.

E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith.
27 (1975), 199-245.

E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter. CNRS, 1978, 399—401.

T. Tao, A variant of the hypergraph removal lemma, J. Combin. Theory Ser. A 113 (2006),
1257-1280.



