Hypergraph removal with polynomial bounds

Lior Gishboliner * Asaf Shapira ${ }^{\dagger}$

Abstract

Given a fixed k-uniform hypergraph F, the F-removal lemma states that every hypergraph with few copies of F can be made F-free by the removal of few edges. Unfortunately, for general F, the constants involved are given by incredibly fast growing Ackermann-type functions. It is thus natural to ask for which F can one prove removal lemmas with polynomial bounds. One trivial case where such bounds can be obtained is when F is k-partite. Alon proved that when $k=2$ (i.e. when dealing with graphs), only bipartite graphs have a polynomial removal lemma. Kohayakawa, Nagle and Rödl conjectured in 2002 that Alon's result can be extended to all $k>2$, namely, that the only k-graphs F for which the hypergraph removal lemma has polynomial bounds are the trivial cases when F is k-partite. In this paper we prove this conjecture.

1 Introduction

The hypergraph removal lemma is one of the most important results of extremal combinatorics. It states that for every fixed integer k, k-uniform hypergraph (k-graph for short) F and positive ε, there is $\delta=\delta(F, \varepsilon)>0$ so that if G is an n-vertex k-graph with at least εn^{k} edge-disjoint ${ }^{1}$ copies of F, then G contains $\delta n^{v(F)}$ copies of F. This lemma was first conjectured by Erdős, Frankl and Rödl [5] as an alternative approach for proving Szemerédi's theorem [15]. The quest to proving this lemma, which involved the development of the hypergraph extension of Szemerédi's regularity lemma [16], took more than two decades, culminating in several proofs, first by Gowers [8] and Rödl-Skokan-Nagle-Schacht $[11,13]$ and later by Tao [17]. For the sake of brevity, we refer the reader to [12] for more background and references on the subject.

While the hypergraph removal lemma has far-reaching qualitative applications, its main drawback is that it supplies very weak quantitative bounds. Specifically, for a general k-graph F, the function $1 / \delta(F, \varepsilon)$ grows like the $k^{t h}$ Ackermann function. It is thus natural to ask for which k-graphs F one can obtain more sensible bounds. Further motivation for studying such questions comes from the area of graph property testing [7], where graph and hypergraph removal lemmas are used to design fast randomized algorithms.

Suppose first that $k=2$. In this case it is easy to see that if F is bipartite then $\delta(F, \varepsilon)$ grows polynomially with ε. Indeed, if G has εn^{2} edge-disjoint copies of F then it must have at least εn^{2} edges, which implies by the well-known Kövári-Sós-Turán theorem [10], that G has at least poly $(\varepsilon) n^{v(F)}$ copies of F. In the seminal paper of Ruzsa and Szemerédi [14] in which they proved

[^0]the first version of the graph removal lemma, they also proved that when F is the triangle K_{3}, the removal lemma has a super-polynomial dependence on ε. A highly influential result of Alon [1] completed the picture by extending the result of [14] to all non-bipartite graphs F.

Moving now to general $k>2$, it is natural to ask for which k-graphs the function $\delta(F, \varepsilon)$ depends polynomially on ε. Let us say that in this case the F-removal lemma is polynomial. It is easy to see that like in the case of graphs, the F-removal lemma is polynomial whenever F is k-partite. This follows from Erdős's [4] well-known hypergraph extension of the Kövári-Sós-Turán theorem. Motivated by Alon's result [1] mentioned above, Kohayakawa, Nagle and Rödl [9] conjectured in 2002 that the F-removal lemma is polynomial if and only if F is k-partite. They further proved that the F-removal lemma is not polynomial when F is the complete k-graph on $k+1$ vertices. Alon and the second author [2] proved that a more general condition guarantees that the F-removal lemma is not polynomial, but fell short of covering all non- k-partite k-graphs. In the present paper we complete the picture, by fully resolving the problem of Kohayakawa, Nagle and Rödl [9].

Theorem 1. For every k-graph F, the F-removal lemma is polynomial if and only if F is k-partite.
As a related remark, we note that for $k \geq 3$, the analogous problem for the induced F-removal lemma (that is, a characterization of k-graphs for which the induced F-removal lemma has polynomial bounds) was recently settled in [6], following a nearly-complete characterization given in [2].

Before proceeding, let us recall the notion of a core, which plays an important role in the proof of Theorem 1. Recall that for a pair of k-graphs F_{1}, F_{2}, a homomorphism from F_{1} to F_{2} is a map $\varphi: V\left(F_{1}\right) \rightarrow V\left(F_{2}\right)$ such that for every $e \in E\left(F_{1}\right)$ it holds that $\{\varphi(x): x \in e\} \in E\left(F_{2}\right)$. The core of a k-graph F is the smallest (with respect to the number of edges) subgraph of F to which there is a homomorphism from F. It is not hard to show that the core of F is unique up to isomorphism. Also, note that the core of a k-graph F is a single edge if and only if F is k-partite. In particular, if a k-graph is not k-partite, then neither is its core. We say that F is a core if it is the core of itself.

Alon's [1] approach relies on the fact that the core of every non-bipartite graph has a cycle. It is then natural to try and prove Theorem 1 by finding analogous sub-structures in the core of every non- k-partite k-graphs. Indeed, this was the approach taken in $[2,9]$. The main novelty in this paper, and what allows us to handle all cases of Theorem 1, is that instead of directly inspecting the k-graph F, we study the properties of a certain graph associated with F. More precisely, given a k-graph $F=(V, E)$, we consider its 2 -shadow, which is the graph on the same vertex set V in which $\{u, v\}$ is an edge if and only if u, v belong to some $e \in E$. The proof of Theorem 1 relies on the two lemmas described below.

Lemma 1.1. Suppose a k-graph F is a core and its 2 -shadow contains a cycle C such that $|V(C) \cap e| \leq$ 2 for every $e \in E(F)$. Then the F-removal lemma is not polynomial. In particular, if the 2 -shadow of F contains an induced cycle of length at least 4, then the F-removal lemma is not polynomial.

Note that this is a generalization of Alon's result mentioned above since the 2 -shadow of every non-bipartite graph F (which is of course F itself in this case) must contain a cycle. Our second lemma is the following.

Lemma 1.2. Suppose a k-graph F is a core and its 2 -shadow contains a clique of size $k+1$. Then the F-removal lemma is not polynomial.

Note that this is a generalization of the result of Kohayakawa, Nagle and Rödl [9] mentioned above since the 2 -shadow of the complete k-graph on $k+1$ vertices is a clique of size $k+1$.

The proofs of Lemmas 1.1 and 1.2 appear in Section 2, but let us first see why they together allow us to handle all non- k-partite k-graphs, thus proving Theorem 1 .

Proof of Theorem 1. The if part was discussed above. As to the only if part, suppose F is a k-graph which is not k-partite and assume first that F is a core. Let G denote the 2 -shadow of F. If G contains an induced cycle of length at least 4, then the result follows from Lemma 1.1. Suppose then that G contains no such cycle, implying that G is chordal. Since F is not k-partite, G is not k-colorable. Since G is assumed to be chordal, and chordal graphs are well-known to be perfect, this means that G has a clique of size $k+1$. Hence, the result follows from Lemma 1.1.

To prove the result when F is not necessarily a core, one just needs to observe that if F^{\prime} is the core of F, then (i) as noted earlier, F^{\prime} is not k-partite, and (ii) since the F^{\prime} removal lemma is not polynomial (by the previous paragraph), then neither is the F removal-lemma (see Claim 2.1 for the short proof of this fact).

2 Proofs of Lemmas 1.1 and 1.2

We start by introducing some recurring notions. Recall that the b-blowup of a k-graph $H=(V, E)$ is the k-graph obtained by replacing every vertex $v \in V$ with a b-tuple of vertices S_{v}, and then replacing every edge $e=\left\{v_{1}, \ldots, v_{k}\right\} \in E$ with all possible b^{k} edges $S_{v_{1}} \times S_{v_{2}} \times \cdots S_{v_{k}}$. Note that if H^{\prime} is the b-blowup of H, then the map sending S_{v} to v is a homomorphism from H^{\prime} to H. We will frequently refer to this as the natural homomorphism from H^{\prime} to H. We say that a k-graph H is homomorphic to a k-graph F if there is a homomorphism from the former to the latter. We first prove the following assertion, which was used in the proof of Theorem 1.

Claim 2.1. Let F be a k-graph and let C be a subgraph of F so that F is homomorphic to C. Then, if the C-removal lemma is not polynomial, then neither is the F-removal lemma.

Proof. Since the C-removal lemma is not polynomial, there is a function $\delta:(0,1) \rightarrow(0,1)$ such that $1 / \delta(\varepsilon)$ grows faster than any polynomial in $1 / \varepsilon$, and such that for every $\varepsilon>0$ and large enough n there is an n-vertex k-graph H_{1} which contains a collection \mathcal{C} of εn^{k} edge-disjoint copies of C but only $\delta n^{v(C)}$ copies of C altogether. Let H be the $v(F)$-blowup of H_{1}. Note that the $v(F)$-blowup of C contains a copy of F. Also, copies of F corresponding to different copies of C from \mathcal{C} are edge-disjoint. Hence, H has a collection of $\varepsilon n^{k}=\varepsilon(v(H) / v(F))^{k}=\Omega\left(\varepsilon \cdot v(H)^{k}\right)=\varepsilon^{\prime} v(H)^{k}$ edgedisjoint copies of F, for a suitable $\varepsilon^{\prime}=\Omega(\varepsilon)$. Let us bound the total number of copies of F in H. Since C is a subgraph of F, each copy of F must contain a copy of C. Let $\varphi: V(H) \rightarrow V\left(H_{1}\right)$ be the natural homomorphism from H to H_{1} (as defined above). For each copy C^{\prime} of C in H, consider the subgraph $\varphi\left(C^{\prime}\right)$ of H_{1}. The number of copies C^{\prime} of C with $v\left(\varphi\left(C^{\prime}\right)\right)<v(C)$ is at most $v(F)^{v(C)} \cdot O\left(n^{v(C)-1}\right) \leq \delta n^{v(C)}$, provided that n is large enough. The number of copies C^{\prime} of C with $\varphi\left(C^{\prime}\right) \cong C$ is at most $v(F)^{v(C)} \cdot \delta n^{v(C)}=O\left(\delta n^{v(C)}\right)$, because H_{1} contains at most $\delta n^{v(C)}$ copies of C. So in total, H contains at most $O\left(\delta n^{v(C)}\right)$ copies of C. This means that H contains at most $O\left(\delta n^{v(C)}\right) \cdot v(H)^{v(F)-v(C)}=O\left(\delta \cdot v(H)^{v(F)}\right)=\delta^{\prime} v(H)^{v(F)}$ copies of F, for a suitable $\delta^{\prime}=O(\delta)$. Note that $1 / \delta^{\prime}$ is super-polynomial in $1 / \varepsilon^{\prime}$. This shows that the F-removal lemma is not polynomial.

Since the core of F satisfies the properties of C in the above claim, it indeed establishes the assertion which we used when proving Theorem 1, namely that it suffices to prove the theorem when F is a core.

It thus remains to prove Lemmas 1.1 and 1.2. We begin preparing these proofs with some auxiliary lemmas. Throughout the rest of this section we will assume that F in Theorem 1 has no isolated vertices since removing isolated vertices does not make the removal lemma easier/harder. The following is a key property of cores that we will use in this section.

Claim 2.2. Let F be a core k-graph, let H be a k-graph, and let $\varphi: H \rightarrow F$ be a homomorphism. Then for every copy F^{\prime} of F in H, the map $\varphi_{\mid V\left(F^{\prime}\right)}$ is an isomorphism ${ }^{2}$ from F^{\prime} to F.

Proof. We first claim that every homomorphism φ from a core F to itself is an isomorphism. Indeed, first note that since we assume that F has no isolated vertices, then if φ is not injective then φ 's image has less than $E(F)$ edges induced on it, which contradicts the minimality of F. Now, since φ is an injection, and since it maps edges to edges, it must map non-edges to non-edges, and is therefore an isomorphism. The assertion of the claim now follows from the fact that $\varphi_{\mid V\left(F^{\prime}\right)}$ is a homomorphism from F^{\prime} to F.

We now describe our approach for proving Lemma 1.1 (the approach for Lemma 1.2 is analogous). Let $I \subseteq V(F)$ be a set of vertices so that the 2-shadow of F induces on I a graph containing a cycle, and so that $|e \cap I| \leq 2$ for every $e \in E(F)$. Let S be the graph induced on I by the 2-shadow of F. We first use the approach of [1] in order to construct a graph consisting of many edge-disjoint copies of S yet containing few copies of S altogether. The second step is then to extend the graph thus constructed into a k-graph containing many edge-disjoint copies of F yet few copies of F. The following lemma will help us in performing this extension. For $\ell \geq 1$, two sets are called ℓ-disjoint if their intersection has size at most $\ell-1$. Two subgraphs of a hypergraph are called ℓ-disjoint if their vertex-sets are ℓ-disjoint.
Lemma 2.3. Let $r, s, k, \ell \geq 0$ satisfy $k \geq \ell$ and $r \geq k-\ell$. Let $V_{1}, \ldots, V_{s}, V_{s+1}, \ldots, V_{s+r}$ be pairwisedisjoint sets of size n each. Let $\mathcal{S} \subseteq V_{1} \times \cdots \times V_{s}$ be a family of ℓ-disjoint sets. Then there is a family $\mathcal{F} \subseteq V_{1} \times \cdots \times V_{s+r}$ with the following properties:

1. For every $F \in \mathcal{F}$ it holds that $\left.F\right|_{V_{1} \times \cdots \times V_{s}} \in \mathcal{S}$.
2. $|\mathcal{F}| \geq \Omega_{r, s, k}\left(|\mathcal{S}| n^{k-\ell}\right)$.
3. For every pair of distinct $F_{1}, F_{2} \in \mathcal{F}$, if $\left|F_{1} \cap F_{2}\right| \geq k$ then

$$
\#\left\{s+1 \leq i \leq s+r: F_{1}(i)=F_{2}(i)\right\} \leq k-\ell-1
$$

Proof. We construct the family \mathcal{F} as follows. For each $S \in \mathcal{S}$ and each r-tuple $A \in V_{s+1} \times \cdots \times V_{s+r}$, add $S \cup A$ to \mathcal{F} with probability $\frac{1}{C n^{r-k+\ell}}$, where C is a large constant to be chosen later. Item 1 is satisfied by definition. Let us estimate the number of pairs $F_{1}, F_{2} \in \mathcal{F}$ violating Item 3; denote this number by B. Suppose that $F_{1}=S_{1} \cup A_{1}$ and $F_{2}=S_{2} \cup A_{2}$ violate Item 3. Then $d:=\left|A_{1} \cap A_{2}\right| \geq k-\ell$ and $\left|S_{1} \cap S_{2}\right| \geq k-d$. The number of choices of $A_{1}, A_{2} \in V_{s+1} \times \cdots \times V_{s+r}$ with $\left|A_{1} \cap A_{2}\right|=d$ is at most $n^{r} \cdot\binom{r}{d} \cdot n^{r-d}$. Also, for $0 \leq t \leq \ell$, the number of choices of $S_{1}, S_{2} \in \mathcal{S}$ with $\left|S_{1} \cap S_{2}\right| \geq t$ is at most $|\mathcal{S}| \cdot\binom{s}{t} \cdot n^{\ell-t}$, because the sets in \mathcal{S} are pairwise ℓ-disjoint. Note that $k-d \leq \ell$. We can also allow t to be negative by replacing t with $\max \{0, t\}$ in the above formula. Finally, the probability that $S_{1} \cup A_{1}, S_{2} \cup A_{2} \in \mathcal{F}$ is $\left(\frac{1}{C n^{r-k+\ell}}\right)^{2}$. Hence, the number B of violations to Item 3 is, in expectation, at most

$$
\begin{aligned}
\mathbb{E}[B] & \leq \sum_{d=k-\ell}^{r}\left[n^{r} \cdot\binom{r}{d} \cdot n^{r-d} \cdot|\mathcal{S}| \cdot\binom{s}{\max \{0, k-d\}} \cdot n^{\ell-\max \{0, k-d\}} \cdot\left(\frac{1}{C n^{r-k+\ell}}\right)^{2}\right] \\
& =O_{s, r, k}\left(\frac{1}{C^{2}}\right) \cdot|\mathcal{S}| \cdot n^{k-\ell} .
\end{aligned}
$$

[^1]On the other hand, the expected size of \mathcal{F} is $|\mathcal{S}| \cdot n^{r} \cdot \frac{1}{C n^{r-k+\ell}}=\frac{1}{C} \cdot|\mathcal{S}| \cdot n^{k-\ell}$. So by choosing C to be large enough (as a function of s, r, k), we can guarantee that $\mathbb{E}[|\mathcal{F}|-B] \geq \frac{1}{2 C} \cdot|\mathcal{S}| \cdot n^{k-\ell}$. By fixing such a choice of \mathcal{F} and deleting one set $F \in \mathcal{F}$ from each violation, we get the required conclusion.

The following well-known fact is an easy corollary of Lemma 2.3.
Lemma 2.4. Let $1 \leq k \leq r$, and let V_{1}, \ldots, V_{r} be pairwise-disjoint sets of size n each. Then there is $\mathcal{F} \subseteq V_{1} \times \cdots \times V_{r},|\mathcal{F}| \geq \Omega\left(n^{k}\right)$, such that the sets in \mathcal{F} are k-disjoint.

Proof. Apply Lemma 2.3 with $s=\ell=0$ and $\mathcal{S}=\{\emptyset\}$.
The next lemma shows why constructing a k-graph with a sublinear number of edge disjoint copies of F can be boosted to prove Lemmas 1.1 and 1.2. The lemma makes crucial use of the fact that F is a core.

Lemma 2.5. Let F be a core k-graph, and suppose that for a constant C and for every large enough n, there is a k-graph H which is homomorphic to F, has a collection of $n^{k} / e^{C \sqrt{\log n}}$ edge-disjoint copies of F, but has at most $n^{v(F)-1}$ copies of F altogether. Then the F-removal lemma is not polynomial.

Proof. Let $\varepsilon>0$ and let n be large enough. Let m be the largest integer satisfying $e^{C \sqrt{\log m}} \leq 1 / \varepsilon$. It is easy to check that $m \geq(1 / \varepsilon)^{\Omega(\log (1 / \varepsilon))}$. Let H be the k-graph guaranteed to exist by the assumption of the lemma, but with m in place of n. So H has m vertices, contains a collection \mathcal{F} of $m^{k} / e^{C \sqrt{\log n}} \geq \varepsilon m^{k}$ edge-disjoint copies of F, but has at most $m^{v(F)-1}$ copies of F altogether.

Let G be the $\frac{n}{m}$-blowup of H. Each $F^{\prime} \in \mathcal{F}$ gives rise to $\Omega\left(\left(\frac{n}{m}\right)^{k}\right) k$-disjoint (and hence also edge-disjoint) copies of F in G, by Lemma 2.4 applied with $r=v(F)$ and with $\frac{n}{m}$ in place of n. Copies arising from different $F_{1}^{\prime}, F_{2}^{\prime} \in \mathcal{F}$ are edge-disjoint, because the copies in \mathcal{F} are edge-disjoint. Altogether, this gives a collection of $\varepsilon m^{k} \cdot \Omega\left(\left(\frac{n}{m}\right)^{k}\right)=\Omega\left(\varepsilon n^{k}\right)$ edge-disjoint copies of F in G.

Let us upper-bound the total number of copies of F in G. By assumption, there is a homomorphism φ from H to F. Let ψ be the "natural" homomorphism from G to H (as described in the beginning of the section). Then $\varphi \circ \psi$ is a homomorphism from G to F. By Claim 2.2, for every copy F^{\prime} of F in G the map $\varphi \circ \psi_{\mid V\left(F^{\prime}\right)}$ is an isomorphism between F^{\prime} and F. We claim that this means that ψ maps every copy F^{\prime} of F in G onto a copy of F in H. Indeed, $\psi_{\mid V\left(F^{\prime}\right)}$ must be injective (otherwise $\varphi \circ \psi_{\mid V\left(F^{\prime}\right)}$ would not be an isomorphism), and since $\psi_{\mid V\left(F^{\prime}\right)}$ must map edges to edges (on account of being a homomorphism) its image must contain a copy of F. We thus see that every copy of F in G must come from the blown-up copies of F in H. But each copy of F in H gives rise to $\left(\frac{n}{m}\right)^{v(F)}$ copies of F in G. Hence, the total number of copies of F in G is at most

$$
m^{v(F)-1} \cdot(n / m)^{v(F)}=n^{v(F)} / m \leq \varepsilon^{\Omega(\log (1 / \varepsilon))} \cdot n^{v(F)} .
$$

This shows that the F-removal lemma is not polynomial.
Let S be a k-graph on $[s]$ and let G be an s-partite k-graph with sides V_{1}, \ldots, V_{s}. A canonical copy of S in G is a copy consisting of vertices $v_{1} \in V_{1}, \ldots, v_{s} \in V_{s}$ in which v_{i} plays the role of $i \in V(S)$ for each $i=1, \ldots, s$. The following result appears implicitly in [1]. For the sake of completeness, we include a proof.

Lemma 2.6. Let S be a graph on $[s]$ containing a cycle. Then for every large enough n, there is an s-partite graph G with sides V_{1}, \ldots, V_{s}, each of size n, such that G has a collection of $n^{2} / e^{O(\sqrt{\log n})}$ 2 -disjoint canonical copies of S, but at most n^{s-1} canonical copies of S altogether.

Proof. Without loss of generality, suppose that $(1,2, \ldots, t, 1)$ is a cycle in S (otherwise permute the coordinates) where $t \geq 3$. Take a set $B \subseteq[n / s],|B| \geq n / e^{O \sqrt{\log n}}$, with no non-trivial solution to the linear equation $y_{1}+\cdots+y_{t-1}=(t-1) y_{t}$ with $y_{1}, \ldots, y_{t} \in B$ (where a solution is trivial if $y_{1}=y_{2}=\ldots=y_{t}$). The existence of such a set B is by a simple generalization of Behrend's construction [3] of sets avoiding 3 -term arithmetic progressions, see [1, Lemma 3.1]. Take pairwisedisjoint sets V_{1}, \ldots, V_{s} of size n each, and identify each V_{i} with $[n]$. For each $x \in[n / s]$ and $y \in B$, add to G a canonical copy $S_{x, y}$ of S on the vertices $v_{i}=x+(i-1) y \in V_{i}, i=1, \ldots, s$. Note that $x+(i-1) y \leq x+(s-1) y \leq n$, so v_{i} indeed "fits" into $V_{i}=[n]$. The copies $S_{x, y}$ (where $\left.x \in[n / s], y \in B\right)$ are 2-disjoint. Indeed, if $S_{x_{1}, y_{1}}, S_{x_{2}, y_{2}}$ intersect in V_{i} and in V_{j}, then $x_{1}+(i-1) y_{1}=x_{2}+(i-1) y_{2}$ and $x_{1}+(j-1) y_{1}=x_{2}+(j-1) y_{2}$, and solving this system of equations gives $x_{1}=x_{2}, y_{1}=y_{2}$. The number of copies $S_{x, y}$ is $\frac{n}{s} \cdot|B| \geq n^{2} / e^{O \sqrt{\log n}}$.

Let us bound the total number of canonical copies of S in G. Fix a canonical copy with vertices $v_{1}, \ldots, v_{s}, v_{i} \in V_{i}$. Then $v_{1}, \ldots, v_{t}, v_{1}$ is a cycle in G. For $1 \leq j \leq t-1$, let $x_{j} \in[n / s], y_{j} \in B$ such that $v_{i_{j}}, v_{i_{j+1}} \in S_{x_{j}, y_{j}}$. Similarly, let $x_{t} \in[n / s], y_{t} \in B$ such that $v_{i_{1}}, v_{i_{t}} \in S_{x_{t}, y_{t}}$. Then we have $v_{i_{j+1}}-v_{i_{j}}=y_{j}$ for every $1 \leq j \leq t-1$, and $v_{i_{t}}-v_{i_{1}}=(t-1) y_{t}$. So $y_{1}+\cdots+y_{t-1}=(t-1) y_{t}$. By our choice of B, we have $y_{1}=\cdots=y_{t}=: y$. Now, for each $1 \leq j \leq t-1$ we have $x_{j}=v_{i_{j+1}}-j \cdot y=x_{j+1}$, so $x_{1}=\cdots=x_{t}=: x$. So we see that for each canonical copy v_{1}, \ldots, v_{s} of S, there are $x \in[n / s], y \in B$ such that $v_{i_{1}}, \ldots, v_{i_{t}} \in S_{x, y}$. The number of choices for x, y is $(n / s)|B| \leq n^{2}$. Hence, the number of canonical copies of S is at most $n^{2} \cdot n^{s-t} \leq n^{s-1}$.

Recall that $K_{s}^{(s-1)}$ is the ($s-1$)-graph with vertices $1, \ldots, s$ and all s possible edges. The following construction appears implicitly in [9] (see also [2]). Again, for completeness, we include a proof.

Lemma 2.7. Let $s \geq 3$. For every large enough n, there is an s-partite $(s-1)$-graph G with sides V_{1}, \ldots, V_{s}, each of size n, such that G has a collection of $n^{s-1} / e^{O(\sqrt{\log n})}(s-1)$-disjoint canonical copies of $K_{s}^{(s-1)}$, but at most n^{s-1} copies of $K_{s}^{(s-1)}$ altogether.

Proof. Take a set $B \subseteq[n / s],|B| \geq n / e^{O \sqrt{\log n}}$, with no non-trivial solution to $y_{1}+y_{2}=2 y_{3}$, $y_{1}, y_{2}, y_{3} \in B$. Take pairwise-disjoint sets V_{1}, \ldots, V_{s} of size n each, and identify each V_{i} with $[n]$. For each $x_{1}, \ldots, x_{s-2} \in[n / s]$ and $y \in B$, add to G a copy $K_{x_{1}, \ldots, x_{s-2}, y}$ of $K_{s}^{(s-1)}$ on the vertices

$$
x_{1} \in V_{1}, \quad x_{2} \in V_{2}, \quad \ldots \quad x_{s-2} \in V_{s-2}, \quad y+\sum_{i=1}^{s-2} x_{i} \in V_{s-1}, \quad 2 y+\sum_{i=1}^{s-2} x_{i} \in V_{s}
$$

It is easy to see that these copies are ($s-1$)-disjoint, because fixing any $s-1$ of the s coordinates allows to solve for $x_{1}, \ldots, x_{s-2}, y$. Also, the number of copies thus places is $(n / s)^{s-2} \cdot|B| \geq n^{s-1} / e^{O \sqrt{\log n}}$. Let us show that the are no other copies of $K_{s}^{(s-1)}$ in G. This would imply that the total number of copies of $K_{s}^{(s-1)}$ in G is $(n / s)^{s-2} \cdot|B| \leq n^{s-1}$. So suppose that $v_{1} \in V_{1}, \ldots, v_{s} \in V_{s}$ form a copy of $K_{s}^{(s-1)}$. Let $x^{(i)}=\left(x_{1}^{i}, \ldots, x_{s-2}^{i}\right) \in[n / s]^{s-2}$ and $y_{i} \in B, i=1,2,3$, be such that $\left\{v_{2}, \ldots, v_{s}\right\} \in$ $K_{x^{(1)}, y_{1}},\left\{v_{1}, \ldots, v_{s-1}\right\} \in K_{x^{(2)}, y_{2}}$ and $\left\{v_{1}, \ldots, v_{s-2}, v_{s}\right\} \in K_{x^{(3)}, y_{3}}$. Then $x_{1}^{(2)}=x_{1}^{(3)}=v_{1}$ and

$$
\begin{equation*}
x_{j}^{(1)}=x_{j}^{(2)}=x_{j}^{(3)}=v_{j} \text { for every } 2 \leq j \leq s-2 . \tag{1}
\end{equation*}
$$

Also, $v_{s}-v_{s-1}=y_{1}, v_{s-1}-v_{1}=x_{2}^{(2)}+\cdots+x_{s-2}^{(2)}+y_{2}$ and $v_{s}-v_{1}=x_{2}^{(3)}+\cdots+x_{s-2}^{(3)}+2 y_{3}$. Combining these three equations and using (1), we get $y_{1}+y_{2}=2 y_{3}$, and so $y_{1}=y_{2}=y_{3}=: y$ by our choice of B. Also, $x_{1}^{(1)}=v_{s-1}-\left(v_{2}+\cdots+v_{s-2}+y\right)=x_{1}^{(2)}$. So $x^{(1)}=x^{(2)}=x^{(3)}$.

We now prove two lemmas, 2.8 and 2.9, which imply Lemmas 1.1 and 1.2 , respectively. Recall that for a k-graph F and $2 \leq \ell \leq k$, the ℓ-shadow of F, denoted $\partial_{\ell} F$, is the ℓ-graph consisting of all $f \in\binom{V(F)}{\ell}$ such that there is $e \in E(F)$ with $f \subseteq e$.
Lemma 2.8. Let $k \geq 2$, let F be a core k-graph and suppose that there is a set $I \subseteq V(F)$ such that $\left(\partial_{2} F\right)[I]$ contains a cycle and $|e \cap I| \leq 2$ for every $e \in E(F)$. Then for every large enough n there is a k-graph H which is homomorphic to F, has a collection of $n^{k} / e^{O(\sqrt{\log n})}$ edge-disjoint copies of F, but has at most $n^{v(F)-1}$ copies of F altogether.

Proof. It will be convenient to write $|I|=s,|V(F)|=s+r$, and to assume that $I=[s]$ and $V(F)=[s+r]$. Let $S:=\left(\partial_{2} F\right)[I]$, that is, the graph induced by F 's 2 -shadow on I. By assumption, S contains a cycle. Take disjoint sets V_{1}, \ldots, V_{r+s} of size n each. Let G be the s-partite graph with sides V_{1}, \ldots, V_{s} given by Lemma 2.6. Let \mathcal{S} be a collection of $n^{2} / e^{O(\sqrt{\log n})} 2$-disjoint canonical copies of S in G. Apply Lemma 2.3 to $^{3} \mathcal{S}$ with $\ell=2$ to obtain a family $\mathcal{F} \subseteq V_{1} \times \cdots \times V_{s+r}$ satisfying Items 1-3 in that lemma. Note that $r \geq k-2=k-\ell$ (because each edge of F contains at most two vertices from $I=[s]$), so the conditions of Lemma 2.3 are satisfied. Define the hypergraph H by placing a canonical copy of F on each $F^{\prime} \in \mathcal{F}$. We claim that these copies of F are edge-disjoint. Indeed, suppose by contradiction that the copies on $F_{1}, F_{2} \in \mathcal{F}$ share an edge e. Then $\left|F_{1} \cap F_{2}\right| \geq k$. By Item 3 of Lemma 2.3, we have $\#\left\{s+1 \leq i \leq s+r: F_{1}(i)=F_{2}(i)\right\} \leq k-3$. This implies that $\#\left\{1 \leq i \leq s: e \cap V_{i} \neq \emptyset\right\} \geq 3$. But this means that in F there is an edge which intersects $I=[s]$ in at least 3 vertices, in contradiction to the assumption of the lemma. So the copies in \mathcal{F} are indeed edge-disjoint. Their number is $|\mathcal{F}| \geq \Omega\left(|\mathcal{S}| n^{k-2}\right) \geq n^{k} / e^{O(\sqrt{\log n})}$, by Item 2 of Lemma 2.3.

To complete the proof, it remains to show that H has at most n^{s+r-1} copies of F. Observe that H is homomorphic to F; indeed, the map φ which sends $V_{j} \mapsto j, j=1, \ldots, s+r$, is such a homomorphism. Let F^{*} be a copy of F in H. Since F is a core and φ is a homomorphism from H to F, we can apply Claim 2.2 to conclude that F^{*} must have the form v_{1}, \ldots, v_{s+r}, with $v_{i} \in V_{i}$ playing the role of i for each $i=1, \ldots, s+r$. We claim that v_{1}, \ldots, v_{s} form a canonical copy of S in $^{4} G$. To see this, fix any $\{i, j\} \in E(S)$ and let us show that $\left\{v_{i}, v_{j}\right\} \in E(G)$. Since $S=\left(\partial_{2} F\right)[I]$, there must be an edge $e \in E(F)$ containing i, j. Then $\left\{v_{a}: a \in e\right\} \in E\left(F^{*}\right) \subseteq E(H)=\bigcup_{F^{\prime} \in \mathcal{F}} E\left(F^{\prime}\right)$. Let $F^{\prime} \in \mathcal{F}$ such that $\left\{v_{a}: a \in e\right\} \in E\left(F^{\prime}\right)$. By Item 1 of Lemma 2.3, we have $S^{\prime}:=\left.F^{\prime}\right|_{V_{1} \times \cdots \times V_{s}} \in \mathcal{S}$. Now, S^{\prime} is the vertex set of a canonical copy of S in G, and hence $\left\{v_{i}, v_{j}\right\} \in E(G)$, as required. This proves our claim that v_{1}, \ldots, v_{s} form a canonical copy of S in G. Summarizing, every copy of F in H contains the vertices of a canonical copy of S in G. By the guarantees of Lemma 2.6, the number of canonical copies of S in G is at most n^{s-1}. Hence, the number of copies of F in H is at most $n^{s-1} \cdot n^{r}=n^{s+r-1}$, as required.

Lemma 2.9. Let F be a core k-graph and suppose that there are $3 \leq s \leq k+1$ and a set $I \subseteq V(F)$ such that $\left(\delta_{s-1} F\right)[I] \cong K_{s}^{(s-1)}$ and $|e \cap I| \leq s-1$ for every $e \in E(F)$. Then for every large enough n there is a k-graph H which is homomorphic to F, has a collection of $n^{k} / e^{O(\sqrt{\log n})}$ edge-disjoint copies of F, but has at most $n^{v(F)-1}$ copies of F altogether.

Proof. The proof is very similar to that of Lemma 2.8. Assume that $I=[s], V(F)=[s+r]$. Take disjoint sets V_{1}, \ldots, V_{r+s} of size n each. Let G be the s-partite $(s-1)$-graph with sides V_{1}, \ldots, V_{s} given by Lemma 2.7. Let \mathcal{S} be a collection of $n^{s-1} / e^{O(\sqrt{\log n})}(s-1)$-disjoint copies of $K_{s}^{(s-1)}$ in G.

[^2]Apply Lemma 2.3 to \mathcal{S} with $\ell=s-1$ to obtain a family $\mathcal{F} \subseteq V_{1} \times \cdots \times V_{s+r}$ satisfying Items 1-3 in that lemma. Define the hypergraph H by placing a canonical copy of F on each $F^{\prime} \in \mathcal{F}$. These copies of F are edge-disjoint. Indeed, suppose by contradiction that the copies on $F_{1}, F_{2} \in \mathcal{F}$ share an edge e. Then $\left|F_{1} \cap F_{2}\right| \geq k$, and hence $\#\left\{s+1 \leq i \leq s+r: F_{1}(i)=F_{2}(i)\right\} \leq k-\ell-1=k-s$ by Item 3 of Lemma 2.3. But then $\#\left\{1 \leq i \leq s: e \cap V_{i} \neq \emptyset\right\}=s$, meaning that there is an edge in F which contains $I=[s]$, a contradiction to the assumption of the lemma. We have $|\mathcal{F}| \geq \Omega\left(|\mathcal{S}| n^{k-s+1}\right) \geq n^{k} / e^{O(\sqrt{\log n})}$, using Item 2 of Lemma 2.3.

The map $V_{j} \mapsto j, j=1, \ldots, s+r$ is a homomorphism from H to F. Let us bound the number of copies of F in H. By Claim 2.2 , every copy F^{*} of F must be of the form v_{1}, \ldots, v_{s+r}, with $v_{i} \in V_{i}$ playing the role of i for each $i=1, \ldots, s+r$. We claim that v_{1}, \ldots, v_{s} span a copy of $K_{s}^{(s-1)}$ in G. So let $J \in\binom{[s]}{s-1}$. Since $\left(\partial_{s-1} F\right)[I] \cong K_{s}^{(s-1)}$, there is an edge $e \in E(F)$ with $J \subseteq e$. Since F^{*} is a canonical copy of F, we have $\left\{v_{i}: i \in E\right\} \in E\left(F^{*}\right) \subseteq E(H)=\bigcup_{F^{\prime} \in \mathcal{F}} E\left(F^{\prime}\right)$. Let $F^{\prime} \in \mathcal{F}$ such that $\left\{v_{i}: i \in e\right\} \in E\left(F^{\prime}\right)$. By Item 1 of Lemma 2.3, we have $S^{\prime}:=\left.F^{\prime}\right|_{V_{1} \times \cdots \times V_{s}} \in \mathcal{S}$. Now, S^{\prime} is a canonical copy of $K_{s}^{(s-1)}$ in G, and hence $\left\{v_{i}: i \in J\right\} \in E(G)$, as required. So we see that every copy of F in H contains the vertices of a copy of $K_{s}^{(s-1)}$ in G. By the guarantees of Lemma 2.6, G has at most n^{s-1} copies of $K_{s}^{(s-1)}$. Hence, H has at most $n^{s-1} \cdot n^{r}=n^{s+r-1}$ copies of F, as required.

Observe that Lemma 1.1 follows by combining Lemmas 2.5 and 2.8. Let us prove Lemma 1.2.
Proof of Lemma 1.2. Let X be a clique of size $k+1$ in $\partial_{2} F$. Let I be a smallest set in X which is not contained in an edge of F. Note that I is well-defined (because X itself is not contained in any edge of F, as $|X|=k+1$). Also, $|I| \geq 3$ because every pair of vertices in X is contained in some edge, as X is a clique in $\partial_{2} F$. Put $s=|I|$. Then $\left(\partial_{s-1} F\right)[I] \cong K_{s}^{(s-1)}$ and $|e \cap I| \leq s-1$ for every $e \in E(F)$, by the choice of I. Now the assertion of Lemma 1.2 follows by combining Lemmas 2.5 and 2.9.

References

[1] N. Alon, Testing subgraphs in large graphs, Random Structures Algorithms 21 (2002), 359-370.
[2] N. Alon and A. Shapira, Linear equations, arithmetic progressions and hypergraph property testing, Theory of Computing Vol 1 (2005), 177-216.
[3] F. A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc. Natl. Acad. Sci. U.S.A. 32 (1946), 331-332.
[4] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.
[5] P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), 113121.
[6] L. Gishboliner and I. Tomon, On 3-graphs with no four vertices spanning exactly two edges, arXiv preprint arXiv:2109.04944, 2021.
[7] O. Goldreich, Introduction to Property Testing, Cambridge University Press, 2017.
[8] W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. 166 (2007), 897-946.
[9] Y. Kohayakawa, B. Nagle and V. Rödl, Efficient testing of hypergraphs, Proc. of the International Colloquium on Automata, Languages, and Programming (ICALP) 2002, 1017-1028.
[10] T. Kovári, V. Sós and P. Turán, On a problem of K. Zarankiewicz. In Colloquium Mathematicum, 1954, 50-57.
[11] B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms 28 (2006), 113-179.
[12] V. Rödl, Quasi-randomness and the regularity method in hypergraphs, Proceedings of the International Congress of Mathematicians (ICM) 1 (2015), 571-599.
[13] V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Algorithms 25 (2004), 1-42.
[14] I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II, 939-945.
[15] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.
[16] E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter. CNRS, 1978, 399-401.
[17] T. Tao, A variant of the hypergraph removal lemma, J. Combin. Theory Ser. A 113 (2006), 1257-1280.

[^0]: *Department of Mathematics, ETH, Zürich, Switzerland. Email: lior.gishboliner@math.ethz.ch. Research supported by SNSF grant 200021_196965.
 ${ }^{\dagger}$ School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part by ISF Grant 1028/16, ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.
 ${ }^{1}$ The lemma's assumption is sometimes stated as G being ε-far from F-freeness, meaning that one should remove at least εn^{k} edges to turn G into an F-free hypergraph. It is easy to see that up to constant factors, this notion is equivalent to having εn^{k} edge-disjoint copies of F.

[^1]: ${ }^{2}$ Just to clarify, we do not claim that $\varphi_{\mid V\left(F^{\prime}\right)}$ is an isomorphism between F and the graph induced by H on $V\left(F^{\prime}\right)$. Rather, $\varphi_{\mid V\left(F^{\prime}\right)}$ is an isomorphism between F and the graph $\left(V\left(F^{\prime}\right), E\left(F^{\prime}\right)\right)$.

[^2]: ${ }^{3}$ Strictly speaking we apply Lemma 2.3 to the vertex sets of the copies of S.
 ${ }^{4}$ Note that by definition of S, the 2 -shadow of F^{*} creates a copy of S in the 2 -shadow of H. The first key point is that this copy of S must appear in G. Also, note that this fact is trivial if F^{*} is one of the canonical copies of F we placed in H when defining it. The second key point is that this holds for every copy F^{*} of F in H.

