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Abstract

The Erdős–Hajnal Theorem asserts that non-universal graphs, that is, graphs that do not

contain an induced copy of some fixed graph H, have homogeneous sets of size significantly larger

than one can generally expect to find in a graph. We obtain two results of this flavor in the setting

of r-uniform hypergraphs.

A theorem of Rödl asserts that if an n-vertex graph is non-universal then it contains an almost

homogeneous set (i.e one with edge density either very close to 0 or 1) of size Ω(n). We prove

that if a 3-uniform hypergraph is non-universal then it contains an almost homogeneous set of

size Ω(log n). An example of Rödl from 1986 shows that this bound is tight.

Let Rr(t) denote the size of the largest non-universal r-graph G so that neither G nor its

complement contain a complete r-partite subgraph with parts of size t. We prove an Erdős–

Hajnal-type stepping-up lemma, showing how to transform a lower bound for Rr(t) into a lower

bound for Rr+1(t). As an application of this lemma, we improve a bound of Conlon–Fox–Sudakov

by showing that R3(t) ≥ tΩ(t).

1 Introduction

Let us say that a set of vertices in a graph (or hypergraph) is homogeneous if it spans either a

clique (i.e. a complete graph) or an independent set (i.e. an empty graph). Ramsey’s theorem states

that every graph contains a homogeneous set of size 1
2 log2 n, and Erdős proved that in general, one

cannot expect to find a homogeneous set of size larger than 2 log2 n (see [10]). Since Erdős’s example

uses random graphs, and random graphs are universal (with high probability), that is, they contain

an induced copy of every fixed graph H, it is natural to ask what happens if we assume that G is

non-universal, or equivalently, that it is induced H-free for some fixed H. A theorem of Erdős and

Hajnal [8] states that in this case we are guaranteed to have a homogeneous set of size 2Ω(
√

logn),

that is, a significantly larger set than in the worst case. The notorious Erdős–Hajnal Conjecture

states that one should be able to go even further and improve this bound to nc, where c = c(H). We

refer the reader to [3] for more background on this conjecture and related results.
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Conlon, Fox and Sudakov [6] and Rödl and Schacht [16] have recently initiated the study of

problems of this type in the setting of r-uniform hypergraphs (or r-graphs for short). Our aim in

this paper is to obtain two results of this flavor which are described in the next two subsections.

1.1 Almost homogeneous sets in non-universal hypergraphs

Our first result is motivated by a theorem of Rödl [15]. Let us say that a set of vertices W in a

graph is η-homogeneous if W either contains at least (1 − η)
(|W |

2

)
or at most η

(|W |
2

)
edges. It is a

standard observation that Erdős’s lower bound for Ramsey’s theorem (mentioned above), actually

shows that some (actually, most) graphs of order n do not even contain 1
4 -homogeneous1 sets of size

O(log n). In other words, in the worst case relaxing 0-homogeneity to 1
4 -homogeneity does not make

the problem easier. Rödl’s [15] surprising theorem then states that if G is non-universal then for any

η > 0, it contains an η-homogeneous set of size Ω(n), where the hidden constant depends on η.

It is natural to ask if a similar2 result holds also in hypergraphs. Random 3-graphs show that,

in the worst case, the largest 1
4 -homogeneous set in a 3-graph might be of size O(

√
log n). Our first

theorem in this paper shows that, as in graphs, if we assume that a 3-graph is non-universal then we

can find a much larger almost homogeneous set.

Theorem 1.1. For every 3-graph F and η > 0 there is c = c(F , η) > 0 such that every induced

F-free 3-graph on n vertices contains an η-homogeneous set of size c log n.

Rödl [15] found an example of a non-universal 3-graph in which the largest 1
4 -homogeneous set

has size O(log n). Hence, the bound in Theorem 1.1 is tight up to the constant c. We will describe in

Section 5 (see Proposition 5.2) a generalization of Rödl’s example, giving for every r ≥ 3 an example

of a non-universal r-graph in which the size of the largest 1
4 -homogeneous set is O((log n)1/(r−2)). It

seems reasonable to conjecture that this upper bound is tight, that is, that for every r ≥ 3 every

non-universal r-graph has an almost homogeneous set of size Ω((log n)1/(r−2)).

Let Kk denote the complete graph on k vertices and let K
(3)
k denote the complete 3-graph on k

vertices. It is easy to see that up to a change of constants, a set of vertices has edge density close to

0/1 (i.e is η-homogeneous for some small η), if and only if it has Kk-density close to 1 either in the

graph or in its complement. The same applies to 3-graphs. An interesting feature of the proof of

Theorem 1.1 is that instead of gradually building a set of vertices with very large/small edge density,

we find it easier to build such a set with large K
(3)
k -density either in G or its complement. The way

we gradually build such a set is by applying a variant of a greedy embedding scheme used by Rödl

and Schacht [16] in order to give an alternative proof of an elegant theorem of Nikifirov [12] (this

alternative proof is also implicit in [6]). To get this embedding scheme ‘started’ we prove a lemma

saying that if a 3-graph G is non-universal then there is a graph G on a subset of V (G) such that

either almost all or almost none of the Kk’s of G are also K
(3)
k ’s in G. This latter statement is proved

via the hypergraph regularity method.

1One can easily replace the 1
4

with any constant smaller than 1
2
. We will stick with the 1

4
in order to streamline the

presentation.
2We of course say that a set of vertices W in an r-graph is η-homogeneous if W either contains at least (1− η)

(|W |
r

)
or at most η

(|W |
r

)
edges
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1.2 Complete partite sets in non-universal hypergraphs

Determining the size of the largest homogeneous set in a 3-graph is still a major open problem, see

[5]. The best known lower and upper bounds are of order log log n and
√

log n respectively. It is

thus hard to formulate a 3-graph analogue of the Erdős–Hajnal Theorem since it is not clear which

bound one is trying to beat. At any rate, as of now, we do not even know if a non-universal 3-graph

contains a homogeneous set of size ω(log log n) (see Section 5 for further discussion on this problem).

This motivated the authors of [6, 16] to look at the following related problem. Let K
(3)
t,t,t denote the

complete 3-partite 3-graph with each part of size t. It is a well known fact [7] that every 3-graph

of positive density contains a copy of K
(3)
t,t,t with t = Ω(

√
log n). This immediately means that for

every 3-graph G, either G or its complement contains a K
(3)
t,t,t with t = Ω(

√
log n). As evidenced by

random 3-graphs, this bound is tight. A natural question, which was first addressed by Conlon, Fox

and Sudakov [6] and by Rödl and Schacht [16] is whether one can improve upon this bound when G
is assumed to be non-universal.

It will be more convenient to switch gears at this point, and let R3,F (t) denote the size of the

largest induced F-free 3-graph G, so that neither G nor G contain a copy of K
(3)
t,t,t. So the question

posed at the end of the previous paragraph is equivalent to asking if for every fixed F we have

R3,F (t) ≤ 2o(t
2), and the results of [6, 16] establish that this is indeed the case 3. Conlon, Fox and

Sudakov [6] also found an example of a 3-graph F for which R3,F (t) ≥ 2Ω(t). Our second result

improves their lower bound as follows.

Theorem 1.2. There is a 3-graph F for which R3,F (t) ≥ tΩ(t).

As discussed in [6], it is natural to consider the corresponding problem in general r-graphs. Letting

K
(r)
t,...,t denote the complete r-partite r-graph with parts of size t, we define Rr,F (t) to be the size of

the largest induced F-free r-graph G, so that neither G nor G contain a copy of K
(r)
t,...,t. It follows

from [7], which establishes that in every r-graph G on 2Ω(tr−1) vertices with density 1/2 we can find

a K
(r)
t,...,t, that

Rr,F (t) ≤ 2O(tr−1) . (1)

It was shown in [6] that there is an r-graph F satisfying

Rr,F (t) ≥ 2Ω(tr−2) . (2)

An alternative proof of (2) follows from Proposition 5.2.

The famous step-up lemma of Erdős and Hajnal (see [10]) allows one to transform a construction

of an r-graph without a large monochromatic set into an exponentially larger (r+ 1)-graph without

a large monochromatic set (of roughly the same size). Observe that both (1) and (2) suggest that

if 2t
α

is the size of the largest non-universal r-graph G, so that neither G nor G contain K
(r)
t,...,t, then

the corresponding bound for (r + 1)-graphs is 2t
α+1

. The following theorem establishes one side of

this relation, by proving an Erdős–Hajnal-type step-up lemma for the problem of bounding Rr,F (t).

3While the proof in [16] obtained the bound R3,F (t) ≤ 2t
2/f(t) with f(t) an inverse Ackermann-type function (on

account of using the hypergraph regularity lemma), the proof in [6] gave the improved bound R3,F (t) ≤ 2t
2−c

where

c = c(F) is a constant that depends only on F (but goes to zero with |V (F)|).
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Theorem 1.3. The following holds for every r ≥ 4. For every (r − 1)-graph F there is an r-graph

F+ and a constant c = c(r,F) > 0, so that

Rr,F+(t) ≥ (Rr−1,F (ct))ct .

Theorem 1.3 implies that any improvement of (2) for r = 3 immediately implies a similar im-

provement of (2) for arbitrary r ≥ 3. In particular, as a corollary of Theorems 1.2 and 1.3 we obtain

the following improvement of (2).

Corollary 1.4. For every r ≥ 3 there is an r-graph F satisfying Rr,F (t) ≥ tΩ(tr−2).

To prove Theorem 1.3 we need to overcome two hurdles. First, we need a way to construct the

r-graph F+ given the (r − 1)-graph F . An important tool for this step will be an application of a

theorem of Alon, Pach and Solymosi [1], which is a hypergraph extension of a result of Rödl and

Winkler [17]. The second hurdle is how to construct an r-graph avoiding a K
(r)
t,...,t given an (r − 1)-

graph avoiding a large K
(r−1)
t′,...,t′ . Here we will apply a version of a very elegant argument from [5],

which is a variant of the Erdős–Hajnal step-up lemma. While this variant of the step-up lemma is

not as efficient as the original one4, it is strong enough for our purposes.

It would be very interesting to further narrow the gap between (1) and Corollary 1.4. The most

natural question is if one can extend the results of [6, 16] by showing that Rr,F (t) ≤ 2o(t
r−1) for every

r ≥ 4 (the case r = 3 was handled in [6, 16]). We should mention that [6] conjectured that in fact

Rr,F (t) ≤ 2t
r−2+o(1)

. Observe that by Theorem 1.3, showing that R3,F (t) ≥ 2t
1+c

for some 3-graph F
and c > 0 would disprove this conjecture for all r ≥ 3.

1.3 Paper overview

The rest of the paper is organized as follows. In Section 2 we give the proof of Theorem 1.1,

deferring the proof of one of the key lemmas to Section 3. The proof of Theorems 1.2 and 1.3 is

given in Section 4. Section 5 contains some concluding remarks including the statement and proof

of Proposition 5.2 which gives a generalization of Rödl’s example, establishing that the bound in

Theorem 1.1 is asymptotically tight.

We are following the common practice of ignoring rounding issues for a better proof transparency.

Throughout the paper, log denotes the natural logarithm, N stands the set of positive integers, and

for n ∈ N we write [n] for the set of integers {1, . . . , n}.

2 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1, save for one lemma that is proved in Section 3. The

proof of Theorem 1.1 will rely on Lemmas 2.2 and 2.3 stated below. We start with a few definitions.

All graphs (or 2-graphs) will be simple and undirected, and will be denoted by capital letters e.g.

G,H, while r-graphs will be denoted by script letters e.g. G,H. For a graph G and a 3-graph G,

defined on the same vertex set, we say that G underlies G if every edge of G is a triangle in G. We

4Observe that step-up lemmas with an exponential blowup-up are not useful in our setting since (1) and (2) tell us

that the gap between Rr−1,F (t) and Rr,F+(t) is not exponential.

4



use Nk(G) and Nk(G) to denote the number of cliques Kk and hypercliques K
(3)
k in a graph G and

a 3-graph G, respectively. For an integer k ≥ 3, we say that a graph (resp. 3-graph) is k-partite on

disjoint vertex classes V1, . . . , Vk if each edge of the graph (resp. 3-graph) has at most one vertex in

each of the k vertex sets. Observe that if a k-partite G on vertex sets V1, . . . , Vk underlies G, then G
is also k-partite with respect to these vertex sets.

Definition 2.1 ((ε, η)-dense graph). Suppose G is a k-partite graph on disjoint vertex sets V1, . . . , Vk.

We say that G is (ε, η)-dense with respect to some 3-graph G if

1. G underlies G.

2. Nk(G) ≥ ε
∏
i |Vi|.

3. Nk(G) ≥ (1− η)Nk(G).

We are now ready to state the two key lemmas needed to prove Theorem 1.1, and then show how

to derive it from them. In what follows we use G[W ] (or G[W ]) to denote the graph (or 3-graph)

induced by a set of vertices W . As usual, we use G to denote the complement of a 3-graph G.

Lemma 2.2. For every 3-graph F and for any k ∈ N and 0 < η < 1 there exist c′ = c′(F , k, η) > 0

and ε = ε(F , k, η) > 0 as follows. If G is an induced F-free 3-graph on n vertices, then there are k

disjoint vertex sets V1, . . . , Vk ⊆ V (G) of equal size at least c′n and a k-partite graph G on V1, . . . , Vk
which is (ε, η)-dense either with respect to a subgraph of G or with respect to a subgraph of G.

Lemma 2.3. For every ε > 0 and integer k ≥ 3 there exists c′′ = c′′(ε, k) > 0 as follows. Suppose

G is a k-partite graph on vertex sets V1, . . . , Vk of size m each, and G is (ε, η)-dense with respect to

some 3-graph G. Then there are subsets Wj ⊆ Vj for j = 1, . . . , k of equal size at least c′′ logm such

that setting W =
⋃
iWi we have

Nk(G[W ]) ≥ (1− 2(k2)η)

k∏
`=1

|W`| . (3)

Proof of Theorem 1.1. Given F and η, set k = 10/η and let c′ = c′(F , k, η/2k2) and ε =

ε(F , k, η/2k2) be the constants from Lemma 2.2. If G is induced F-free then by Lemma 2.2 we

can find k disjoint vertex sets V1, . . . , Vk of equal size at least c′n and a k-partite graph on these sets

which is (ε, η/2k
2
)-dense with respect to either a subgraph of G or a subgraph G. Suppose, without loss

of generality, that the former case holds. By Lemma 2.3 we can find subsets W1 ⊆ V1, . . . ,Wk ⊆ Vk,
each of size c′′ log |Vi| ≥ c′′ log(c′n) ≥ c log n satisfying5 Nk(G[W ]) ≥ (1− η/2)

∏k
`=1 |W`|.

Setting W =
⋃
iWi we now claim that e(G[W ]) ≥ (1 − η)

(|W |
3

)
. To see this we first observe

that since k = 10/η and all sets Wi are of the same size, then at most 1
2η
(|W |

3

)
of the 3-tuples

in W do not belong to 3 distinct sets Wi. We also observe that for each triple of distinct sets

Wp,Wq,Wr, the 3-graph G has at least (1 − η/2)|Wp||Wq||Wr| edges with one vertex in each of the

sets. Indeed, if this is not the case then G cannot contain the number of copies of K
(3)
k asserted at

the end of the previous paragraph. It is finally easy to see that the above two observations imply

that e(G[W ]) ≥ (1− η)
(|W |

3

)
.

5Note that this inequality would in fact hold for a subgraph of G, i.e. the one we got from Lemma 2.2. By

monotonicity we can work with G itself.
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The rest of this section is devoted to the proof of Lemma 2.3. The proof of Lemma 2.2 appears

in the next section. The proof of Lemma 2.3 is carried out via repeated application of Lemma 2.5

stated below. For its proof, we will need the following special case of the classical Kővári-Sós-Turán

Theorem [11] (similar lemmas where used in [6, 12, 16]). For completeness we include the proof.

Lemma 2.4. Suppose that ε > 0 and G is a bipartite graph between sets A and B with e(G) ≥ ε|A||B|.
Suppose further that |A| ≤ 1

2 log |B| and s, t > 0 satisfy s = ε|A| and t =
√
|B|. Then G contains a

copy of Ks,t with s vertices in A and t vertices in B.

Proof. Write d(v) for the degree of v in G. Then the number of copies of Ks,1, with s vertices in A

and one vertex in B is just
∑

v∈B
(
d(v)
s

)
. By convexity of f(z) =

(
z
s

)
we have

∑
v∈B

(
d(v)

s

)
≥ |B|

( 1
|B|
∑

v∈B d(v)

s

)
= |B|

(
e(G)/|B|
ε|A|

)
≥ |B| .

Since A has fewer than 2|A| subsets of size s, by the pigeonhole principle some set U ⊂ A of size s

appears in at least 2−|A||B| ≥
√
|B| = t of these copies of Ks,1. It is clear that U and the t

vertices from B participating in these t copies of Ks,1 form a Ks,t.

If U, V are two disjoint vertex sets in a graph G, we use G[U, V ] to denote the bipartite subgraph

of G induced by these sets, that is, the graph containing all edges with one vertex in each set. More

generally, for disjoint vertex sets V1, . . . , Vk we use G[V1, . . . , Vk] to denote the k-partite subgraph

containing all edges of G connecting two distinct sets Vi, Vj . Similarly, if G is a 3-graph then we use

G[V1, . . . , Vk] to denote the k-partite 3-graph containing all edges of G connecting three distinct sets.

Lemma 2.5. Suppose that η > 0, 0 < ε < 1, and 0 < γ ≤ 1/2 are constants, V1, . . . , Vk are disjoint

vertex sets in some 3-graph G, and G is a k-partite graph on V1, . . . , Vk which is (ε, η)-dense with

respect to G. If for some pair of indices 1 ≤ i < j ≤ k we have |Vj | = m and |Vi| ≥ γ logm, then

there exist subsets Si ⊆ Vi and Sj ⊆ Vj such that

• |Si| = εγ logm and |Sj | = m1/2,

• G[Si, Sj ] is complete bipartite,

• G[V1, . . . , Si, . . . , Sj , . . . , Vk] is (ε/4, 2η)-dense with respect to G[V1, . . . , Si, . . . , Sj , . . . , Vk].

Proof. Observe that by the conditions of the lemma, for any choice of Si, Sj we have that the k-

partite graphG[V1, . . . , Si, . . . , Sj , . . . , Vk] underlies the k-partite 3-graph G[V1, . . . , Si, . . . , Sj , . . . , Vk],

so we will not need to worry about item 1 of Definition 2.1.

For each 1 ≤ p 6= q ≤ k we use shorthand Gp,q for the bipartite graph G[Vp, Vq]. For an edge

e ∈ E(G) let Nk(G, e) and Nk(G, e) stand for the number of k-cliques in G and G respectively,

containing the vertices of e. Call an edge e ∈ E(Gi,j) good if Nk(G, e) ≥ (1− 2η)Nk(G, e), otherwise

the edge is bad. Since G is (ε, η)-dense with respect to G we have∑
e good

Nk(G, e) +
∑
e bad

(1− 2η)Nk(G, e) ≥ Nk(G) ≥ (1− η)Nk(G) ,
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implying that
∑

e badNk(G, e) ≤
1
2Nk(G). This, and the assumption that G is (ε, η)-dense, imply

that ∑
e good

Nk(G, e) ≥
1

2
Nk(G) ≥ ε

2

k∏
`=1

|V`| . (4)

Let F ′′ be the subgraph of Gi,j consisting of all good edges, and let G′′ be the graph formed by F ′′

and Gp,q for all {p, q} 6= {i, j}. By (4), we have Nk(G′′) ≥ ε
2

∏k
`=1 |V`|. Let F ⊆ F ′′ be the set of all

edges e such that Nk(G, e) ≥ ε
4

∏
`/∈{i,j} |V`|. Note that we must have e(F ) ≥ ε

4 |Vi||Vj |, as otherwise

Nk(G′′) <
ε

4
|Vi||Vj | ·

∏
`/∈{i,j}

|V`|+ |Vi||Vj | ·
ε

4

∏
`/∈{i,j}

|V`| =
ε

2

k∏
`=1

|V`| ,

which would contradict the lower bound on Nk(G′′) mentioned above.

Since |Vi| ≥ γ logm, by averaging there exists a subset A ⊂ Vi with |A| = γ logm and

e(F [A, Vj ]) ≥
ε

4
|A||Vj | . (5)

By (5), we can apply Lemma 2.4 to the graph F [A, Vj ] to obtain subsets Si ⊆ A ⊆ Vi and Sj ⊆ Vj
with |Si| = εγ logm and |Sj | = m1/2, such that G[Si, Sj ] is complete bipartite.

We now look at G′ = G[V1, . . . , Si, . . . , Sj . . . , Vk]. Since G[Si, Sj ] is complete bipartite and for

every edge e ∈ E(G[Si, Sj ]) we have that Nk(G, e) ≥ ε
4

∏
`/∈{i,j} |V`|, it follows that

Nk(G′) ≥
ε

4
|Si||Sj |

∏
`/∈{i,j}

|V`| .

Moreover, since every e ∈ E (G[Si, Sj ]) is good, we have

Nk(G[V1, . . . , Si . . . , Sj , . . . Vk]) ≥ (1− 2η)Nk(G′) ,

implying that G′ is indeed (ε/4, 2η)-dense with respect to G[V1, . . . , Si, . . . , Sj . . . , Vk].

Proof of Lemma 2.3. Set γ = 1
2 and apply Lemma 2.5 with i = 1 and j = 2 to obtain subsets S1

1 ⊆
V1 and S2 ⊆ V2 with |S1

1 | = εγ logm and |S2| = m1/2, and with the properties stated in Lemma 2.5.

Note now that the conditions of Lemma 2.5 are satisfied in the graph G[S1
1 , S2, V3, . . . , Vk], with 2η,

ε/4, εγ, S1
1 and V3 playing the role of η, ε, γ, Vi and Vj respectively, so Lemma 2.5 can be applied

again to obtain subsets S2
1 ⊆ S1 and S3 ⊆ V3 with properties as stated therein. Continuing for i = 1

and (consecutively) j = 2, . . . , k we obtain a set Sk−1
1 =: U1 ⊆ V1 of size c1 logm for a constant

c1 = c1(ε, k), and sets S2, . . . , Sk of size m1/2 each, so that all graphs G[U1, Sj ] are complete bipartite

and G[U1, S2, . . . , Sk] is (ε/4k−1, 2k−1η)-dense with respect to G[U1, S2, . . . , Sk].

Next, since log(m1/2) = (1/2) logm, the above procedure can be applied again for i = 2 and

j = 3, . . . , k to obtain U2 ⊆ V2 of size c2 logm and (abusing notation) sets S3 ⊆ V3, . . . , Sk ⊆ Vk of

size m1/4 each, with analogous properties. Continuing in the same way for each i yields sets Ui ⊆ Vi
for i = 1, . . . , k − 1 with |Ui| = ci logm and Uk = Sk ⊆ Vk (the output of the last application of

Lemma 2.5) with |Uk| = m1/2k−1 ≥ ck logm such that G∗ = G[U1, . . . , Uk] is a complete k-partite
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graph. Moreover, by Lemma 2.5 (which we applied
(
k
2

)
times), G∗ is (ε/4(k2), 2(k2)η)-dense with respect

to G[U1, . . . , Uk]. In particular,

Nk(G[U1, . . . , Uk]) ≥ (1− 2(k2)η)Nk(G∗).

However, since (crucially) G∗ is complete k-partite, this means that

Nk(G[U1, . . . , Uk]) ≥ (1− 2(k2)η)

k∏
`=1

|U`|.

To complete the proof we just need to pick sets of equal size. Putting c′′ = min{c1, . . . , ck},
by averaging, there exist subsets W` ⊆ U` for ` = 1, . . . , k of equal size c′′ logm, so that setting

W =
⋃
iWi we have

Nk(G[W ]) ≥ Nk(G[W1, . . . ,Wk]) ≥ (1− 2(k2)η)

k∏
`=1

|W`| ,

as we had to show.

3 Near-homogeneous multipartite hypergraphs

In this Section we prove Lemma 2.2. In the first subsection we will discuss some tools from the

hypergraph regularity method that are needed for the proof of the lemma. We will follow the

definitions from [13] and [14]. The proof itself appears in the second subsection.

3.1 A primer on hypergraph regularity

We first recall the definition of a (Szemerédi)-regular bipartite graph.

Definition 3.1. Let d2, δ2 > 0. A bipartite graph G with the bipartition V (G) = X ∪· Y is called

(δ2, d2)-regular if for all subsets X ′ ⊆ X and Y ′ ⊆ Y we have∣∣e(G[X ′, Y ′])− d2|X ′||Y ′|
∣∣ ≤ δ2|X||Y | .

Extending this notion to 3-graphs, we need the following definition of a regular 3-partite 3-

graph [14, Definition 3.1]. For a graph G write T (G) for the set of triangles in G.

Definition 3.2. Let d3, δ3 > 0. A 3-graph H = (V,EH) is called (δ3, d3)-regular with respect to a

tripartite graph P = (X ∪· Y ∪· Z,EP ) with V ⊇ X ∪ Y ∪ Z, if for every subgraph Q ⊆ P we have

||EH ∩ T (Q)| − d3|T (Q)|| ≤ δ3|T (P )| . (6)

We say that H is δ3-regular with respect to P if it is (δ3, d3)-regular for an unspecified d3. Also,

define

d(G|P ) :=
|E(G) ∩ T (P )|
|T (P )|

to be the relative density of G with respect to T (P ). By putting Q = P in (6), we obtain:
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Remark 3.3. If H is (δ3, d3)-regular with respect to some graph P , then

d3 − δ3 ≤ d(G|P ) ≤ d3 + δ3.

Next, we will state the regularity lemma for 3-graphs. Informally speaking, it is similar in spirit to

the classical Szemerédi regularity lemma for 2-graphs, in that a large hypergraph is being partitioned

into a bounded number of fragments, almost all of which are regular. One major difference between

the 2-graph and 3-graph cases is that, due to various technical issues, for 3-graphs we partition not

just V (H) into subsets V0 ∪· V1 ∪· . . .∪· Vt, but also the (2-uniform) edge sets of the complete bipartite

graphs K(Vi, Vj) between Vi and Vj into sparser bipartite graphs. This will naturally give rise to a

number of tripartite 2-graphs (‘triads’); the lemma states then that H will be regular with respect

to most of them.

To give a precise formulation, we shall be using the following version of the regularity lemma for

3-graphs [14, Theorem 3.2].

Proposition 3.4 (Regularity Lemma). For all δ3 > 0, δ2 : N → (0, 1] and t0 ∈ N there exist

T0, n0 ∈ N such that for every n ≥ n0 and every 3-graph H with |V (H)| = n the following holds.

There are integers t0 ≤ t ≤ T0 and ` ≤ T0 such that there exists a partition V0∪· V1∪· . . .∪· Vt = V (H),

and for all 1 ≤ i < j ≤ t there exists a partition of K(Vi, Vj)

P ij = {P ij = (Vi ∪· Vj , Eijα ) : 1 ≤ α ≤ `},

satisfying the following properties:

(i) |V0| ≤ δ3n and |V1| = · · · = |Vt|,

(ii) for all 1 ≤ i < j ≤ t and α ∈ [`] the bipartite graph P ijα is (δ2(`), 1/`)-regular, and

(iii) H is δ3-regular w.r.t. P hijαβγ for all but at most δ3t
3`3 triads

P hijαβγ = P hiα ∪· P
hj
β ∪· P

ij
γ = (Vh ∪· Vi ∪· Vj , Ehiα ∪· E

hj
β ∪· E

ij
γ ),

with 1 ≤ h < i < j ≤ t and α, β, γ ∈ [`].

To state the Counting Lemma for 3-graphs (which typically complements the Regularity Lemma

in the regularity method), consider the following setup.

Setup A. Let k,m ∈ N and δ3, d2, δ2 > 0 be given. Suppose that

1. V = V1 ∪ · · · ∪ Vk, |V1| = · · · = |Vk| = m, is a partition of V .

2. P =
⋃

1≤i<j≤k P
ij is a k-partite graph, with vertex set V and k-partition above, where all

P ij = P [Vi, Vj ], 1 ≤ i < j ≤ k, are (δ2, d2)-regular.

3. H =
⋃

1≤h<i<j≤kHhij ⊆ T (P ) is a k-partite 3-graph, with vertex set V and k-partition above,

where all Hhij = H[Vh, Vi, Vj ], 1 ≤ h < i < j ≤ k, are (δ3, dhij)-regular with respect to the

triad P hi ∪ P ij ∪ P hj , for some constant 0 ≤ dhij ≤ 1.
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Now, first recall the counting lemma for 2-graphs in the following version.

Proposition 3.5 (Counting lemma for graphs). For every integer k ≥ 3 and positive constants

γ > 0, d2 > 0 there exist δ2 = δ2(k, γ, d2) > 0 and m0 = m0(k, γ, d2, δ2) ∈ N such that with these

constants if a graph P is as in 1. and 2. of Setup A and m ≥ m0, then

(1− γ)d
(k2)
2 mk ≤ Nk(P ) ≤ (1 + γ)d

(k2)
2 mk .

Now, we state the Counting Lemma for 3-graphs [13, Corollary 2.3].

Proposition 3.6 (Counting Lemma for 3-graphs). For every integer k ≥ 4, and positive constants

γ, d3 > 0 there exists δ3 = δ3(k, γ, d3) > 0 so that for all d2 > 0 there exist δ2 = δ2(k, γ, d3, δ3, d2) > 0

and m0 = m0(k, γ, d3, δ3, d2, δ2) ∈ N so that with these constants, if H and P are as in Setup A, with

m ≥ m0 and dhij ≥ d3 for all 1 ≤ h < i < j ≤ k, then

Nk(H) ≥ (1− γ)d
(k3)
3 d

(k2)
2 mk.

Combining Propositions 3.6 and 3.5 gives

Corollary 3.7. For every k ≥ 4, and positive constants γ, d3 > 0 there exists δ3 = δ3(k, γ, d3) > 0

so that for all d2 > 0 there exist δ2 = δ2(k, γ, d3, δ3, d2) > 0 and m0 = m0(k, γ, d3, δ3, d2, δ2) ∈ N
so that with these constants, if H and P are as in Setup A, with m ≥ m0 and dhij ≥ d3 for all

1 ≤ h < i < j ≤ k, then
Nk(H) ≥ (1− γ)d

(k3)
3 Nk(P ).

Proof. Let δ3 = δ3(k, γ/2, d3) be the constant from Proposition 3.6, and take δ2 to be the minimum

of δ2(k, γ/2, d2) from Proposition 3.5 and δ2(k, γ/2, d3, δ3, d2) from Proposition 3.6. Let m0 be the

larger m0 from these two propositions. Then, for m ≥ m0 we have

Nk(H) ≥ (1− γ

2
)d

(k3)
3 d

(k2)
2 mk ≥ (1− γ)d

(k3)
3 (1 +

γ

2
)d

(k2)
2 mk ≥ (1− γ)d

(k3)
3 Nk(P ).

As another corollary of Proposition 3.6, we obtain the following criterion for finding an induced

copy of a fixed 3-graph F .

Corollary 3.8 (Induced embedding lemma). For every 3-graph F with |V (F)| = k ≥ 4, and every

constant 1 > d3 > 0 there exists δ3 = δ3(F , d3) > 0 so that for all d2 > 0 there exist δ2 =

δ2(F , d3, δ3, d2) > 0 and m0 = m0(F , d3, δ3, d2, δ2) ∈ N so that, with these parameters, if H and P

are as in Setup A, with m ≥ m0 and d3 ≤ dhij ≤ 1− d3 for all 1 ≤ h < i < j ≤ k, then H contains

vertices v1, . . . , vk with vi ∈ Vi for all 1 ≤ i ≤ k, such that

• P [v1, . . . , vk] is a k-clique, and

• H[v1, . . . , vk] is an induced copy of F .

Proof. Choose an arbitrary labeling ϕ : [k] → V (F), and apply Proposition 3.6 to the 3-graph H∗
defined as follows

10



• V (H∗) = V (H), and

• H∗ =
⋃

1≤h<i<j≤kH∗
hij where all H∗hij = H∗[Vh, Vi, Vj ], 1 ≤ h < i < j ≤ k are defined by

H∗hij = Hhij if {ϕ(h), ϕ(i), ϕ(j)} ∈ F and H∗hij = Hhij = T (P [Vh, Vi, Vj ]) \ E(H) otherwise.

Observe that Hhij is (δ3, 1 − dhij)-regular with respect to its triad. Therefore H∗ satisfies all the

requirements of Proposition 3.6, implying that it contains a copy of K
(3)
k , which corresponds to an

induced copy of F in H.

In what follows, we write d(G) = e(G)/
(|G|

3

)
for the density of a 3-graph G. We shall also need the

following rudimentary estimate for 3-graph Turán densities.

Claim 3.9. If d(G) > 1−
(
k
3

)−1
then G contains a k-clique K

(3)
k ⊆ G.

Proof. Consider a random k-vertex subset of V (G). By the union bound, the probability that one

of the
(
k
3

)
edges is missing is less than 1.

3.2 Proof of Lemma 2.2

Proof. Given F , k and η, put f := |V (F)|, and let us pick s and λ satisfying

s = R(3)(k, k, f) and (1− λ)(
k
3)+1 = 1− η , (7)

where R(3)(k, k, f) is the 3-color Ramsey6 function of 3-graphs. Let us now set the stage for an

application of Proposition 3.4 (the 3-graph regularity lemma) by defining the following parameters.

δ3 = min

{
λ

3
,
s−3

10
, δ3(k, λ, 1− λ), δ3(F , λ

3
),

}
, (8)

where δ3(k, λ, 1 − λ) is as stated in Corollary 3.7, and δ3(F , λ/3) is as stated in Corollary 3.8. We

define the function δ2 : N→ (0, 1] to satisfy for every integer `

δ2(`) = min{δ2(k, λ, 1− λ, δ3, 1/`), δ2(F , λ/3, δ3, 1/`)} ,

where δ2(k, λ, 1− λ, δ3, 1/`) and δ2(F , λ/3, δ3, 1/`) are as stated in Corollary 3.7 and Corollary 3.8,

respectively. Finally, we set

t0 = s .

Given an induced F-free 3-graph G, we apply Proposition 3.4 with the above constants/function. We

obtain partitions V (G) = V0∪· . . .∪· Vt and P ij as stated in Proposition 3.4. We will assume henceforth

that n/(2t) > m0, where m0 is the maximum between the values of m0 claimed in Proposition 3.6

and Corollary 3.8 (with respective parameters). Observe that from the way we chose the parameters

above, it follows that the parameters t and ` of the partition we obtain through Proposition 3.4 can

be bounded from above by functions of F , k, η. Since the constants c′, ε we will obtain below will

depend only on t, ` they will indeed depend only on F , k, η as asserted in the statement of the lemma.

6That is, the smallest R such that every edge-coloring of the complete 3-graph K
(3)
R with 3 colors red, blue, and

green is guaranteed to contain either a red or a blue K
(3)
k , or a green K

(3)
f . see e.g. [2].
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Let P ijα be the collection of bipartite graphs from item (ii) of Proposition 3.4. For each 1 ≤ i <

j ≤ t select αij ∈ [`] independently and uniformly at random, set P ij = P ijαij and denote by P hij

the triad obtained from P hi, P hj and P ij . Then the expected proportion of triads P hij such that

H is δ3-regular with respect to P hij , is at least 1 − 10δ3. Thus, there must exist a choice of αij ’s

satisfying this property. To simplify the presentation, let us fix one such choice of αij ’s and use P ij to

denote the corresponding collection of bipartite graphs defined by this choice. Define the 3-uniform

cluster-hypergraph R as follows: let V (R) = [t] and {h, i, j} ∈ E(R) if H is δ3-regular with respect

to the triad P hij . By the above we have d(R) ≥ 1− 10δ3 > 1−
(
s
3

)−1
, so by Claim 3.9 there exists a

collection of indices 1 ≤ i1 < · · · < is ≤ t such that all triads P ipiqir are δ3-regular. Without loss of

generality, let us assume that i1 < · · · < is are just 1, . . . , s.

Recaping, what we have at this point is s vertex sets V1, . . . , Vs of size (n − |V0|)/t each, and a

collection of
(
s
2

)
bipartite graphs P =

⋃
P ij , where P ij is (δ2(`), 1/`)-regular (between Vi and Vj).

Furthermore, for every h < i < j, the 3-graph G is δ3-regular with respect to the triad P hij formed

by P hi, P hj and P ij . In other words, we are at Setup A with

s, m = (n− |V0|)/t, P =
⋃
P ij , G ∩ T (P )

playing the role of k, m, P and H, respectively, and δ2 and δ3 as defined above.

Now define an edge-coloring Γ of the complete 3-graph on [s] as follows. Color the edge {h, i, j} ∈
[s](3) red if the corresponding triad P hij satisfies d(G|P ) > 1− 2λ/3, where λ > 0 was chosen in (7).

Color P blue if d(G|P ) < 2λ/3, and color P green otherwise. By our choice of s in (7), one of the

following assertions must hold.

(g) There exist f indices {j1, . . . , jf} ⊆ [s] such that every Γ(jp, jq, jr) is green for all 1 ≤ p < q <

r ≤ f . Without loss of generality, we may assume that these indices are simply 1, . . . , f .

(r) There exist k indices (wlog) {1, . . . , k} such that every Γ(p, q, r) is red.

(b) There exist k indices (wlog) {1, . . . , k} such that every Γ(p, q, r) is blue.

Due to our choice of parameters, we can now invoke the counting lemmas. In Case (g) we apply

Corollary 3.8 (note that, by Remark 3.3 and (8), G is (δ3, dpqr)-regular with respect to P pqr for

some λ/3 ≤ dpqr ≤ 1 − λ/3) to deduce that G contains vertices v1, . . . vf such that vp ∈ Vp for each

1 ≤ p ≤ f and G ∩ T (P ) induces a copy of F on v1, . . . vf . It remains to show that G itself also

induces a copy of F on v1, . . . vf .

For a given 1 ≤ p < q < r ≤ f , if {vp, vq, vr} ∈ E(G ∩ T (P )) = E(G) ∩ T (P ), then clearly

also {vp, vq, vr} ∈ E(G). On the other hand, since, by Corollary 3.8, P [v1, . . . , vf ] is a clique, for

each 1 ≤ p < q < r ≤ f we have {vp, vq, vr} ∈ T (P ). Thus, if {vp, vq, vr} /∈ E(G) ∩ T (P ), then

{vp, vq, vr} /∈ E(G). We conclude that G[v1, . . . , vf ] = (G ∩ T (P ))[v1, . . . , vf ], and thus G[v1, . . . , vf ]

is indeed an induced copy of F , a contradiction. So, case (g) cannot occur.

So, suppose that Case (r) holds. Then, applying Proposition 3.5, we obtain that the graph

P ∗ =
⋃

1≤p<q≤k
P pq (9)
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satisfies

Nk(P ∗) ≥
1

2
mk

(
1

`

)(k2)
. (10)

Furthermore, since by Remark 3.3 and (8), G is (δ3, dpqr)-regular with respect to P pqr for some

dpqr ≥ 1− λ, Corollary 3.7 gives

Nk(G ∩ T (P ∗)) ≥ (1− λ) · (1− λ)(
k
3)Nk(P ∗) = (1− η)Nk(P ∗) .

Thus, we have found k vertex sets V1, . . . Vk of size m ≥ c′n and a k-partite graph P ∗ on these sets,

which is (ε, η)-dense with respect to G ∩ T (P ∗) ⊆ G, where ε = 1
2(1

` )
(k2).

Similarly, in Case (b), considering P ∗ as in (9) and the 3-graph Ĝ = T (P ∗) \ G (note that

d(Ĝ|P ∗) > 1− 2λ/3) we obtain that (10) holds as before, and, by Corollary 3.7,

Nk(Ĝ) ≥ (1− λ) · (1− λ)(
k
3)Nk(P ∗) = (1− η)Nk(P ∗) .

Thus, again, for ε = 1
2(1

` )
(k2) we obtain the sets V1, . . . Vk of size m ≥ c′n and the graph P ∗ on these

sets, which is (ε, η)-dense with respect to Ĝ ⊆ G.

4 Proofs of Theorems 1.2 and 1.3

In this section we prove Proposition 4.1 and deduce Theorems 1.2 and 1.3 as corollaries.

We say that an r-graph F is extendable if any two vertices of F are contained in some edge and

F contains a copy of K
(r)
r+1 (complete r-graph on r + 1 vertices). Note that for r = 2 the extendable

graphs are precisely the cliques. Now we are ready to state Proposition 4.1.

Proposition 4.1. For every r ≥ 3 and an extendable (r − 1)-graph F there exists an r-graph F+

and constant c0 = c0(r,F) > 0 and c1 = c1(r,F) > 0 such that

Rr,F+(t) ≥ (Rr−1,F (c0t))
c1t .

In order to construct the non-universal r-graph in the above proposition from a non-universal

(r− 1)-graph we will adapt an idea from [5]. Given an extendable (r− 1)-graph F , an (r− 1)-graph

G = (V,E) and an edge-labeling φ :
(

[N ]
2

)
→ [|V |] for some integer N ≥ |V |, define a red-blue coloring

χ :
(

[N ]
r

)
→ {red,blue} as follows. For any 1 ≤ a1 < · · · < ar ≤ N we define χ({a1, . . . ar}) = red

if for i = 2, . . . , r all φ(a1, ai) are distinct and {φ(a1, a2) . . . , φ(a1, ar)} ∈ E(G), and otherwise

χ({a1, . . . , ar}) = blue. Set G+ = G+(G, φ) to be the r-graph of all red edges in χ.

The first step towards proving Proposition 4.1 is to construct the graph F+.

Lemma 4.2. Let r ≥ 3. Then for every extendable (r − 1)-graph F there exists an r-graph F+

satisfying the following. For any induced F-free (r − 1)-graph G and any labelling φ the r-graph

G+ = G+(G, φ) is induced F+-free.

Proof. To construct F+ we proceed as follows. We first define an ordered r-graph F∗ such that G+,

when viewed as an ordered r-graph under the natural ordering on [N ], does not contain an induced
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copy of F∗. Put f = |V (F)|, and by choosing an arbitrary ordering suppose that V (F) = [f ]. Now,

let V (F∗) = {0} ∪ [f ], and E(F∗) = {{0} ∪ J : J ∈ E(F)} ∪
(

[f ]
r

)
.

Let us now show that G+ indeed does not contain an induced copy of F∗ as an ordered subgraph.

Suppose for a contradiction that there is an order preserving mapping τ : {0} ∪ [f ]→ [N ] such that

{τ(j1), . . . τ(jr)} ∈ E(G+) if and only if {j1, . . . , jr} ∈ E(F∗). Denote τ(0) = a and τ(i) = bi for

each 1 ≤ i ≤ f .

Suppose that φ(a, bi) = φ(a, bk) for some 1 ≤ i < k ≤ f . Then by the definition of χ no edge

of G+ contains {a, bi, bk} = {τ(0), τ(i), τ(k)}. Since τ is an isomorphism, no edge of F∗ contains

{0, i, k}. This in turn implies that {i, k} is not contained in any edge of F , a contradiction to the

assumption that F is extendable. Hence, all labels φ(a, bi) for 1 ≤ i ≤ f must be distinct.

Now, take an arbitrary I = {j1, . . . , jr−1} ⊆ [f ], and put ai = τ(ji) for each 1 ≤ i ≤ r − 1. If

I ∈ E(F), then we have {0}∪ I ∈ E(F∗), thus {a, a1, . . . , ar−1} = {τ(0), τ(j1), . . . τ(jr−1)} ∈ E(G+).

Hence, by the definition of χ, we must have {φ(a, a1), . . . , φ(a, ar−1)} ∈ E(G). On the other hand, if

I /∈ E(F), then {a, a1, . . . , ar−1)} /∈ E(G+), which similarly means χ({a, a1, . . . , ar−1}) = blue. Since

we have established that all φ(a, τ(ji)) are distinct, we deduce that {φ(a, a1), . . . φ(a, ar−1)} /∈ E(G).

Therefore the distinct labels {φ(a, b1), . . . φ(a, bf )} ⊆ V (G) form a copy of F as an induced sub-

graph of G, in contradiction to the assumption that G is induced F-free. We conclude that G+ does

not contain an ordered induced copy of F∗.
Now, define F+ to be the r-graph such that every ordering of it contains F∗ as an induced ordered

subgraph. Such a graph always exists by a theorem of Alon, Pach and Solymosi [1, Theorem 3.5].

Then G+ does not contain an induced copy of F+, for otherwise it would contain an ordered induced

copy of F∗.

We will later need the following simple observation.

Claim 4.3. In the natural case when F = K
(r−1)
s−1 for some s > r, one can take F+ = K

(r)
s .

Proof. F is extendable, F∗ = K
(r)
s , and since all orderings of F∗ are indistinguishable, we can take

F+ = F∗ = K
(r)
s .

Having defined F+ we need to find a labelling φ, such that if neither G nor its complement contain

a large complete (r− 1)-partite subgraph then G+(G, φ) will also have this property. This is done in

the following technical claim whose proof is deferred to the end of the section.

Claim 4.4. For every integer r ≥ 3 and constant α > 1 there exists a constant c1 = c1(r, α) > 0 and

an integer t0 = t0(r, α) as follows. Let β = 2
1−1/α , c0 = 1

βr2
, and suppose that the integers t, n and N

are such that t ≥ t0, n ≥ (c0t)
α and N = nc1t. Then there exists a labeling φ :

(
[N ]
2

)
→ [n] with the

following property: There do not exist disjoint sets A1, . . . , Ar ⊆ [N ] with |A1| = · · · = |Ar| = t/r

such that for every a ∈ A1 we have

|{φ(a, ai) : ai ∈ Ai}| <
t

βr
, for some 2 ≤ i ≤ r (11)

The last ingredient we will need for the proof of Proposition 4.1 is the following claim whose proof

is a routine application of the probabilistic deletion method and is thus deferred to the end of the

section.
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Claim 4.5. Let F be an extendable r-graph. Then Rr,F (t) ≥ tα for some α = αr > 1.

Proof of Proposition 4.1. Given an extendable (r− 1)-graph F , take F+ to be the r-graph from

lemma 4.2. Let α = αr−1 be the constant from Claim 4.5, and suppose that t ≥ t0, where t0 = t0(r, α)

is as defined in Claim 4.4 (due to flexibility in choosing the constants c0 and c1, it suffices to prove

the statement of Proposition 4.1 for large t). Let β = 2
1−1/α , c0 = 1

βr2
, and let c1 = c1(r, α) be as in

Claim 4.4. Let n = Rr−1,F (c0t), and note that, since F is extendable, Claim 4.5 gives n ≥ (c0t)
α. Let

G to be an (r− 1)-graph on n vertices which is induced F-free and such that G and G do not contain

a K
(r−1)
c0t,...,c0t

. Finally, let N = nc1t, let φ :
(
N
2

)
→ [n] be a labelling as guaranteed by Claim 4.4, and

consider the r-graph G+ = G+(G, φ).

We now claim that G+ contains no copy of K
(r)
t,...,t; the fact that G+ does not contain a K

(r)
t,...,t can

be deduced analogously. So, suppose for a contradiction that G+ contains a copy of K
(r)
t,...,t on vertex

classes Q1, . . . , Qr ⊆ V (G+). Let A′ be the first t vertices of
⋃r
i=1Qi in the natural ordering of [N ].

By the pigeonhole principle, some t/r of them will be in the same class, say in Q1; let A1 ⊆ A′ be

the set of these t/r vertices. By our choice of A′, for i = 2, . . . , r there will be disjoint sets Ai ⊆ Qi
with |Ai| = t/r such that for every a1 ∈ A1, and ai ∈ Ai we have a < ai. Note that we do not make

any claims regarding the order of vertices inside A2 ∪ · · · ∪Ar.
By the definition of φ and Claim 4.4 there must exist some a ∈ A such that, with Φ(Ai) =

{φ(a, ai) : ai ∈ Ai}, we have min{|Φ(Ai)| : 2 ≤ i ≤ r} ≥ t
βr . Now, taking one representative vertex

for each color in each Φ(Ai), we find sets U1 ⊆ Ai for 2 ≤ i ≤ r with |Ui| = t
βr2

= c0t such that all

labels in
⋃r
i=2

⋃
u∈Ui φ(a, u) are distinct. However, since for each (u2, . . . , ur) ∈ U2×· · ·×Ur we have

χ({a, u2, . . . , ur}) = blue, we obtain that G[Φ(U2), . . . ,Φ(Ur)] forms a complete (r− 1)-partite graph

with parts of size c0t, in contradiction to the assumption. Hence, G+ contains no copy of K
(r)
t,...,t, as

claimed.

To summarize, the r-graph G+ has N = nc1t vertices, by Lemma 4.2 it is induced F+-free, and

neither G+ nor its complement contain a copy of K
(r)
t,...,t. Therefore,

Rr,F+(t) ≥ N = (Rr−1,F (c0t))
c1t ,

as needed.

As corollaries of Proposition 4.1 we obtain Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Apply Proposition 4.1 for r = 3 and F being the triangle, that is, the

complete 2-graph on 3 vertices; note that F is extendable. By Claim 4.3 we can take F+ = K
(3)
4 .

Hence, by Proposition 4.1, we have R3,F+(t) ≥ (c0t)
αc1t = tΩ(t), as claimed.

Proof of Theorem 1.3. By adding to F a set of r + 1 new vertices of full degree, we obtain an

extendable graph F ′. Applying Proposition 4.1 to F ′ we obtain a graph F+ and the constants

c0(r,F), c1(r,F) > 0 as stated therein. Then, taking c(r,F) = min{c0, c1} > 0, we obtain

Rr,F+(t) ≥
(
Rr−1,F ′(c0t)

)c1t ≥ (Rr−1,F (ct))ct ,

where the second inequality relies on the fact that F ′ contains an induced copy of F .

We end this section with the proofs of Claims 4.4 and 4.5.
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Proof of Claim 4.4. Set

γ =
1

2
(1− 1

α
− 1

β
) > 0 , c1 =

γ

r2
=

1

2r2
(1− 1

α
− 1

β
) and t0 = c

− 1+αγ
αγ

1 .

and suppose that t, n and N are as in the statement of the lemma. Define φ :
(

[N ]
2

)
→ [n] to be

an edge-labeling, where each element of
(

[N ]
2

)
is independently assigned a color between 1 and n

uniformly at random. For disjoint sets A1, . . . , Ar ⊆ [N ] of size t/r each, let XA1,...,Ar be the event

that every a ∈ A1 satisfies (11). Consider some fixed disjoint A1, . . . , Ar of size t/r. Since for different

a ∈ A1 the edges between a and A2 ∪ · · · ∪Ar ⊆ [N ] \A1 are assigned the values of φ independently,

we obtain

P(XA1,...,Ar) ≤

 r∑
i=2

(
n
t
βr

)( t
βr

n

)|Ai||A1|

≤

[
r

(
n
t
βr

)(
t

n

) t
r

] t
r

.

By the union bound, the probability that some event XA1,...,Ar holds is at most

∑
A1,...,Ar

P (XA1,...,Ar) ≤ N t

[
r

(
n
t
βr

)(
t

n

) t
r

] t
r

≤
(
N rn

t
βr

(
c−1

0 n
1
α
−1
) t
r

) t
r

=

(
c
− t
r

0 n
c1rt+

t
βr

+( 1
α
−1) t

r

) t
r

=

(
c
− t
r

0 n
t
r

(c1r2+ 1
β

+ 1
α
−1)
) t
r

= (n−γc−1
0 )( t

r
)2 < (c1+αγ

0 tαγ)−( t
r

)2 < 1 .

We infer that with positive probability none of the events XA1,...,Ar hold, implying that the

required labeling exists.

Proof of Claim 4.5. Since Rr,F (t) ≥ R
r,K

(r)
r+1

(t), it suffices to consider K
(r)
r+1. We will prove the

equivalent statement, that for every sufficiently large n there exists a K
(r)
r+1-free r-graph on Θ(n)

vertices, which does not contain a complete or empty r-partite subgraph of polynomial size.

To this end, set p = n−
r−1/2
r+1 = n

−1+ 3
2(r+1) and let G be a random r-graph G(r)

n,p on n vertices,

where (as in random 2-graphs) each r-tuple is selected as an edge independently with probability p.

Then the expected number of copies of K
(r)
r+1 in G will be

(
n
r

)
pr+1 = Θ(n1/2). Hence, by Markov’s

inequality the probability that G contains more than n3/4 copies of K
(r)
r+1 is o(1).

Next, for an integer t, the expected number of copies of the complete r-partite graph K
(r)
t,...,t in

Gn,p is (
n

rt

)
1

r!

[
1∏
k=r

(
kt

t

)]
pt
r ≤ nrtptr = (nrpt

r−1
)t ,

and a straightforward calculation shows that the latter expression is o(1) when t ≥ 3. Hence, by

Markov’s inequality, with high probability G will not contain a copy of K
(r)
3,...,3, let alone of K

(r)
t,...,t for

larger values of t. Lastly, for t = n
3
2r the expected number of copies of K

(r)
t,...,t in G is(

n

rt

)
1

r!

[
1∏
k=r

(
kt

t

)]
(1− p)tr ≤ nrte−ptr = (nre−pt

r−1
)t . (12)
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Again, a straightforward calculation shows that with this choice of t the right hand side of (12) is

o(1), hence, again by Markov’s inequality, with high probability there will be no copy of K
(r)
t,...,t in G.

We deduce that for t = n
3
2r with positive probability G ∼ G(r)

n,p satisfies all three properties

discussed above. Removing a vertex from each r+ 1-clique thus results in a K
(r)
r+1-free r-graph on at

least n/2 vertices satisfying the assertion of the lemma.

5 Concluding Remarks

As we have mentioned in Section 1, the best known bound for Ramsey numbers of 3-graphs imply

that every 3-graph contains a homogenous set of size Ω(log log n). An intriguing open problem of

Conlon, Fox and Sudakov [6] is if for every 3-graph F , every induced F-free G contains a homogeneous

set of size ω(log log n). As a (minor) step towards resolving this problem one would first like to find

general conditions guaranteeing that certain F satisfy this condition. For example, it follows from

the Erdős–Rado [9] bound that this is the case if F is a complete 3-graph. Let us now sketch an

argument showing that a much broader family of graphs F have this property. We say that a 3-

graph F on f vertices is nice if there is an ordering {1, . . . , f} of V (F) and an ordered 2-graph F on

{1, . . . , f} so that for every 1 ≤ i < j < k ≤ f the triple (i, j, k) ∈ E(G) if and only if (i, j) ∈ E(F ).

Proposition 5.1. If F is nice, then every induced F-free 3-graph G on n vertices has a homogeneous

set of size 2Ω(
√

log logn).

Proof (sketch): Since F is nice there is a graph F satisfying the condition in the above paragraph.

Pick an arbitrary ordering of V (F ) and let F ′ be a graph so that every ordering of V (F ′) has an

ordered induced copy of F . Such an F ′ exists by [17].

We recall that the Erdős–Rado [9] scheme of bounding Ramsey numbers proceeds by gradually

building an ordered set of vertices {1, . . . , p}, where p = Ω(
√

log n), along with an ordered graph G

on [p] so that for every 1 ≤ i < j < k ≤ p the triple (i, j, k) ∈ E(G) if and only if (i, j) ∈ E(G).

Observe that G is induced F ′-free, as otherwise the definition of G, F ′ and F would imply that G
has an induced copy of F . By the Erdős–Hajnal theorem [8] mentioned in Section 1 we deduce that

G has a homogeneous set of size 2Ω(
√

log logn), which implies (using the definition of G) that G has a

homogeneous set of the same size.

Lastly, we state and prove Proposition 5.2 which extends Rödl’s [15] example mentioned in Section

1 to arbitrary uniformities r ≥ 3. We would like to reiterate our belief that the following upper bound

is tight for all r ≥ 3. We remind the reader that we use d(G) = e(G)/
(|G|
r

)
for the edge-density of an

r-graph G.

Proposition 5.2. For every integer r ≥ 3 there is an r-graph F with the following properties: (i) for

any ε > 0 there exists a constant C = C(r, ε) such that for arbitrarily large n there exists an induced

F-free r-graph G on n vertices, such that for every vertex set W ⊂ V (G) with |W | = C(log n)1/(r−2)

we have

1/2− ε ≤ d(G[W ]) ≤ 1/2 + ε . (13)

(ii) there exists a constant C = C(r) such that for every large enough n there is an induced F-free
r-graph G on n vertices, that does not contain a copy of K

(r)
t,...,t with t = C(log n)1/(r−2).

17



Proof. We prove only item (i), since the proof of (ii) is identical. We make use of the parity

construction from [4]. Let V (G) = [n], and consider an (r − 1)-graph H ∼ G(r−1)
n,1/2 , that is, each

(r− 1)-edge is selected randomly and independently with probability 1/2. Then define G as follows:

let {i1, . . . , ir} ∈ E(G) if and only if e(H[{i1, . . . , ir}]) ≡ 0 (mod 2).

It is easy to see that for each set R of r+ 1 vertices in G we have e(G[R]) ≡ r+ 1 (mod 2). Hence,

G will not contain an induced copy of F , where F is any r-graph with e(F) ≡ r (mod 2).7 Hence,

to prove the lemma, it suffices to show that (13) holds with positive probability; this is achieved by

a standard application of Azuma’s inequality.

Consider a subset A ⊆ [n], with |A| = a, and define the random variable X = e(G[A]). Note that

each subset {i1, . . . , ir} ⊆ A forms an edge of G with probability 1/2 – this is a consequence of the

basic identity
r∑
j=0

(−1)j
(
r

j

)
= (1− 1)r = 0 .

By linearity of expectation, this implies E(X) = 1
2

(
a
r

)
.

Now, choose an arbitrary ordering of the subsets of A of size r−1 and consider the edge-exposure

martingale (Xt)
N
t=0, where N =

(
a
r−1

)
, and Xt is the expected value of X, after the first t edges have

been exposed. In particular, X0 = E(X) and XN = X. Observe that exposing a new (r − 1)-edge

can change at most a edges of G. Hence, Azuma’s inequality yields

P(|XN −X0| ≥ εar) ≤ 2e−
ε2a2r

2Na2 ≤ e−ε2ar−1
.

Taking the union over all subsets of [n] of size a, we obtain that G satisfies (13) with positive

probability for all vertex sets of size a as long as

nae−ε
2ar−1 ≤ 1 ,

which is if and only if a ≥ C(log n)1/(r−1) for a constant C = C(r, ε).
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