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Abstract

We show that for every 0 ≤ p ≤ 1 there is an O(n2.575−p/(7.4−2.3p)) time algorithm that given
a directed graph with small positive integer weights, estimates the length of the shortest path
between every pair of vertices u, v in the graph to within an additive error δp(u, v), where δ(u, v)
is the exact length of the shortest path between u and v. This algorithm runs faster than the
fastest algorithm for computing exact shortest paths for any 0 < p ≤ 1.

Previously the only way to “bit” the running time of the exact shortest path algorithms was by
applying an algorithm of Zwick [FOCS ’98] that approximates the shortest path distances within
a multiplicative error of (1 + ε). Our algorithm thus gives a smooth qualitative and quantitative
transition between the fastest exact shortest paths algorithm, and the fastest approximation al-
gorithm with a linear additive error. In fact, the main ingredient we need in order to obtain the
above result, which is also interesting in its own right, is an algorithm for computing (1 + ε) mul-
tiplicative approximations for the shortest paths, whose running time is faster than the running
time of Zwick’s approximation algorithm when ε ¿ 1 and the graph has small integer weights.
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1 Introduction

Computing all-pairs shortest paths (APSP) in graphs is without a doubt one of the most well-
studied problems both in practical and theoretical computer-science (see [25] for a recent survey).
For arbitrarily dense graphs with real weighted edges, the best algorithm is essentially the classical
O(n3) time algorithm of Floyd-Warshall (see [7]). The first improvement over this algorithm was
obtained by Fredman [12] who gave an O(n3/( log n

log log n)1/3) time algorithm. Several improvement

then followed, culminating in a recent result of Chan [4] who gave an O(n3/ log2 n
log log n) algorithm. The

question of whether the APSP problem can be solved in truly subcubic time, that is, in time O(n3−c)
for some c > 0, remains a major open problem.

Besides trying to obtain slight poly-logarithmic improvements over the naive O(n3) algorithm
for general graphs, most of the research on the APSP problem focused on obtaining truely subcubic
algorithms for graphs with small integer edge weights, where throughout the paper, when we say small
integer edge weights we mean edge weights taken from the set {−M, . . . , M}, with M = no(1). This
problem turns out to be closely related to the problem of fast (that is, subcubic) matrix multiplication
algorithms. The first to realize this connection were Alon, Galil and Margalit [3] who showed how to
solve the APSP problem in directed graphs with small integer edge weights in time1 O(n

ω+3
2 ), where

ω < 2.376 is the exponent of the fastest algorithm for multiplying two matrices, due to Coppersmith
and Winograd [6]. Zwick [24] obtained an improved algorithm that can solve the APSP problem in
directed graphs with small integer weights in time O(n2.575). Even in the case of unweighted directed
graphs, the fastest APSP algorithm is Zwick’s O(n2.575) time algorithm. The only lower bound on
the APSP problem in directed graphs is Ω(nω) that comes from the fact that APSP is at least as
hard as boolean matrix multiplication. Therefore, even in unweighted directed graphs there is a gap
between the O(n2.575) upper bound and the Ω(nω) lower bound. In fact, if ω = 2 then both the
algorithms of [3] and [24] run in O(n2.5), so if ω = 2 then the last progress on the APSP problem in
directed graph with small weights (or even unweighted) was [3] from 1991. We finally note that the
only (general) case where the APSP problem can be solved in time O(nω) is in the case of undirected
graphs with small weights, see [15, 16, 21, 20].

Our focus in this paper is on the APSP problem in directed graphs with small positive integer
weights. As we have discussed in the previous paragraph, even this spacial case of the problem is
not well understood. From the results above, we know that this problem has an upper bound of
O(n2.575) and a lower bound of Ω(nω). A natural question is therefore what can we do faster than
we can exactly solve the APSP problem, that is, what can we do in time less than O(n2.575)? By
faster we mean by a factor of nc. The reason is (i) In most cases we don’t even know the exact
exponent, (ii) In most cases we disregard no(1) factors as the fast matrix multiplication algorithms
“hide” such factors anyway. To the best of our knowledge, the only result in this direction is an
O(nω/ε) algorithm of Zwick [24] that approximates the shortest path distances in a directed graph
with positive edge weights 2 to within a multiplicative error (1 + ε). That is, if δ(u, v) denotes the
length of the shortest path connecting u and v, then Zwick’s algorithm returns an estimate δ̂(u, v)
satisfying δ(u, v) ≤ δ̂(u, v) ≤ (1 + ε)δ(u, v).

Our motivation for studying better approximations for the APSP problem in directed graphs
1Throughout the paper, with a slight abuse of notation, we use O(nr) to denote a running time of O(nr+o(1)).
2We note that as opposed to the previous algorithms we have discussed, Zwick’s approximation algorithm has a

good logarithmic dependence on the size of the edge weights.
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stems from the fact that if one considers undirected graphs, then one can obtain much better approx-
imations. Two notable example are an O(n2.5) algorithm of Aingworth et. al. [2] that approximates
the distances in undirected unweighted graphs to within an additive error 2, and an O(n2) time al-
gorithm of Dor, Halperin and Zwick [9] that approximates the distances in undirected unweighted
graphs to within an additive error O(log n). It is interesting to note that these two algorithms do
not use fast matrix multiplication algorithms.

Our main result in this paper is that one can also obtain additive approximations in directed
graphs. However, they are not as good as those that can be obtained in undirected graphs. We give
an algorithm for computing additive approximations that are (arbitrarily) polynomially small in the
actual distance between a pair of vertices. In fact our additive approximation gives a “smooth” transi-
tion between the fastest exact O(n2.575) APSP algorithm and the O(nω) (1+ε)-multiplicative approx-
imation algorithm. En-route we will also improve the running time of Zwick’s (1 + ε)-multiplicative
approximation algorithm whenever ε ¿ 1. We also show that our results are tight in the sense that
the only way to obtain approximations, similar in quality to those achievable in undirected graphs,
is to actually improve the running time of the fastest exact APSP algorithm.

As we have mentioned above, the study of the APSP problem in graphs with small weights is
closely related to the problem of designing fast algorithms for matrix multiplication. Before turning
to discuss our new results, which also apply fast matrix multiplication algorithms, let us briefly review
the relevant results on fast matrix multiplication. Let ω(1, r, 1) be the minimal exponent for which
the product of an n × nr matrix and an nr × n matrix can be computed in O(nω(1,r,1)) time3. The
exponent ω = ω(1, 1, 1) is usually called the exponent of fast matrix multiplication. Coppersmith
and Winograd [6] proved that ω < 2.376. Coppersmith [5] showed that ω(1, 0.294, 1) = 2, that
is, the product of an n × n0.294 matrix and an n0.294 × n matrix can be computed in O(n2). Let
α = sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2}, so Coppersmith’s [5] result mentioned above can be stated as
α > 0.294. Although one can trivially obtain bounds on ω(1, r, 1) by breaking the two rectangular
matrices into small square ones, Huang and Pan [18] obtained the following improved bound on
ω(1, r, 1).

Theorem 1 ([18]) Let ω = ω(1, 1, 1) < 2.376 and α = sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2} > 0.294.
Then

ω(1, r, 1) =
{

2 0 ≤ r ≤ α
2 + ω−2

1−α(r − α) α ≤ r ≤ 1 (1)

In particular, for any 0.294 ≤ r ≤ 1 we have ω(1, r, 1) ≤ 1.843 + 0.532 · r.

2 The New Results

Let us introduce the main result of this paper. We show that it is possible to compute arbitrary
polynomially small additive approximations for the APSP in directed graphs with small weights, and
still bit the running time of the fastest exact algorithm that computes APSP.

3More generally ω(r, s, t) denotes the exponent of the fastest algorithm for multiplying an nr × ns matrix with by
an ns × nt matrix.
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ω = 2.376

p = 0

2.575

p = 1

2.575− p/(7.4− 2.3p)

Figure 1: The exponent 2.575− p
7.4−2.3p of the algorithm of Theorem 2 as a function of p.

Theorem 2 (Main Result) For every 0 ≤ p ≤ 1 there is a randomized O(n2.575− p
7.4−2.3p ) time

algorithm that given a directed graph G = (V,E), computes with high probability, for every pair
u, v ∈ V a value δ̂(u, v) satisfying

δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + δp(u, v) .

Observe that when p = 1 the running time of the above algorithm is O(n2.376) = O(nω). This
corresponds to the case considered in [24] of computing estimates δ̂(u, v) of the shortest paths satis-
fying δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + O(δ(u, v)). Also, when p = 0, that is when we want to compute
exact shortest paths, the running time of the above algorithm is O(n2.575), which is the running time
of the exact APSP algorithm of [24]. In particular, we get that for any 0 < p ≤ 1 the running time
of the algorithm of Theorem 2 is faster than O(n2.575) by a polynomial factor. So for any 0 ≤ p ≤ 1
Theorem 2 gives a “smooth” transition from the fastest exact APSP algorithm and the fastest ap-
proximation with a linear error for directed graphs with small integer weights. See Figure 1. We
stress again that in this paper we consider the APSP problem in directed graphs with small positive
integer weights, while the exact O(n2.575) APSP of [24] works also for small negative weights, and
the approximation algorithm of [24] works also for large positive edge weights.

It is also interesting to consider the performance of our algorithm under the assumption that
ω = 2. As we briefly explain later, in that case the running time of the algorithm is O(n2+ 1−p

2−p ).
Note that when p ≈ 1 this running time becomes O(n2) and when p ≈ 0 this running time becomes
O(n2.5). Recall again that assuming ω = 2 the fastest APSP algorithm runs in O(n2.5), so under the
assumption that ω = 2 the performance of the algorithm is also faster than that of the fastest exact
APSP algorithm for any 0 < p ≤ 1. The resulting transition from p = 0 to p = 1 is similar to the
one in Figure 1 only now it is between 2.5 and 2.

We note that the only way one can use previous results in order to obtain approximations with
the quality of those given in Theorem 2 is to use the (1 + ε)-multiplicative approximation algorithm
of [24] with 1/n1−p. However, the running time of this algorithm is O(nω+1−p) which is slower than
the running time of the algorithm we obtain in Theorem 2 for any 0 ≤ p < 1 . As we show in the
next subsection, when ε = 1/nt we can improve the running time of the algorithm of [24] but even
this improvement does not directly imply the result in Theorem 2 and more ideas are needed.
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2.1 An improved multiplicative approximation algorithm

The main ingredient that we need in order to obtain our main result stated in Theorem 2 is an
algorithm for computing (1 + ε) multiplicative approximations of the shortest paths in direct graphs
with small integer weights. As we will see later, we will need to apply this algorithm when ε = 1/nt

for some t > 0, that is when ε ¿ 1. Zwick’s algorithm [24] for computing such approximations runs
in time O(nω+t). The following theorem shows that for such values of ε one can obtain a faster
algorithm.

Theorem 3 For every ε = 1/nt there is a randomized O(nω(1,1−t,1)+t) time algorithm that given a
directed graph G = (V, E), computes with high probability, for every pair u, v ∈ V a value δ̂(u, v)
satisfying

δ(u, v) ≤ δ̂(u, v) ≤ (1 + ε)δ(u, v) .

Given the current bounds on ω(1, r, 1) that were given in Theorem 1, we see that when ε = 1/nt

the running time of the algorithm of Theorem 3 is O(nω+0.468·t), which improves Zwick’s algorithm
[24] that runs in time O(nω+t).

The algorithm given in Theorem 3 applies two of the main ideas from [24]. The first is the use
of random sampling and rectangular matrix multiplication that was used in [24] in order to obtain
an exact APSP algorithm. The second is the idea of scaling that was used in [24] in order to obtain
an approximate APSP algorithm.

2.2 “Hardness” results

A natural qualitative question that arises given Theorem 2 is whether one can design approximation
algorithms for APSP whose running time is faster than that of the fastest O(n2.575) APSP algorithm
by some polynomial factor4 and yet supply better than a polynomially small additive error. For
example, given the results of [9, 2] on additive approximations in undirected graphs that we have
mentioned before, one can ask if for some c > 0, it is possible to design an O(n2.575−c) time algorithm
that will compute estimates δ̂(u, v) satisfying δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + O(log δ(u, v)). As the
following proposition shows, even if we consider a relaxed version of this problem, where the error
is relative to n rather than δ(u, v), such an algorithm would imply an improvement over the fastest
APSP algorithm.

Proposition 2.1 Suppose that for some r ≥ ω and ε ≤ 1
2 there is an O(nr) time algorithm5 that

given a directed graph G = (V, E) computes for any pair u, v ∈ V a value δ̂(u, v) satisfying

δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + nε .

Then there is an O(nr+2rε) time algorithm for the exact APSP problem. In particular, if ε = o(1)
and r = 2.575 − c for some positive c > 0, then there is also an O(n2.575−c) time algorithm for the
exact APSP problem.

4Remember that when we measure the running time in the context of fast matrix multiplication based algorithms,
we disregard no(1) factors so we are only interested in running time that is faster by a factor of nc for some c > 0.

5We assume (for convenience) that r ≥ ω because this problem is at least as hard as computing transitive closure
of a graph, which is equivalent to boolean matrix multiplication.
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So the above proposition implies that if we are interested in an algorithm that runs faster than
the best APSP algorithm by a polynomial factor, then unless we improve over the fastest APSP
algorithms, all we can hope for is to obtain a polynomially small additive error.

The next proposition gives another such “hardness” result. One can ask if the O(nω+0.468·t)
running time of the algorithm of Theorem 3 can be improved. For simplicity we consider algorithms
with running time O(nω+βt) for some 0 < β < 1, and show the following:

Proposition 2.2 Suppose that for some β = 0.468− c and for every ε = 1/nt there is an O(nω+βt)
time algorithm that given a directed graph G = (V, E) computes for any pair u, v ∈ V a value δ̂(u, v)
satisfying δ(u, v) ≤ δ̂(u, v) ≤ (1 + ε)δ(u, v). Then there is an O(n2.575−c/4) time APSP algorithm.

We note that although the above proposition assumes that the running time of an alleged im-
proved algorithm is of type O(nω+βt), the argument gives similar hardness result for (essentially)
any type of running time.

2.3 Organization and overview

The rest of the paper is organized as follows: in Section 3 we describe the algorithm whose running
time was stated in Theorem 3. In Section 4 we apply Theorem 3 in order to obtain the main result
of this paper stated in Theorem 2. In Section 4 we also prove Propositions 2.1 and 2.2. Section 5
contains some concluding remarks and open problems.

As we have already mentioned, we focus in this paper on directed graphs with small integer
weights, that is, weights taken from the sets {1, . . . , no(1)}. One can easily adapt the analysis to the
case where the weights are taken from the set {1, . . . , nt} but such a generalization does not require
additional ideas and only complicates the analysis. Note also that the algorithms as stated above
are randomized and only estimate the distances and do not produce actual paths with the estimated
distances. The reason is that derandomizing these algorithms and turning them into algorithms that
produce the paths, can be obtained by using known ideas that already appeared in previous papers.

3 The Improved Multiplicative Approximation Algorithm

In this section we consider directed graphs with positive integer weights from the set {0, . . . , M},
where M = no(1). We start with some definitions and a short overview of the approximation algorithm
of [24] for computing (1 + ε) approximated distances in O(nω/ε). We then proceed to present our
improved (1 + ε) approximation algorithm whose running time is polynomially faster when ε ¿ 1.

3.1 Computing distance products

The computation of shortest paths lengths can be reduced to computation of min-plus products:

Definition 3.1 (Min-plus products) The min-plus product C = (cij) = A ? B, where A = (aij)
is an `×m matrix and B = (bij) is an m× n matrix is defined as follows: cij = minm

k=1{aik + bkj},
for 1 ≤ i ≤ ` and 1 ≤ j ≤ n.
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algorithm dist-prod(A,B, M)

a′ij ←
{

(m + 1)M−aij if aij ≤ M ;
0 otherwise.

b′ij ←
{

(m + 1)M−bij if bij ≤ M ;
0 otherwise.

C ′ ← fast-prod(A′, B′)

cij ←
{

2M − blogm+1 c′ijc if c′ij ≤ 0;
∞ otherwise.

return C

algorithm apx-dist-prod(A,B,M,R)

Ĉ ←∞
for i ← blog2 Rc to dlog2 Me do

A′ ← scale(A, 2i, R)
B′ ← scale(B, 2i, R)
C ′ ← dist-prod(A′, B′, R)
Ĉ ← min{Ĉ, 2i

R C ′}
return Ĉ

algorithm scale(A,M, R)

a′ij ←
{ d R

M aije if aij ≤ M ;
∞ otherwise.

return A′

Figure 2: The algorithm apx-dist-prod and its subroutines

The min-plus product is known also as distance product. If D is a matrix that contains the
weights of the edges of a given graph then Dn, the nth power of D with respect to distance product,
is the distance matrix of that graph.

The next Lemma was first stated by [3], following a related idea of [23].

Lemma 3.2 Let A be an n × nr matrix and let B be an nr × n matrix, both with elements taken
from {0, . . . , M} ∪ {+∞}. Then, the distance product A ? B can be computed in O(Mnω(1,r,1)) time.

Based on this Lemma it is possible to use fast matrix multiplication in order to compute distance
product. The algorithm dist-prod is given in Figure 3 (fast-prod is the fast matrix multiplication
algorithm). It receives two matrices A and B, where A is an n × m matrix, B is an m × n and
m = nr. The algorithm returns an n × n matrix C, where C = A ? B. The running time of the
algorithm is O(Mnω(1,r,1)).

3.2 The approximate distance product algorithm

In this section we present the 1 + ε approximation algorithm of Zwick from [24] whose running time
is O(nω/ε). The algorithm is based on a clever scaling technique.

The main ingredient in the algorithm of [24] is the algorithm apx-dist-prod. The algorithm is
given in Figure 3. It receives two matrices A and B and computes an approximation of their distance
product. The algorithm apx-dist-prod uses the algorithm scale to scale the elements of A and B
each time with a different scale factor. The algorithm scale gets a matrix A whose elements are
taken from {0, . . . ,M} and returns a matrix A′ whose elements are the elements of A scaled and
rounded up to elements taken from {0, . . . , R}.

Next, we restate a Lemma from [24] which shows that the matrix returned by apx-dist-prod is
a good approximation of A ? B. Note that we adjust the Lemma to our future needs by stating it
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with respect to rectangular matrices and not just to square matrices as it is in [24]. For completeness
the proof of this Lemma is included in the Appendix.

Lemma 3.3 Let A be an n × nr matrix let B be an nr × n matrix, and suppose that elements of
A and B that are larger than M are replaced with ∞. Set C = A ? B and let M and R be powers
of two. Let Ĉ be the matrix returned by apx-dist-prod(A,B, M,R). Then, cij ≤ ĉij ≤ (1 + 4

R)cij.
The running time of apx-dist-prod(A,B, M, R) is O(min{R, M} · nω(1,r,1) · log M).

The algorithm of [24] that computes a (1+ε) approximation using the approximated computation
of the distance product is given in the left side of Figure 3. Note that is uses apx-dist-prod when
A,B are always square matrices. It sets R to be the first power of two that is greater or equal
to 4dlog2 ne/ ln(1 + ε). It follows from Lemma 3.3 that after dlog2 ne iterations the stretch of the
elements of F is at most:

(
1 +

4
R

)dlog2 ne
≤

(
1 +

ln(1 + ε)
dlog2 ne

)dlog2 ne
≤ 1 + ε . (2)

The total running time of the algorithm is O(nω/ε) so if ε = 1/nt the running time is O(nω+t).
As it may be clear by now, the main idea of this algorithm is that once we are ready to settle
for approximated distances then we can reduce the order of the numbers that are involved in the
computation of the distance products. However, the dependency in ε is still large. Notice also that
the matrices A′ and B′ which apx-dist-prod passes to dist-prod are squared matrices. Thus, the
main ingredient that [24] uses in order to obtain the speedup in his exact algorithm is not used here
and the distance product is done between two square matrices. This is exactly the ingredient that
we use in order to reduce the dependency in ε. In particular, we use the bridging sets technique of
[24] to obtain our improved algorithm. The improved algorithm is given in the right side of Figure 3.

The algorithm sets R to be the first power of two that is greater or equal to 4dlog3/2 ne/ ln(1+ ε).
As opposed to the approximation algorithm of [24] (and similarly to the exact algorithm of [24]) our
algorithm is composed of dlog3/2 ne iterations instead of dlog2 ne. In the `th iteration, a random subset
B` of V of size min{n, (9n lnn)/(3/2)`} is chosen. Notice that B` = V in the first log3/2(9 ln n) =
O(log log n) iterations. However, from that point onwards, the size of B` shrinks at each iteration
by a factor of 2/3.

In the `th iteration the algorithm computes the approximate distance product between F [V,B]
and F [B, V ], that is, the rectangular matrices F [V, B] and F [B, V ] obtained by taking only the
columns of F that corresponds to B and the rows of F that corresponds to B, respectively. As
opposed to the exact algorithm of [24] (and similarly to the approximation algorithm of [24]) our
algorithm computes the approximation of the distance product. Moreover, as the matrices that
apx-dist-prod receives are rectangular then the distance product is done by exploiting this fact.

We claim that apx-shortest-path2 computes, with high probability, 1+ε approximations of the
distances in the graph. This follows from the next Lemma, whose proof appears in the Appendix.

Lemma 3.4 Let i, j ∈ V . If there is a shortest path from i to j in G that uses at most (3/2)` edges,
then after the `th iteration, with high probability, fij ≤ (1 + 4

R)`δ(i, j).
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algorithm apx-shortest-path1 (D, ε)

F ← D

M ← max{dij | dij 6= ∞}
R ← 4dlog2 ne/ ln(1 + ε)
R ← 2dlog2 Re

for ` ← 1 to dlog2 ne do

F ′ ← apx-dist-prod(F, F, nM, R)
F ← min{F, F ′}

return F

algorithm apx-shortest-path2 (D, ε)

F ← D

M ← max{dij | dij 6= ∞}
R ← 4dlog 3

2
ne/ ln(1 + ε)

R ← 2dlog2 Re

for ` ← 1 to dlog 3
2
ne do

s ← (3
2)`

B ← sample(V, 9n ln n/s)
F ′ ← apx-dist-prod(F [∗, B], F [B, ∗], sM,R)
F ← min{F, F ′}

return F

Figure 3: Zwick’s approximation algorithm [24] on the left, and the improved algorithm on the right.

3.3 Proof of Theorem 3

We start by observing that if ε = 1/nt then the algorithm apx-shortest-path2 uses R of order
O(log n/ log(1 + 1/nt)) = O(nt) (we use the fact that log(1 + ε) ≈ ε). Consider iteration ` of the
algorithm and let r be such that s = (3/2)` = n1−r, and note that this means that |B`| = O(nr). The
running time of the `th iteration of the algorithm is clearly dominated by the cost of apx-dist-prod.
By Lemma 3.3, the cost of computing the distance product of A, whose size is n × nr, and B,
whose size is nr × n, is O(min{M, R} · nω(1,r,1)), where M is the the largest element that appears
in A and B. When our improved algorithm apx-shortest-path2 calls apx-dist-prod it passes two
rectangular matrices A and B, whose sizes are n × nr and nr × n. From the assumption that the
graph has small integer weights, it follows that at this stage sM = O(n1−r). Hence, the running
time of apx-dist-prod is O(min{n1−r, nt} · nω(1,r,1)). As ω(1, r, 1) + t is increasing with r and
ω(1, r, 1) + 1 − r is decreasing with r, we infer that, ignoring poly-logarithmic factors, the worse
running time of dist-prod is the iteration where ω(1, r, 1) + t = ω(1, r, 1) + 1 − r, that is, when
r = 1 − t. Hence, the running time of the worst iteration is O(nω(1,1−t,1)+t). The total running
time of apx-shortest-path2 is also O(nω(1,1−t,1)+t) as it is dominated by the calls to dist-prod
and there are only O(log n) such calls. Combining Lemma 3.4 with the same argument that is used
in (2), we get that after dlog3/2 ne iterations the algorithm apx-shortest-path2 computes a (1 + ε)
approximation of the distances in the graph.

4 Proof of Main Result

In this section we prove Theorems 2 as well as Propositions 2.1 and 2.2. For the proof of Theorem 2
we will need the following well known fact, whose proof is included for completeness in the Appendix.

Claim 4.1 For every 0 ≤ t ≤ 1, there is a randomized O(n3−t) time algorithm, that given a directed
graph G with small positive integer weights, computes (with high probability) the shortest path from
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u to v for every u, v ∈ V that satisfy δ(u, v) ≥ nt.

Proof of Theorem 2: Let 0.294 ≤ ` ≤ 1 be a value to be chosen later. The key observation is
that in order to compute approximations of δ(u, v) to within an additive error δp(u, v) it is enough
to compute the exact shortest paths of G of length at least n` (as in Claim 4.1) as well as compute
a (1 + 1/n(1−p)`)-multiplicative approximation of the shortest paths of G (in the sense of Theorem
3), and then take, for each pair u, v, the best of the two values as the estimate of the shortest
paths in G. Indeed, if δ(i, j) ≥ n` then we can get the exact value of δ(u, v) via Claim 4.1. If
δ(i, j) ≤ n` then the (1 + 1/n(1−p)`)-multiplicative approximation of Theorem 3 returns a value
δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + δp(u, v).

Thus, it remains to choose the value of ` that will minimize the total running time of the two
algorithms. The running time of the algorithm of Claim 4.1 is n3−` and the running time of the
(1 + 1/n(1−p)`)-multiplicative approximation algorithm of Theorem 3 is nω(1,1−(1−p)`,1)+(1−p)`. Note
that the running time of the first algorithm decreases with ` and the running time of the second
algorithm increases with `, so we need to find the solution of the equation

ω(1, 1− (1− p)`, 1) + (1− p)` = 3− ` . (3)

By Theorem 1 we know that for any 0.294 ≤ r ≤ 1 we have ω(1, r, 1) = 1.843 + 0.532r. So plugging
this into the above equation we get:

1.843 + 0.532(1− (1− p)`) + (1− p)` = 3− ` ,

and this is equivalent to
2.376 + 0.468(1− p)` = 3− ` .

The solution of this equation is ` = 0.624
1.468−0.468p . Note that indeed for any 0 ≤ p ≤ 1 we have

0.294 ≤ ` ≤ 1. We get that the running time of the algorithm is

O(n3− 0.624
1.468−0.468p ) = O(n2.575− p

7.4−2.3p )

We have commented after the statement of Theorem 2 that under the assumption ω = 2 the
running time of the algorithm of Theorem 2 is O(n2+ 1−p

2−p ). To see this, note that if ω = 2 then
equation (3) becomes 2 + (1− p)` = 3 − `, whose solution is ` = 1

2−p , giving that the running time

is indeed O(n2+ 1−p
2−p ). We end this section with the proofs of Propositions 2.1 and 2.2.

Proof of Proposition 2.1: Given an n-vertex graph G = (V, E) let us construct a graph G′ =
(V ′, E′) on m = n1+2ε vertices, where G′ is obtained from G as follows: we replace every vertex v
with two vertices vin and vout that are connected by a path of length n2ε−1 on vertices xv

1, . . . , x
v
n2ε−2.

All the above vertices are distinct, that is, the path connecting vin and vout and the one connecting
uin and uout are disjoint. Hence, G′ indeed contains m = n1+2ε vertices. Finally for every edge (u, v)
of G we have an edge connecting uout to vin in G′. It is not difficult to see that for any u 6= v we
have δG′(uin, vin) = n2ε · δG(u, v).
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Our assumption is that we can compute for all pairs i, j ∈ V ′ an estimation δ̂(i, j) satisfying

δG′(i, j) ≤ δ̂G′(i, j) ≤ δG′(i, j) + mε ≤ δG′(i, j) + n2ε − 1 (4)

in time O(mr) = O(nr+2rε), where in the rightmost inequality we have used the assumption that
ε ≤ 1

2 . We claim that this means that within the same time we can compute all the values δG(u, v).
Indeed, combining the fact that δG′(uin, vin) = n2ε · δG(u, v) with (4) we infer that

n2ε · δG(u, v) ≤ δ̂G′(uin, vin) ≤ n2ε · δG(u, v) + n2ε − 1 .

Observe that this means that

δG(u, v) =

⌊
δ̂G′(uin, vin)

n2ε

⌋
,

so all the exact distances can be computed with an additional cost of O(n2) time.

Proof of Proposition 2.2: Observe that if we compute estimates δ̂(u, v) satisfying δ(u, v) ≤
δ̂(u, v) ≤ (1 + ε)δ(u, v), where ε = 1/nt, then in particular we have computed all the shortest paths
of length at most nt. Remember also that by Claim 4.1 we can compute all the shortest paths
of length at least nt in time n3−t. So if there is an O(nω+(0.468−c)t) algorithm for computing the
multiplicative estimates, then solving 3− t = ω + (0.468− c)t we get that by choosing t = 3−ω

1.468−c we

obtain an algorithm for computing exact APSP in time O(n3− 0.624
1.468−c ) = O(n2.575−c/4).

5 Concluding Remarks and Open Problems

• A natural open problem is to improve the running time of the algorithm given in Theorem 1 for
any 0 ≤ p ≤ 1, that is, to obtain a faster transition between the exact and the multiplicative
APSP algorithms.

• Our algorithm runs in time O(nω+c) for any p < 1. Is there a p < 1 for which one can find
additive approximation within an error δp(u, v) and still have running time O(nω)?

• The algorithm of Theorem 3 improves over the algorithm of [24] when ε ¿ 1 and the input
graph has small integer weights. Is it possible to improve the result of [24] when ε ¿ 1 and
still have running time that depends logarithmically on the size of the largest edge weight in
the graph?
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6 Appendix

Proof of Lemma 3.3: If M ≤ R then the rounding performed by the scale procedure have
no affect, and therefore the running time is given by the running time of dist-prod , which is
O(M · nω(1,r,1)) by Lemma 3.2. Similarly, if M ≥ R then the calls to scale reduce the numbers to
order R and again the running time is O(R · nω(1,r,1)) by Lemma 3.2.

As the elements of A and B are rounded up in the scaling algorithm it follows that cij ≤ ĉij . In
what follows we show that ĉij ≤ (1 + 4

R)cij . Let cij = aik + bkj and wlog let bkj ≥ aik. Assume that
2s−1 < bkj ≤ 2s, where 1 ≤ s ≤ log2 M . The case that s ≤ log2 R is treated in the first iteration of
apx-dist-prod when i = log2 R and ĉij = cij . Thus, we focus on the case that log2 R < s ≤ log2 M .
In the iteration where i = s we have:

2i · a′ik
R

≤ aik +
2i

R
,

2i · b′ik
R

≤ bik +
2i

R
,

and after the call to dist-prod we have:

ĉij ≤ 2i · a′ik
R

+
2i · b′ik

R
≤ aik + bkj +

2i+1

R
≤ (1 +

4
R

)cij .

Proof of Lemma 3.4: The proof is by induction on `. For ` = 0, the claim is obvious. Assuming
the claim holds for `− 1, we prove that it also holds for `. Let i, j ∈ V be two vertices and assume
that the shortest path from i to j uses at most s = (3/2)` edges and at least 2s/3 = (3/2)`−1 edges,
otherwise the claim regarding i and j already holds after the (`− 1)-st iteration from the induction
hypothesis.
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Let i′ and j′ be two vertices on the path from i to j, where i′ is closer to i and j′ is closer to j.
Assume also that there are exactly s/3 edges between i′ and j′ and at most s/3 edges between i and
i′ and j′ and j.

At least one of the vertices on the path from i′ to j′ belongs to B = B`, with high probability.
The probability that this is not the case is at most (1− 9 ln n

s )s/3 < n−3. As there are only n2 pairs
of vertices in the graph, and only O(log n) iterations, the probability that this condition will fail to
hold even once throughout the running of the algorithm is at most O(log n/n).

Let k ∈ B` be a vertex on the path from i′ to j′. It is easy to see that both the path from i to
k and the path from k to j have at most 2s/3 edges, and thus, by the induction hypothesis we have
fik ≤ (1 + 4

R)`−1δ(i, k) and fkj ≤ (1 + 4
R)`−1δ(k, j). From Lemma 3.3 we know that after calling

apx-dist-prod we have fij ≤ (1 + 4
R)(fik + fkj). Combining it all together we get:

fij ≤ (1 +
4
R

)(fik + fkj)

≤ (1 +
4
R

)((1 +
4
R

)`−1δ(i, k) + (1 +
4
R

)`−1δ(k, j))

= (1 +
4
R

)`(δ(i, k) + δ(k, j))

= (1 +
4
R

)`δ(i, j) .

Proof of Claim 4.1: The algorithm samples a set of vertices S of size 10n1−t log n and computes
(using Dijkstra’s algorithm) the single source shortest paths from all the vertices of S as well as
the shortest paths to all the vertices of S. As the running time of Dijkstra’s [8, 13] algorithm is
O(m + n log n) = O(n2) we get that this step takes time O(n3−t). Finally, for any pairs of vertices
u, v, the estimate of the shortest paths between u, v that the algorithm returns is calculated by
minw∈S(δ(u, w) + δ(w, v)). Clearly this step can also be carried out in O(n3−t) so the total running
time is indeed O(n3−t).

As for correctness, it is clearly enough to show that with high probability, if δ(u, v) ≥ nt then
S contains at least on vertex on (one of) the shortest paths from i to j. Let us observe that as
the weights of the graph are positive and small, if δ(u, v) ≥ nt then the shortest path from u to v
contains nt−o(1) vertices. For simplicity, let us assume that there are actually nt such vertices. Fix
any pair u, v and a shortest path between them of length at least nt. The probability that S does
not contain any of the vertices of this path is at most (1−1/n1−t)|S| ¿ 1/n3. So by the union bound
the probability that there is some pair u, v, satisfying δ(u, v) ≥ nt, such that S does not contain any
vertex from a the shortest path connecting them, is O(1/n).
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