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Abstract

A linear equation on k unknowns is called a (k, h)-equation if it is of the form
∑k

i=1 aixi = 0,
with ai ∈ {−h, . . . , h} and

∑
ai = 0. For a (k, h)-equation E, let rE(n) denote the size of the

largest subset of the first n integers with no solution of E (besides certain trivial solutions).
Several special cases of this general problem, such as Sidon’s equation and sets without three-
term arithmetic progressions, are some of the most well studied problems in additive number
theory. Ruzsa was the first to address the general problem of the influence of certain properties
of equations on rE(n). His results suggest, but do not imply, that for every fixed k, all but an
O(1/h) fraction of the (k, h)-equations E are such that rE(n) > n1−o(1). In this paper we address
the generalized problem of estimating the size of the largest subset of the first n integers with no
solution of a set S of (k, h)-equations (again, besides certain trivial solutions). We denote this
quantity by rS(n). Our main result is that all but an O(1/h) fraction of the sets of (k, h)-equations
S of size k − b

√
2kc + 1, are such that rS(n) > n1−o(1). We also give several additional results

relating properties of sets of equations and rS(n).

1 Introduction

1.1 Background

For an integer n we denote the set {1, . . . , n} by [n] and the set {−n, . . . , n} by [−n, n]. Call an
equation E of the form

∑k
i=1 aixi = 0 with integers ai ∈ [−h, h] and

∑k
i=1 ai = 0 a (k, h)-equation. In

this paper we will be interested in integer sets without certain non-trivial solutions to sets of (k, h)-
equations. We will mainly follow the terminology of [7]. Suppose [k] can be partitioned into disjoint
(non-empty) subsets A1, . . . , Ag such that

∑
i∈Aj

ai = 0 for every set Aj . Clearly, any sequence
x1, . . . , xk in which xi1 = xi2 whenever i1 and i2 belong to the same set Aj is a solution of E. We call
such a solution trivial. Obviously, any solution in which all the integers are distinct is non-trivial,
and any solution in which all the integers are identical is trivial. For a (k, h)-equation E we let rE(n)
denote the size of the largest subset of [n] without non-trivial solutions of E. In this paper we will
be interested in cases where 1 ¿ k ¿ h ¿ n.

Several special cases of estimating rE(n) are some of the most well studied problems in additive
number theory. For example, it is easy to derive from Szemerédi’s celebrated theorem about integer
sets without long arithmetic progressions [9], that for every fixed k and h and every (k, h)-equation,
we have rE(n) = o(n). When E is the equation x1+x2−x3−x4 we get Sidon’s problem. This problem
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has been extensively studied and it is known that in this case rE(n) = (1+o(1))
√

n (see [7] for proofs
and references). Here and throughout the paper, o(1) represents a quantity that approaches 0 as n
tends to infinity. When E is the equation x1 +x2− 2x3 we get the (even more well studied) problem
of the largest subset of [n] without three term arithmetic progressions (see [7]). The following lower
bound is known (which applies to the three-term arithmetic progressions equation as a special case).
Its proof is an easy consequence of Behrend’s construction [1].

Theorem 1 ([1]) For every h there is c = c(h) > 0, such that for every pair of integers a1, a2 ∈
[−h, h], and for every large enough n, there is X ⊂ [n] of size at least n/ec

√
log n = n1−o(1) with no

non-trivial solution of a1x1 + a2x2 − (a1 + a2)x3 = 0.

In [7], Ruzsa gave several general results on rE(n) based on certain properties of the equation E.
It seems that one of the most important properties of an equation is its genus which is defined in [7]
as the largest integer g, such that [k] can be partitioned into disjoint subsets A1, . . . , Ag such that∑

i∈Aj
ai = 0 for every set Aj . The following result is proved in [7].

Theorem 2 ([7]) For every (k, h)-equation E of genus g we have rE(n) = O(n1/g).

The results of [7] suggest the following possibility (though, quoting [7], ”there is too little positive
support to call it a conjecture.”)

Problem 1 Is it the case that for every (k, h)-equation E of genus g, rE(n) ≥ n1/g−o(1)?

As the sum of the coefficients of a (k, h)-equation is 0, it is clear (see Lemma 3.3) that there are
Θ(hk−1) such equations (where the hidden constant depends only on k. Recall that we are interested
in the cases where k ¿ h ). Similarly, there are Θ(hk−2) such equations of genus at least 2. It thus
follows that if indeed rE(n) = n1/g−o(1) then all the (k, h)-equations E besides a c(k)/h fraction of
them are such that rE(n) ≥ n1−o(1), where c(k) is a constant that depends only on k. To simplify the
presentation of the paper, whenever we write c(k) we mean a constant that depends only on k. Our
main result in this paper is that such a phenomenon is true for large enough sets of linear equations
on k unknowns.

1.2 New Results

Let S be a set of linear equations on k unknowns. Let ai,1, . . . , ai,k denote the coefficients of equation
i in S. Suppose [k] can be partitioned into g disjoint subsets A1, . . . , Ag such that for every Aj

and every equation i we have
∑

p∈Aj
ai,p = 0. Clearly any solution in which xi1 = xi2 whenever

i1 and i2 belong to the same set Aj is a solution of S. We call such a solution trivial. For a set
of (k, h)-equations S we let rS(n) denote the size of the largest subset of [n] without non-trivial
solutions of S. It is rather easy to show that for some sets of equations all but an O(1/h) fraction
of them are such that rS(n) > n1−o(1). For example, by Theorem 1 for every (3, h)-equation E,
we have rE(n) > n1−o(1). As another example, consider sets of k − 2 (k, h)-equations on the same
set of k unknowns. It is easy to show (e.g. using Lemma 3.2) that all but an O(1/h) fraction of
them satisfy certain linear independence properties, that enable one to extract an equation of type
a1x1 + a2x2 − (a1 + a2)x3 = 0, and by Theorem 1 there is a subset of [n] of size n1−o(1) with no
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nontrivial solution to such an equation. Thus, all but O(1/h) of pairs of equations S, on 4 unknowns
are such that rS(n) > n1−o(1). Same applies for sets of three equations on 5 unknowns. Our main
result is that for larger k one may consider much smaller sets of equations.

Theorem 3 For an integer k ≥ 6 let t be the largest integer satisfying
(t
2

) ≤ k (hence, t ≥ b√2kc).
Then, there is a constant c = c(k, h) > 0 such that all but c(k)/h of the sets S, of k − t + 1
(k, h)-equations on k unknowns are such that

rS(n) ≥ n/ec
√

log n = n1−o(1).

We stress that in proving Theorem 3 we make no assumption regarding the answer to Problem 1.
We also make no real effort to optimize the constants c(k) and c(k, h) in Theorem 3. We mention that
using the main idea of [5], the lower bound on rS(n) in Theorem 3 can be improved to n/ec log1/p n

where p ≈ log k. As in this paper we are interested in whether rS(n) > n1−o(1) we will not describe
this slightly better lower bound. As we observe at the end of the proof, we actually prove a stronger
claim; namely, that all but a small fraction of the sets are such that the only solution is one in which all
the integers are identical (which is always a trivial solution). Observe, that the well studied problem
of sets of integers without k-term arithmetic progressions (see [2], [3], [5], [6] and [9]) is actually the
study of the largest subset of [n] with no k integers, which satisfy a set of k − 2 equations of type
xi + xi+2 − 2xi+1 = 0. Though we do not explicitly state it in the course of the proof, the details of
the proof of Theorem 3 actually give a simple sufficient criterion by which one can conclude that for
a given set S as in the statement of Theorem 3, rS(n) ≥ n1−o(1) holds. See the discussion after the
proof of Theorem 3.

One may also try to find properties of sets of equations and their effect on rS(n), and thus obtain
bounds for specific sets of equations. To this end we extend the notion of a genus to sets of equations
as follows: define the genus of a set of equations S, to be the largest integer g, such that [k] can be
partitioned into g disjoint non-empty subsets A1, . . . , Ag such that for every Aj and every equation
i in S we have

∑
p∈Aj

ai,p = 0. Note, that for a set containing one equation, this is equivalent to the
genus of an equation as we have previously defined. Our first result is the following:

Theorem 4 For every set of equations with genus g and rank t we have rS(n) = O(nt/g).

We also prove the following theorem, which proves that Theorem 4 cannot be generally improved.

Theorem 5 There are sets of equations S with genus g and rank g, which satisfy rS(n) = n.

An interesting consequence of the above theorem is that unlike the case of single equations, where
for every equation E we have rE(n) = o(n), for sets of equations we may have rS(n) = n. We also
raise the following possibility as an open problem.

Problem 2 Is it the case that for every S of genus g we have rS(n) ≥ n1/g−o(1)?

We finally prove the following theorem relating Problems 1 and 2.

Theorem 6 Problems 1 and 2 are equivalent.
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The proof of Theorem 3 is given in Sections 2 and 3. In Section 2 we study special sets of linear
equations, which we call diagonalized. In Section 3 we give the proof of Theorem 3. Using the results
on diagonalized sets of equations from Section 2, we show that most sets of equations have certain
non-degenerate properties that allow us to infer that certain points, defined by the set of equations
(its parametric representation as defined in Section 2), do not all lie on a high-dimensional sphere.
To this end, we use certain properties of multi-variate polynomials. In Section 3 we use a version of
Behrend’s argument [1] (already used in [8]), in which one represents integers as high-dimensional
vectors in order to show that some high dimensional sphere contains many integers with no non-
trivial solution of a given set of equations. Our proof of Theorem 3 is also somewhat motivated by
the interpretation of Laba and Lacey [5] of the construction of Behrend [1]. In Section 4 we prove
Theorems 4, 5 and 6 and also discuss some open problems and additional observations.

2 Diagonalized Sets of Equations

In this section we deal with a special kind of sets of linear equations on k unknowns. We start with
the following definition:

Definition 2.1 (F(k, h, t)) For positive integers t < k, let F(k, h, t) denote the collection of all sets
of k − t + 1 (k, h)-equations on k unknowns x0, . . . , xk−1.

A set of equations S ∈ F(k, h, t) is called diagonalized if the only non-zero coefficients of the
set are the following: (i) The coefficients of x0, . . . , xt−2 (ii) The coefficient of xt−2+i in equation
i (the coefficients of the second type can be thought of as forming a diagonal). The advantage of
diagonalized sets is that they make the proofs and notations very easy compared to general sets of
equations. We start with the following simple claim that helps us represent integers that satisfy a
diagonalized set of equations as an image of a certain linear function.

Claim 2.2 Suppose that for an integers t we have a set of k ≥ t reals z0, . . . , zk−1 that satisfy the
following diagonalized set of k − t + 1 linear equations (where the solution is obtained by setting
x0 = z0, . . . , xk−1 = zk−1):

ai,0x0 + ai,1x1 + . . . + ai,t−2xt−2 − (ai,0 + . . . + ai,t−2)xt−2+i = 0. 1 ≤ i ≤ k − t + 1 (1)

For 1 ≤ i ≤ k− t + 1 put di = ai,0 + . . . + ai,t−2 and d =
∏

i di. Then for 0 ≤ j ≤ k− 1 we can write

zj = z0 + pj,1 · z1 − z0

d
+ . . . + pj,t−2 · zt−2 − z0

d
, (2)

such that the (t− 2)-tuples (pj,1, . . . , pj,t−2) are the following:

1. (p0,1, . . . , p0,t−2) = (0, . . . , 0).

2. For 1 ≤ j ≤ t− 2 we have (pj,1, . . . , pj,t−2) = d · ej where ej is the jth unit vector of size t− 2.

3. For t− 1 ≤ j ≤ k − 1 we have (pj,1, . . . , pj,t−2) = d
dj−t+2

(aj−t+2,1, . . . , aj−t+2,t−2).
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Proof: Observing (2) one can immediately see that the first two assertions are trivial. For the
third, note that by (1) for every t− 1 ≤ j ≤ k− 1 the integer zj appears only in equation j − (t− 2)
of (1). To simplify notation set i = j − (t − 2) and consider equation i in (1) after substituting
x0 = z0, . . . , xk−1 = zk−1. Note that we can rewrite each such equation as

ai,0z0 + ai,1(z1 − z0) + ai,1z0 + . . . + ai,t−2(zt−2 − z0) + ai,t−2z0 − di(zt−2+i − z0)− diz0 = 0. (3)

Rearranging the above (recall that di = ai,0 + . . . + ai,t−2 and that we denote i = j − t + 2) gives

zj = zt−2+i = z0 + ai,1 · z1 − z0

di
+ . . . + ai,t−2 · zt−2 − z0

di
.

Thus, we can indeed use (pj,1, . . . , pj,t−2) = d
di

(ai,1, . . . , ai,t−2) in (2).

For the rest of the proof we need some additional definitions. As will become clear later, we will
mainly be interested in the (t−2)-tuples that define the integer solution z0, . . . , zk−1 of a diagonalized
sets of equations in Claim 2.2. To this end, we define the parametric representation of a diagonalized
set S ∈ F(k, h, t) as the set {p0, . . . , pk−1} of (t − 2)-tuples which Claim 2.2 returns, where each pi

is short for (pi,1, . . . , pi,t−2). We will also use the parametric representation of such a set when we
regard the coefficients ai,j as unknowns. Note that in such a case, each coordinate pi,j of each of
these (t − 2)-tuples is a linear function in each of the unknowns ai,j . In order to carry our proof
we will also need some basic notions from analytic geometry. A d-dimensional quadric is the set of
points (x1, . . . , xd) ∈ Rd that satisfy an equation of type (for convenience we use x0 = 1)

∑

0≤i≤j≤d

ci,j · xi · xj = 0.

A quadric is non-zero if some ci,j 6= 0. Note that a d-dimensional quadric has
(d
2

)
+2d+1 coefficients.

Definition 2.3 (The matrix At−2(P )) Fix any t ≥ 4. Given a set P of k =
(t−2

2

)
+2(t−2)+1 =

(t
2

)

points P = {p0, . . . , pk−1} with pi = (pi,1, . . . , pi,t−2) ∈ Rt−2, let At−2(P ) be the k × k matrix of the
matrix representation of the set of homogenous linear equations, which force a (t − 2)-dimensional
quadric with coefficients ci,j to pass through p0, . . . , pk−1. For example, for t = 4 we can write this
set of equations as 



p2
0,1 p0,1p0,2 p2

0,2 p0,1 p0,2 1
p2
1,1 p1,1p1,2 p2

1,2 p1,1 p1,2 1
p2
2,1 p2,1p2,2 p2

2,2 p2,1 p2,2 1
p2
3,1 p3,1p3,2 p2

3,2 p3,1 p3,2 1
p2
4,1 p4,1p4,2 p2

4,2 p4,1 p4,2 1
p2
5,1 p5,1p5,2 p2

5,2 p5,1 p5,2 1







c1,1

c1,2

c2,2

c0,1

c0,2

c0,0




= 0.

Definition 2.4 (Degenerate) Fix any integer t ≥ 4. For a diagonalized set S ∈ F(
(t
2

)
, h, t) let

p0, . . . , p(t
2)−1 be its parametric representation. Denote by At−2(S) the matrix obtained by plugging

pi,j in the matrix At−2 of Definition 2.3. The set S is called degenerate if At−2(S) is not invertible.
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Claim 2.5 Let At−2(S) be the matrix from Definition 2.4 when we regard the coefficients ai,j of a
diagonalized set S ∈ F(

(t
2

)
, h, t) as unknowns. Let D be the determinant of this matrix. Then, D is

a non-zero polynomial of degree at most t2 in each variable.

Proof: Call the matrix A for short. Recall that by Claim 2.2 each coordinate of the parametric
representation is linear in each of the unknowns ai,j . As each entry of A has degree at most 2, the
degree of each ai,j in each entry is at most 2. The polynomial D represent a determinant, therefore
we can view it as a sum of monomials. As A has less than t2/2 rows, each monomial has less than
t2/2 terms. Therefore, the degree of each ai,j in each monomial, and hence also in D, is at most t2.

We turn to show that D is not identically zero. It will be simpler to show this by requiring the
unknowns ai,0 to satisfy ai,0 = 1 −∑t−2

j=1 ai,j for every 1 ≤ i ≤ (t
2

) − t + 1 (this is clearly a stronger
claim). We thus get in the parametric representation of S that d1 = . . . = d(t

2)−t+1 = d = 1. Hence,
by Claim 2.2 (3), for i ≥ t − 1 we have pi,j = ai−t+2,j . Furthermore, by Claim 2.2 (1), (2) we
have for 0 ≤ i ≤ t − 2 that the ith row of the matrix contains only 0s and 1s. In fact, the only
non zero entry in the first row is the rightmost. Thus, when computing the determinant of A we
may disregard the first row and rightmost columns of A. More importantly, it is easy to see (recall
Definition 2.3 and the example of d = 2) that we can find distinct columns i1, . . . , it−2 such that
the entries A1,i1 = . . . = At−2,it−2 = 1, and there are no other 1s in these columns within rows
1, . . . , t − 2. Consider row i ≥ t − 1 of the matrix. By our choice of ai,0, this row is the only one
in which the unknowns ai−t+2,1, . . . , ai−t+2,t−2 appear. Moreover, by definition of At−2 in Definition
2.3, each entry of this row contains a different combination of ai−t+2,1, . . . , ai−t+2,t−2. Thus, any term
in the expansion of the determinant which uses i1, . . . , it−2 in rows 1, . . . , t− 2 will have a coefficient
precisely 1. Furthermore, the combination of the unknowns ai−t+2,j of this term cannot appear in
another one, hence, it will not cancel. Therefore, D is not identically zero.

As a non zero polynomial cannot vanish everywhere, we immediately obtain that for some choice
of coefficients ai,j , that is, not necessarily integers from [−h, h], the polynomial D does not vanish.
In other words:

Corollary 2.6 For every integer t ≥ 4, there is a non-degenerate diagonalized set of
(t
2

) − t + 1
equations in

(t
2

)
unknowns (possibly with non-integer coefficients).

3 Proof of the Main Theorem

In this section we consider arbitrary sets of equations from F(k, h, t) as defined in the previous
section. As in the previous section, we will mainly look at the coefficients of these equation as
unknowns. In order to distinguish general sets of equations from diagonalized sets of equations, we
will denote the coefficients of the former by bp,q and of the later by ap,q as we did in the previous
section. We start with the following simple claim, in which a rational function of degree r is any
quotient of two polynomials of degree at most r in each unknown. In what follows, r(k) will denote
any quantity that depends only on k.

Claim 3.1 Let S ∈ F(k, h, t) be a set of equations with coefficients bp,q, and suppose we consider
them as unknowns. Then, there is an equivalent diagonalized set Sdiag, with coefficients ai,j, such
that each ai,j is a rational function of degree r(k) in each of the coefficients bp,q. Also, none of the
denominators of ai,j is identically zero.
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Proof: We just use Gaussian elimination. Initially we have ai,j = bi,j and therefore the degree
of each ai,j in each bp,q is at most 1. As we perform at most k operations on each equation, and
each operation at most doubles the maximum degree of each ai,j as a function of any other bp,q, the
resulting ai,j are rational functions in each bp,q of degree bounded by a function r(k) that depends on
k only. Finally, note that if one of the denominators of ai,j is identically zero, then for any assignments
to the unknowns bp,q, the resulting diagonalized set after the Gaussian elimination process has some
entries which are not well-defined. This, however, is clearly not the case. For example, when S is
already diagonalized, Sdiag is just S and all its entries are well-defined.

Note that the output of the above claim is a diagonalized set in the sense that all the coefficients
ai,j that should be zero in order to satisfy the properties of a diagonalized set (see beginning of
Section 2) are given by rational functions in bp,q that are identically zero. Clearly there are some
assignments to the unknowns bp,q for which the diagonalized set Sdiag is not well-defined. These are
the sets S for which the denominators of some of the rational functions that represent ai,j vanish.
Sdiag is called well-defined if none of the denominators of ai,j vanish. Note, that in such a case S and
Sdiag are equivalent in the sense that every solution of one is also a solution of the other. In what
follows we will use the following lemma of Zippel (c.f., e.g. [4]).

Lemma 3.2 Let F be an arbitrary field, and let f = f(x1, . . . , xb) be a non-zero polynomial in
F [x1, . . . , xb]. Suppose the degree of f in each variable is at most r. Then, if H is a subset of F with
|H| > r, there are at most |H|b − (|H| − r)b = c(r, b)|H|b−1 assignments x1 ∈ H, . . . , xb ∈ H so that
f(x1, . . . , xb) = 0.

Lemma 3.3 For every t ≥ 4 and k ≥ (t
2

)
, all but a c(k)/h fraction of S ∈ F(k, h, t) are such that:

(i) Sdiag is well defined.

(ii) The points of the parametric representation of Sdiag do not all lie on any non-zero (t − 2)-
dimensional quadric.

Proof: Denote the number of equations in each set of F(k, h, t) by e = k− t + 1. Note that for any
choice of k − 1 integers from [−h/k, h/k] we can find an integer in [−h, h] such that the sum of the
k integers is 0. We thus get that F(k, h, t) contains at least (h/k)k−1 equations. Furthermore, we
may conclude that F(k, h, t) contains at least c(k)he(k−1) sets of equations. Thus, we may prove the
claim by showing that there are at most c(k)he(k−1)−1 sets of equations in F(k, h, t) for which either
(i) or (ii) does not hold. Consider the coefficients bp,q of the equations in F(k, h, t) as unknowns, and
use Claim 3.1 in order to obtain an equivalent diagonalized set of equations with unknowns ai,j that
are given by rational functions in bp,q. Denote this new set by Sdiag.

We first show that only c(k)he(k−1)−1 of the equations of F(k, h, t) are such that (i) does not
hold. Let B be the product of the denominators of all the unknowns ai,j in Sdiag. As each ai,j

is a rational function of degree at most r(k) and there are less than tk < k2 coefficients ai,j , one
may conclude that B is a polynomial of degree at most r(k) in each of the unknowns bp,q. As by
Claim 3.1 none of the denominators is identically zero, B is not identically zero. Clearly if for some
assignment to the unknowns bp,p the polynomial B does not vanish, then Sdiag is well defined. By
Lemma 3.2 with F = R, H = [−h, h], r = r(k) and b = e(r − 1) we get that there are at most
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c(k)he(k−1)−1 assignments to the coefficients bp,q for which B vanishes, therefore there are at most
this many equations in F(k, h, t) for which Sdiag is not well defined.

We turn to show that only c(k)he(k−1)−1 of the equations of F(k, h, t) are such that (ii) does
not hold. Let W be the first

(t
2

) − t + 1 equations of Sdiag, and note that they form
(t
2

) − t + 1
equations on

(t
2

)
unknowns. We will prove a statement somewhat stronger than needed, namely,

that only c(k)he(k−1)−1 of the equations of F(k, h, t) are such that the points of the parametric
representation of W all lie on some non-zero (t − 2)-dimensional quadric. Consider the set W with
unknowns ai,j . As in Claim 2.5, let A = At−2(W ) be the matrix in Definition 2.4, and D the
polynomial of its determinant in unknowns ai,j . By Definition 2.3, the

(t
2

)
points in Rt−2 of the

parametric representation of W cannot all lie on a (t − 2)-dimensional non-zero quadric if A is
invertible. Equivalently, these points do not lie on a non-zero quadric if the value of the polynomial
D defined above, when evaluated on the coefficients of this set of equations, is defined and non-zero.
It thus follows that we can simply show that D is either not defined or vanishes only on c(k)he(k−1)−1

of the assignment (to the unknowns bp,q which determine the value of ai,j), which consist of integers
from [−h, h].

Now recall that each ai,j is a rational function in the unknowns bi,j of degree at most r(k) and
by Claim 2.5 the degree of each ai,j in D is at most t2. Thus, D is also a rational function of degree
at most r(k) in each bp,q. Let D1 and D2 be its nominator and denominator, respectively. As D2 is
a product of the denominators of ai,j , and by Claim 3.1 none of them is identically zero, so is D2.
We claim that D1 is also not identically zero. Suppose that D1 is identically zero. This means that
D is identically zero, hence, for every assignment to the unknowns bi,j , which does not need to be
necessarily of integers from [−h, h]), the resulting set is such that if we transform it into an equivalent
diagonalized set, we either get a set that is not well-defined (in the case where D2 vanishes) or the
first

(t
2

)
equations of the set are degenerate. This, however, is false, as we can a priori set the first(t

2

)− t + 1 equations of the set to be the (well-defined) non-degenerate diagonalized set of equations
whose existence is guaranteed by Corollary 2.6.

Consider now the product of D1 and D2. This is a non-zero polynomial in bp,q of degree r(k) in
each unknown. By Lemma 3.2, with F = R, H = [−h, h], r = r(k) and b = e(k − 1), we get that
either D1 or D2 vanish on at most c(k)he(k−1)−1 of the possible assignments to bp,q. Thus, there
are at most this many sets in F(k, h, t) for which D is either not defined or zero, which is what we
wanted to show.

As in Behrends’s construction [1], we will represent integers in base g with g being a non-fixed
integer, namely depending on n. This will allow us to look at integers as high-dimensional vectors.
In Behrend’s argument, one shows that a sphere in the high-dimensional vector space in which our
integers are represented, does not contain three-term arithmetic progressions. The main step in
our proof is to prove an analogous statement, Lemma 3.5 below, based on Lemma 3.3. We will
then conclude the proof by showing that for an appropriate choice of g we get a large set with no
non-trivial solution of S.

Given a set of integers V we denote by V +r the translate of V by r, that is, V +r = {z+r : z ∈ V }.
Note, that if V does not contain any non-trivial solution of a set S ∈ F(k, h, t) then so does any
translate of V (this is because the sum of the coefficients is zero). As we will explain shortly, it will
be simpler to prove Theorem 3 with respect to the set of integers [−n/2, n/2] rather than [n]. To
this end, we will consider representations of integers from [−n/2, n/2] in base g. For integer g and b
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satisfying n = gb, we define, for an integer w ≥ 2,

Qw = {z ∈ Z : z =
b−1∑

i=0

zi · gi, zi ∈ [−g/w, g/w]}.

In other words, all the integers whose ”digits” in base g belong to [−g/w, g/w]. As for any w ≥ 2
we have Qw ⊆ [−n/2, n/2] we may and will construct our sought after sets from integers belonging
to Qw for an appropriate constant w. Note that, somewhat unconventionally, we allow for negative
digits. This representation, however, is well defined in the sense that given z ∈ Qw, there are unique
integers z0, . . . , zb−1 ∈ [−g/w, g/w] such that z =

∑b−1
i=0 zi · gi. Given an integer z ∈ Qw we will

denote by z = (z0, . . . , zb−1) the unique b dimensional vector in Zb such that z =
∑b−1

i=0 zi · gi. We
will also denote ||z||2 = ||z||2 =

∑b−1
i=0 z2

i . Our argument will critically rely on the observation (first
made by Salem and Spencer [8]) that if w is sufficiently large then addition, and more generally
linear combinations with small coefficients, of numbers from Qw is equivalent to linear combinations
of their corresponding vectors. For example, if z1, z2, z3 ∈ Q2, then z1 + z2 = z3 if and only if
z1 + z2 = z3. The reason for that is simply that there is no carry in the base g addition of these
numbers. More generally we have the following

Fact 3.4 Suppose α, α1, . . . , αt are rational numbers with nominators and denominators bounded in
absolute value by some constant c. Then, if w is sufficiently large with respect to c, we have for every
z, z1, . . . , zt ∈ Qw that

αz =
t∑

i=1

αizi ⇐⇒ αz =
t∑

i=1

αizi. (4)

It should be noted that had we chosen to work with the set [n] rather than −n/2, . . . , n/2 and
represented integers using positive digits, then (4) would not necessarily hold for negative coefficients.
The reason is that the difference of two numbers with small positive digits may contain very large
digits. As we also allow for negative digits, the difference also contains small digits. We now arrive
at the main step of the proof, where we prove a Behrend-type argument about spheres containing
the vector representations of integers from Qw.

Lemma 3.5 For t ≥ 4 and k ≥ (t
2

)
let S ∈ F(k, h, t) be such that Sdiag is well defined and the points

of the parametric representation of Sdiag do not all lie on any non-zero (t− 2)-dimensional quadric.
For an integer r let

Xr = {z ∈ Qw : ||z||2 = r}.
Then, if w in the definition of Qw is large enough in terms of h and k, then Xr contains no non-trivial
solution of S.

Proof: Suppose to the contrary that Xr contains k integers z0, z1, . . . , zk−1, which form a non-trivial
solution of S. As Sdiag is assumed to be well defined, S and Sdiag are equivalent, thus, z0, . . . , zk−1

are also a solution of Sdiag. Also, by Claim 3.1 the coefficients of Sdiag are rational numbers, whose
nominators and (non-zero) denominators are bounded by m = m(h, k) (because these nominators
and denominators are polynomials in h of degree bounded by a function of k). By Claim 2.2, there
are (t− 2)-tuples p0, . . . , pk−1 which form the parametric representation of z0, . . . , zk−1. That is, for
0 ≤ i ≤ k − 1 we have
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zi = z0 + pi,1 · z1 − z0

d
+ . . . + pi,t−2 · zt−2 − z0

d
. (5)

Recall, that by Claim 2.2, each pi,j is either d or d · ai,j/di and that d =
∏

di. Thus, as by
assumption all the coefficients of Sdiag are rational numbers whose nominators and denominators are
bounded in absolute value by m = m(h, k), we get that each of the nominators and denominators of
the rational numbers pi,j are bounded in absolute value by a function depending only on m and k.
As m depends on h and k, we conclude that the nominators and denominators of pi,j are bounded
by a function of h and k. Multiplying (5) by d we get that for 0 ≤ i ≤ k − 1 we have

d · zi = d · z0 + pi,1 · (z1 − z0) + . . . + pi,t−2 · (zt−2 − z0). (6)

Hence, if w is large enough in terms of h and k, we can use (4) to write (6) as 1

d · zi = d · z0 + pi,1 · (z1 − z0) + . . . + pi,t−2 · (zt−2 − z0). (7)

Define the following (t− 2)-variate polynomial of degree 2

P (x1, . . . , xt−2) :=
b−1∑

q=0

(
d · (z0)q + x1 · (z1 − z0)q + . . . + xt−2 · (zt−2 − z0)q

)2
,

where (v)q denotes the qth entry of the vector v. The key observation now is that by (7) we have for
0 ≤ i ≤ k − 1 that

P (pi,1, . . . , pi,t−2) = ||dzj ||2 = d2||zj ||2.
Therefore, as by assumption all the integers zi belong to Xr, we have for 1 ≤ i ≤ k − 1 that

P (pi,1, . . . , pi,t−2)− d2r = 0.

Hence, the k points p0, . . . , pk−1 ∈ Rt−2 all lie on the (t − 2)-dimensional quadric defined by the
equation P (x1, . . . , xt−2)−d2r = 0. This will contradict our choice of the coefficients of the equations
once we show that P (x1, . . . , xt−2)−d2r is not identically zero. To see that this indeed the case, note
that P is a sum of squares, hence, the coefficients of the monomials x2

1, . . . , x
2
t−2 are sums of squares.

Therefore, it is enough to show that for some 1 ≤ j ≤ t−2, and 0 ≤ q ≤ b−1, we have (zj − z0)q 6= 0.
This, however, must be true, as otherwise we would get that z1 − z0 = z2 − z0 = . . . = zt−2 − z0 = 0
and by (5) we would thus get that z0 = z1 = . . . = zk−1, contradicting our assumption that these
integers form a non-trivial solution.

As in Behrend’s argument, we are now just left with the task of optimizing the value of g and b
(recall that we write n = gb) in order to deduce that one of the sets Xr contains many integers.

Proof of Theorem 3: For an integer k ≥ 6, let t be the largest integer satisfying k ≥ (t
2

)
(hence,

t ≥ 4). In Lemma 3.3 it is proved that if t ≥ 4 and k ≥ (t
2

)
, then only a c(k)/h fraction of the sets of

equations S ∈ F(k, h, t) are such that either Sdiag is not well-defined or the points of the parametric
representation of Sdiag all lie on a non-zero (t− 2)-dimensional quadric. We claim that for any other

1We actually use (4) twice. The first time, to get that z1 − z0, . . . , zt−2 − z0 ∈ Qw′ for a possibly w′ ≤ w and the
second, to derive (7), given that z1 − z0, . . . , zt−2 − z0 ∈ Qw′ .
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set S we can construct a subset X ⊆ [n] of size n/ec
√

log n with no non-trivial of S, where c = c(h, k).
By Lemma 3.5, provided w is large enough in terms of h and k, we have that for any integer r the
set Xr contains no non-trivial solution of S. As the absolute value of each digit in Qw is bounded
by g/w, the integer r can take at most b(g/w)2 ≤ bg2 values. Similarly, we have that Qw is of size
(2g/w)b > (g/w)b. As the union of the sets Xr covers the entire set Qw there must be one r for
which |Xr| ≥ (g/w)b/bg2 = n/bg2wb. Setting b =

√
log n, and hence g = e

√
log n, gives that some Xr

is of size at least n/ec
√

log n for an appropriate constant c = c(h, k).

As was alluded to in the introduction, observe that the details of Lemma 3.5 actually show that
under the conditions of the lemma, Xr does not contain a solution in which two of the integers are
distinct. Therefore, the only solution of the sets S, discussed in the proof of Theorem 3, which use
integers from the set constructed in the proof of the theorem is one in which all the integers are
identical. This is clearly a much stronger property than not containing non-trivial solutions.

One can also derive from the details of the proof of Theorem 3 and the claims and lemmas used
in its proof, the following simple criterion for inferring that for a given set S we have rS(n) > n1−o(1):
Let M be the (k − t + 1) × k matrix containing the coefficients of the equations of the set. If M
cannot be transformed into a diagonalized set we cannot say anything. If it can be transformed into
such a set, then let Sdiag be the new set of equations, and let A(Sdiag) be the matrix from Definition
2.4. Then, if A(Sdiag) is non-singular, we have rS(n) > n1−o(1).

4 Additional Results and Open Problems

The main result of this paper establishes that most large enough sets of equations S, are such that
rS(n) > n1−o(1). As we have observed at the end of Section 3, the details of the proof actually give a
simple sufficient criterion that enables one to infer that for a specific set S, rS(n) > n1−o(1). In this
Section we try to give upper bounds and lower bounds for rS(n) based on specific properties of the
set S.

The first question one may ask is whether there are any sets of equations that do not satisfy
rS(n) > n1−o(1) and more interestingly, how large can such a set be. Of course, one can construct
arbitrarily large such sets of equations simply by taking many copies of an equations E, for which
rE(n) ≤ n1−ε. Recall that by Theorem 2 any equation E with genus g ≥ 2, satisfies rE(n) ≤ √

n. It
thus seems more adequate to require the equations of the set to be linearly independent. Even with
this requirement it is easy to show that there are large sets which satisfy rS(n) ≤ n1−ε.

Proposition 4.1 For every k ≥ 4 and h, there is a set S of k−3 linearly independent (k, h)-equations
for which rS(n) = O(

√
n).

Proof: For every k ≥ 4 consider the set S of equations e1, . . . , ek−3 on unknowns x1, . . . , xk where
for 1 ≤ i ≤ k − 3 equation ei is x1 + x2 − x2+i − x3+i = 0. Clearly, these equations are linearly
independent. To show that rS(n) = O(

√
n), recall that for Sidon’s equation E := x1+x2−x3−x4 = 0

it is known (see [7]) that rE(n) = (1 + o(1))
√

n. Thus, any set of size at least (1 + o(1))
√

n contains
a non-trivial solution of E, namely z1, z2, z3, z4 such that z1 + z2 − z3 − z4 = 0. Note, that if we
assign x1 = z1, x2 = z2, x3 = x5 = x7 = . . . = z3 and x4 = x6 = x8 = . . . = z4 we get a non-trivial
solution of S.
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In what follows, a set S of equations e1, . . . , et on 2g unknowns is called symmetric, if every
equation ei ∈ S is of the form

ai,1x1 + ai,2x2 + . . . + ai,gxg − ai,g+1xg+1 − ai,g+2xg+2 − . . .− ai,2gx2g = 0. (8)

where ai,j = ai,j+g for every 1 ≤ j ≤ g. In the following proofs, it will be more convenient to write
a symmetric equation as

ai,1x1 + ai,2x2 + . . . + ai,gxg = ai,g+1xg+1 + ai,g+2xg+2 + . . . + ai,g2x2g. (9)

We now turn to prove Theorem 4, which establishes a connection between the genus of a set of
equations, its rank and rS(n).

Proof of Theorem 4: First note that a non-trivial solution of a subset of a set of equations cannot
be a trivial solution of the entire set. Thus, it is enough to show that every subset of [n] of size
Ω(nt/g) contains a non-trivial solution of the t equations that span the entire set of equations (whose
rank is by assumption t). We will thus confine ourselves to sets of t linearly independent equations.
The proof will mainly follow the main idea of the proof of Theorem 3.6 in [7].

Consider first, any symmetric set S of t equations on 2g unknowns x1, . . . , x2g as in (9). We claim
that for such a set rS(n) = O(nt/g). The proof for the case of general sets of equations will follow by
a certain reduction to this special case. Fix any subset X ⊆ [n]. Let s(b1, . . . , bt) denote the number
of solutions of the set of t equations ai,1x1 + ai,2x2 + . . . + ai,gxg = bi with integers xi taken from X.
As all the coefficient ai,j belong to [−h, h], the only feasible bi are such that −ghn ≤ bi ≤ ghn. In
other words

∑

−ghn≤b1,...,bt≤ghn

s(b1, . . . , bt) = |X|g. (10)

Observe, that
∑

s2(b1, . . . , bt) is precisely the number of solutions of S including the trivial solutions
(recall that ai,j = ai,j+g for every 1 ≤ j ≤ g). By Jensen’s inequality and (10) we get that

∑

−ghn≤b1,...,bt≤ghn

s2(b1, . . . , bt) ≥ |X|2g

(2ghn)t
. (11)

We now bound the total number of trivial solutions of S. Consider any partition of [2g] into disjoint
non-empty subsets A1, . . . , Aw such that for every equation i and every Aj we have

∑
p∈Aj

ai,p = 0.
As every Aj must be of size at least 2, we have w ≤ g. It thus follows that for every such partition
the total number of solutions in which xi1 = xi2 whenever i1, i2 belong to the same set Aj is
at most |X|g. Hence, the total number of trivial solutions is at most c(g)|X|g where c(g) is the
total number of partitions of [2g]. Now, if X contains no non-trivial solution of S, we must have
|X|2g/(2ghn)t ≤ c(g)|X|g and therefore |X| = O(nt/g).

Now, consider an arbitrary set of t equations u1, . . . , ut on k unknowns of genus g. As the set
has genus g, there is a partition of [k] into A1, . . . , Ag, such that for every equation ui and every Aj

we have
∑

p∈Aj
ai,p = 0. For every set Aj pick any integer r(j) ∈ Aj and for every 1 ≤ i ≤ t and

1 ≤ j ≤ g set bi,j = bi,j+g = ai,r(j). For each equation ui consider an auxiliary symmetric equation ei

bi,1y1 + bi,2y2 + . . . + bi,gyg = bi,1+gy1+g + bi,2+gy2+g + . . . + bi,2gy2g. (12)
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Observe that any solution of e1, . . . , et can be transformed into a solution of u1, . . . , ut by setting, for
every 1 ≤ j ≤ g, xr(j) = yj and xp = yj+g for every r(j) 6= p ∈ Aj (recall that for every equation i
and Aj we have

∑
r(j)6=p∈Aj

ai,p = −ai,r(j)). We further claim that a non-trivial solution of equations
e1, . . . , et translates to a non-trivial solution of u1, . . . , ut. Assume this is not the case. Thus, for any
integer ` we have

∑

{i:xi=`}
ai = 0. (13)

By the definition of the transformation and the fact that bi,j = bi,j+g we also have

∑

{i:xi=`}
ai =

∑

{i:yi=`}
bi. (14)

As by assumption the solution of e1, . . . , et is non-trivial there is some ` for which the right side of
(14) does not vanish, thus contradicting (13). The proof is now complete as by the first part of the
proof, the largest subset of [n] with no non-trivial solution of e1, . . . , et is of size O(nt/g).

While is seems reasonable that for a single equation with genus g we have rE(n) = n1/g−o(1),
Theorem 5, which we now turn to prove, shows that for sets of equation this is far from being the
case. This theorem also shows that the bound of Theorem 4 cannot be generally improved.

Proof of Theorem 5: For every integer g ≥ 2 consider a symmetric set of g equations e1, . . . , eg on
2g unknowns x1, . . . , x2g as in (9). Clearly this set has genus g, as in every equation the sum of the
coefficient of xj and xj+g is 0. Consider the matrix G with Gi,j = ai,j . Clearly if G is non-singular
(e.g. when ai,i = ai,i+g = 1 and all the other entries are 0) the set of equations has rank g. We claim
that if G is non-singular then rS(n) = n. To show this, it is enough to show that every solution of S is
trivial. Consider any solution z1, . . . , z2g of S and let b1, . . . , bk satisfy bi = ai,1z1+ai,2z2+. . .+ai,gzg.
As G is invertible, there are unique z1, . . . , zg for which the value of the right hand side of (9) is bi

for every equation ei. As the left hand side of (9) has the same coefficients, it must be the case that
zj+g = zj for every 1 ≤ j ≤ g. This means that the solution is trivial.

By using Lemma 3.2, one can easily strengthen Theorem 5 by showing that in fact, all but an
O(1/h) fraction of the symmetric sets of g equations on 2g unknowns are such that rS(n) = n. The
reason is simply that for most sets the matrix G is invertible. We omit the details. Given Theorems
4 and 5 one may consider the possibility that for a set of equations S, with genus g and rank t we
have rS(n) = min(n, nt/g−o(1)). However, note that in Proposition 4.1 we construct a set of k − 3
linearly independent equations of genus 2 which satisfies O(

√
n), thus ruling out this possibility. On

the positive side, we now turn to prove Theorem 6, which shows that a somewhat weaker lower
bound on rS(n) may hold.

Proof of Theorem 6: Clearly a positive answer to Problem 2 implies a positive answer to Problem
1. So assume that it is the case that for every linear equation E of genus g we have rE(n) > n1/g−o(1).
Consider any set S of size t of (k, h)-equations with genus b. Pick t integers c1, . . . , ct, where each ci

is chosen independently and uniformly at random from {1, . . . , 2k}. Consider a linear combinations
E, of the t equations with coefficients c1, . . . , ct. Let b1, . . . , bk be the coefficients of E. We claim that
with positive probability, E has the following property: A set ∅ 6= A ⊆ [k] satisfies

∑
p∈A bp = 0 if and
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only if
∑

p∈A ai,p = 0 for all equations i. As the if part is obvious we prove the other direction. Fix
any set A such that for some i we have

∑
p∈A ai,p 6= 0. Conditioning on any choice of the coefficients

c1, . . . , ct other than ci, the probability that ci is such that
∑

p∈A bp = 0 is at most 2−k. Therefore,
the probability that

∑
p∈A bp = 0 is also at most 2−k. As there are less than 2k possible choices of a

set A, we conclude by the union bound, that with positive probability, E has the desired property.
In particular we get that E must have genus exactly b. By assumption, there is a subset of [n] of size
n1/g−o(1) with no non-trivial solution of E. As by the property of E discussed above, any non-trivial
solution of S is also a non-trivial solution of E, this set contains no non-trivial solution of S.

In light of the results proved in this section, and the gap between the upper bound of Theorem
4 and the (possible) lower bound of Theorem 6, it seems that one would have to define and study
other properties of equations, besides their genus and rank, in order to determine the value of rS(n).
It seems very interesting to further explore this problem. It seems also interesting to strengthen
Theorem 3, by showing that most sets of equations on k unknowns of size smaller than k−b√2kc+1
are such that rS(n) > n1−o(1).
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