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Abstract

Let f(n, v, e) denote the maximum number of edges in a 3-uniform hypergraph not containing
e edges spanned by at most v vertices. One of the most influential open problems in extremal
combinatorics then asks, for a given number of edges e ≥ 3, what is the smallest integer d = d(e)
so that f(n, e + d, e) = o(n2)? This question has its origins in work of Brown, Erdős and Sós
from the early 70’s and the standard conjecture is that d(e) = 3 for every e ≥ 3. The state of the
art result regarding this problem was obtained in 2004 by Sárközy and Selkow, who showed that
f(n, e+2+blog2 ec, e) = o(n2). The only improvement over this result was a recent breakthrough
of Solymosi and Solymosi, who improved the bound for d(10) from 5 to 4. We obtain the first
asymptotic improvement over the Sárközy–Selkow bound, showing that

f(n, e+O(log e/ log log e), e) = o(n2).

1 Introduction

Extremal combinatorics, and extremal graph theory in particular, asks which global properties of a
graph force the appearance of certain local substructures. Perhaps the most well-studied problems
of this type are Turán-type questions, which ask for the minimum number of edges that force the
appearance of a fixed subgraph F . Recall that an r-uniform hypergraph (r-graph for short) is
composed of a ground set V of size n (the vertices) and a collection E of subsets of V (the edges),
where each edge is of size exactly r. Note that an ordinary graph is just a 2-graph. A (v, e)-
configuration is a hypergraph with e edges and at most v vertices. Denote by fr(n, v, e) the largest
number of edges in an r-graph on n vertices that contains no (v, e)-configuration. Estimating the
asymptotic growth of this function for fixed integers r, e, v and large n is one of the most well-studied
and influential problems in extremal graph theory. For example, when e =

(
v
r

)
we get the well-known

Turán problem of determining the maximum possible number of edges in an r-graph that contains no
complete r-graph on v vertices. As another example, the case r = 2, v = 2t and e = t2 is essentially
equivalent to the Zarankiewicz–Kővári–Sós–Turán problem, which asks for the maximum number of
edges in a graph without a complete bipartite graph Kt,t.

Our focus in this paper is on a notorious question of this type, which emerged from work of
Brown, Erdős and Sós [2, 3] in the early 70’s and came to be named after them. A special case of
this so-called Brown–Erdős–Sós conjecture (see [6, 7]) states the following:
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Conjecture 1.1 (Brown–Erdős–Sós Conjecture). For every e ≥ 3,

f3(n, e+ 3, e) = o(n2).

Despite much effort by many researchers, Conjecture 1.1 is wide open, having only been settled for
e = 3 by Ruzsa and Szemerédi [14] in what is known as the (6, 3)-theorem. To get some perspective
on the significance of this special case of Conjecture 1.1, suffice it to say that the famous triangle
removal lemma (see [4] for a survey) was devised in order to prove the (6, 3)-theorem; that [14]
was one of the first applications of Szemerédi’s regularity lemma [20]; and that the (6, 3)-theorem
implies Roth’s theorem [13] on 3-term arithmetic progressions in dense sets of integers. As another
indication of the importance of this problem, we note that one of the main driving forces for proving
the celebrated hypergraph removal lemma, obtained by Gowers [9] and Rödl et al. [10, 11, 12] (see
also the paper of Tao [23]), was the hope that it would lead to a proof of Conjecture 1.1.

Since we seem to be quite far1 from proving Conjecture 1.1, it is natural to look for approximate
versions. Namely, given e ≥ 3, find the smallest d = d(e) such that f3(n, e+ d, e) = o(n2). The best
result of this type was obtained 15 years ago by Sárközy and Selkow [15], who proved that

f3 (n, e+ 2 + blog2 ec, e) = o(n2). (1)

Since the result of [15], the only advance was obtained by Solymosi and Solymosi [19], who improved
the bound f3(n, 15, 10) = o(n2) that follows from (1) to f3(n, 14, 10) = o(n2).

The main result of this paper, Theorem 1, gives the first general improvement over (1). Moreover,
it shows that one can replace the blog2 ec “error term” in (1) by a much smaller, sub-logarithmic,
term.

Theorem 1. For every e ≥ 3,

f3 (n, e+ 18 log e/ log log e, e) = o(n2).

By using asymptotic estimates for the factorial (in place of cruder bounds), one can replace the
multiplicative constant 18 in the above theorem by 4 + o(1).

Although Theorem 1 deals with 3-graphs, its proof relies on an application of the r-graph removal
lemma for all values of r. Employing the removal lemma for arbitrary r allows us to overcome a
natural barrier which stood in the way of improving the result of [15]. Since the proof of Theorem
1 is quite involved, we sketch the main new ideas underlying it in Section 2.

As we mentioned above, Conjecture 1.1 has a more general form (see [1, 16]), which states that
for every 2 ≤ k < r and e ≥ 3 we have fr(n, (r − k)e + k + 1, e) = o(nk). However, it is a folklore
observation that this more general version is in fact equivalent to the special case stated as Conjecture
1.1 (corresponding to k = 2 and r = 3). Since this reduction does not appear in the literature, we
will give its proof here. In fact, we will prove the following more general statement:

Proposition 1.2. For every 2 ≤ k < r, e ≥ 3 and d ≥ 1,

fr(n, (r − k)e+ k + d, e) ≤
(
r

3

)
enk−2 · f3(n, e+ 2 + d, e).

1As an indication of the difficulty of Conjecture 1.1, let us mention that the case e = 4 (i.e., the statement f3(n, 7, 4) =
o(n2)) implies the notoriously difficult Szemerédi theorem [21, 22] for 4-term arithmetic progressions, see [7].
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Setting d = 1 in the above proposition readily implies that Conjecture 1.1 is indeed equivalent
to the general form of the Brown–Erdős–Sós conjecture stated above. The reason for stating the
proposition for arbitrary d is that it allows us to infer approximate versions of the general Brown–
Erdős–Sós conjecture from approximate versions of Conjecture 1.1. In particular, by combining
Theorem 1 with Proposition 1.2, we immediately obtain the following corollary.

Corollary 2. For every 2 ≤ k < r and e ≥ 3,

fr (n, (r − k)e+ k − 2 + 18 log e/ log log e, e) = o(nk).

The rest of the paper is organized as follows. In Section 2, we give an overview of the main ideas
which go into the proof of Theorem 1. We also state the two key lemmas of the paper and explain
how they imply Theorem 1. We then prove these two lemmas in Sections 3 and 4. Finally, in Section
5, we discuss an application of our results to a generalized Ramsey problem of Erdős and Gyárfás
which is known to have connections to the Brown–Erdős–Sós problem. Throughout the paper, we
make no effort to optimize any of the constants involved. All logarithms are natural unless explicitly
stated otherwise.

2 Proof Overview and Proof of Theorem 1

Our goal in this section is fourfold. We first give an overview of the proof of Theorem 1. In doing
so, we will state the two key lemmas, Lemmas 2.4 and 2.6, used in its proof. We will then proceed
to show how these two lemmas can be used in order to prove Theorem 1. Finally, in Section 2.4, we
prove Proposition 1.2.

2.1 Proof overview and the key lemmas

Our first simple (yet crucial) observation towards the proof of Theorem 1 is that, in order to prove
the theorem, it is enough to prove the following approximate version.

Lemma 2.1. For every e ≥ 40320 = 8! and ε ∈ (0, 1), there is n0 = n0(e, ε) such that every
3-graph H with n ≥ n0 vertices and at least εn2 edges contains a (v′, e′)-configuration satisfying
e−
√
e ≤ e′ ≤ e and v′ − e′ ≤ 8 log e/ log log e.

In Section 2.3 we will show how to quickly derive Theorem 1 from the above lemma. So let us
proceed with the overview of the proof of Lemma 2.1. We will heavily rely on the hypergraph removal
lemma, which states the following.

Theorem 3 (Hypergraph removal lemma [9, 10, 11, 12]). For every k ≥ 2 and ε > 0 there is
γ = γ(k, ε) such that the following holds. Let n ≥ 1 and let J be a k-uniform n-vertex hypergraph
which contains a collection of at least εnk pairwise edge-disjoint (k+ 1)-cliques. Then J contains at
least γnk+1 (k + 1)-cliques.

Let us start by describing the approach of Sárközy and Selkow [15], which roughly proceeds as
follows: suppose one has already proved that every sufficiently large n-vertex 3-graph with Ω(n2)
edges contains an (e + k, e)-configuration. Using this fact, one then shows that every such 3-graph
also contains a (2e + k + 2, 2e + 1)-configuration. In other words, at the price of increasing v − e
by 1, we multiply the number of edges by roughly 2 (and hence the term log2 e in (1)). The proof
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of [15] used the graph removal lemma (at least implicitly2). As we mentioned before, Solymosi and
Solymosi [19] improved the bound of [15] for the special case e = 10. The way they achieved this was
by cleverly replacing the application of the graph removal lemma with an application of the 3-graph
removal lemma. Roughly speaking, this allowed them to multiply a (6, 3)-configuration by 3, instead
of by 2 as in [15].

The above discussion naturally leads one to try and extend the approach of [19] by showing that
after multiplying the initial configuration by 3, one can use the 4-graph removal lemma to multiply
the resulting configuration by 4, etc. Performing k such steps should (roughly) give a (k! + k, k!)-
configuration, or equivalently, a (v, e)-configuration with v − e = O(log e/ log log e). There is one
big challenge and two problems with this approach. The challenge is of course how to achieve this
repeated multiplication process.3 As to the problems, the first is that we do not know how to
guarantee that one can indeed keep multiplying the size of the configurations. In other words, it
is entirely possible that this process might get “stuck” along the way (this scenario is described in
Item 1 of Lemma 2.4). More importantly, even if the process succeeds in producing a (k! + k, k!)-
configuration for every k, it is not clear how to interpolate so as to prove Theorem 1 for values of e
with (k − 1)! < e < k!. That is, our process only guarantees the existence of suitable configurations
for a very sparse set of values of e. It it tempting to guess that the resulting (k!+k, k!)-configurations
are “degenerate”, in the sense that one can repeatedly remove from them vertices of degree 1, thus
maintaining the difference v − e. This is however false. Having said that, we will return to this
degeneracy issue after the statement of Lemma 2.6.

In what follows, it will be convenient to use the following notation.

Definition 2.2. For a 3-graph F and U ⊆ V (F ), the difference of U is defined as ∆(U) := |U |−e(U).
We will write ∆(F ) for ∆(V (F )), i.e., ∆(F ) := v(F )− e(F ), and call ∆(F ) the difference of F .

Our first key lemma, Lemma 2.4 below, comes close to achieving what is described in the paragraph
above. Given an n-vertex 3-graph H with Ω(n2) edges, the lemma almost resolves the challenge
mentioned in the previous paragraph by either showing that H contains configurations with difference
k and size roughly k! (this is the statement of Item 2) or getting stuck in the scenario described in
Item 1. The silver lining in Item 1 is that we get an arithmetic progression of values v for which we
can construct (v, e)-configurations of small difference. The problem is that the common difference
of this arithmetic progression might be much larger than

√
e, so this lemma alone cannot be used in

order to prove Lemma 2.1.

The key definition in Lemma 2.4 is the notion of a nice 3-graph, which we now define. Satisfying
this definition makes a 3-graph amenable to the arguments we use in the proof of Lemma 2.4.

Definition 2.3. Let F be a 3-graph and put k := ∆(F ) = v(F ) − e(F ). We call F nice if there is
an independent set A ⊆ V (F ) of size k + 1 such that the following holds for every U ⊆ V (F ).

1. ∆(U) ≥ |U ∩A| − 1A⊆U .

2. If |U ∩A| ≤ k − 1 and U \A 6= ∅, then ∆(U) ≥ |U ∩A|+ 1.

Lemma 2.4. There is a sequence (Fk)k≥3 of 3-graphs such that ∆(Fk) = v(Fk) − e(Fk) = k, Fk is
nice for each k ≥ 4, e(F3) = 3 and e(Fk) = 5k!/12 for each k ≥ 4, and the following holds. For
every k ≥ 4, r ≥ 1 and ε ∈ (0, 1), there are η = η(k, r, ε) ∈ (0, 1) and n0 = n0(k, r, ε) such that every
3-graph H with n ≥ n0 vertices and at least εn2 edges satisfies (at least) one of the following:

2We will extend their approach in Lemma 2.6 by using the removal lemma explicitly.
3The special case in [19] of multiplying a (6, 3)-configuration by 3 proceeds by case analysis which is not generalizable.
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1. There are 3 ≤ j ≤ k − 1 and j ≤ q ≤ v(Fj)− 1 such that, for every 1 ≤ i ≤ r, the 3-graph H
contains a (v′, e′)-configuration with v′ − e′ ≤ j and v′ = q + i · (v(Fj)− q).

2. H contains at least ηnk copies of Fk.

Remark 2.5. A recurring theme in our arguments is that, given some suitable 3-graph F , we will be
able to show that every sufficiently large n-vertex 3-graph H with Ω(n2) edges contains Ω(nv(F )−e(F ))
copies of F (unless H satisfies the assertion of Theorem 1 for some other reason). This estimate for
the number of copies of F is tight, since a random hypergraph with edge density 1

n has O(nv(F )−e(F ))
copies of F w.h.p.

The proof of Lemma 2.4 proceeds by induction on k. Namely, assuming H contains Ω(nk−1) copies
of Fk−1, we show that either H contains Ω(nk) copies of Fk or Item 1 holds. This is done as follows.
Recalling that Fk−1 is nice (for k ≥ 5), we fix a set A ⊆ V (Fk−1) of size |A| = k which witnesses
this fact (see Definition 2.3). For each embedding ϕ : V (Fk−1)→ V (H) of Fk−1 into H, we consider
the set ϕ(A) ⊆ V (H). By a straightforward argument (combining an application of the multicolor
Ramsey theorem with a simple cleaning procedure), we can show that either there are embeddings
ϕ1, . . . , ϕr : V (Fk−1) → V (H) and a set U ⊆ V (Fk−1) such that |U | ≥ k − 1, |U ∩ A| ≥ k − 2
and ϕ1|U = · · · = ϕr|U ; or there is a family F of Ω(nk−1) embeddings ϕ : V (Fk−1) → V (H) such
that, for any two ϕ,ϕ′ ∈ F , the set U = {u ∈ V (Fk−1) : ϕ(u) = ϕ′(u)} (i.e., the set of elements
on which ϕ and ϕ′ agree) satisfies |U ∩ A| ≤ k − 2 (and U ⊆ A if |U ∩ A| = k − 2). In the former
case, Items 1-2 of Definition 2.3 imply that the union of the copies of Fk corresponding to ϕ1, . . . , ϕr
has difference at most k − 1 (which is also the difference of Fk−1), from which it easily follows that
Item 1 in Lemma 2.4 holds. In the latter case, we define an auxiliary (k − 1)-uniform hypergraph
by putting a (k− 1)-uniform k-clique on the set ϕ(A) for each A ∈ F . The aforementioned property
of F implies that these cliques are pairwise edge-disjoint, which allows us to apply the hypergraph
removal lemma (Theorem 3) and thus infer that the number of k-cliques in our auxiliary hypergraph
is at least Ω(nk). Using again our guarantees regarding F , we can show that most such k-cliques
correspond to copies of a particular 3-graph consisting of k copies of Fk−1 which do not intersect
outside of the set A. This 3-graph is then chosen as Fk. One of the challenges in the proof is to
then show that Fk is itself nice, thus allowing the induction to continue. The full details appear in
Section 3.

We now move to our next key lemma, Lemma 2.6 below. Let us say that a 3-graph is d-degenerate
if it is possible to repeatedly remove from it a set of at least d vertices which touches at most d edges.
As we mentioned above, the 3-graphs Fk are not 1-degenerate, so it is not possible to take one of
these 3-graphs and repeatedly remove vertices of degree at most 1 so as to obtain configurations with
any desired number of edges, while not increasing the difference. One can argue, however, that since
Lemma 2.1 only asks for e′ to satisfy e−

√
e ≤ e′ ≤ e, it is enough to show that the 3-graphs Fk are√

e(Fk)-degenerate. Unfortunately, we cannot do even this. Instead, we will overcome the problem
by using Lemma 2.6. This lemma states that if H contains many copies of some nice 3-graph G,
then it also contains copies of 3-graphs G0 = G,G1, G2, . . . which are all e(G)-degenerate and whose
sizes increase. In fact, as in Lemma 2.4, we cannot always guarantee success in finding copies of
G1, G2, . . . , G` in H, since the process might get stuck in a situation analogous to the one in Lemma
2.4. Finally, the price we have to pay for the degeneracy guaranteed by Item 2 of Lemma 2.6 is that
the size of the 3-graphs G1, G2, . . . , G` only grows by a factor of roughly k at each step. Hence, just
like Lemma 2.4, Lemma 2.6 also falls short of proving Lemma 2.1.

Lemma 2.6. Let G be a nice 3-graph, put k := ∆(G) = v(G)− e(G) and assume that k ≥ 2. Then
there is a sequence of 3-graphs (G`)`≥0 having the following properties.
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1. G0 = G, ∆(G`) = v(G`)− e(G`) = k + ` and e(G`) = k`+1−1
k−1 · e(G).

2. For every ` ≥ 0 and every 0 ≤ t ≤ e(G`)/e(G), the 3-graph G` contains a (v′, e′)-configuration
with v′ − e′ ≤ k + ` and e′ = t · e(G).

3. For every ` ≥ 0, r ≥ 0 and ε ∈ (0, 1), there are δ = δ(`, r, ε) and n0 = n0(`, r, ε) such that, for
every 3-graph H on n ≥ n0 vertices, if H contains at least εnk copies of G, then (at least) one
of the following conditions is satisfied:

(a) There are 0 ≤ j ≤ `− 1 and k + j ≤ q ≤ v(Gj)− 1 such that, for every 1 ≤ i ≤ r, the 3-
graph H contains a (v′, e′)-configuration which contains a copy of Gj, where v′−e′ ≤ k+j
and v′ = q + i · (v(Gj)− q).

(b) H contains at least δ · nk+` copies of G`.

Strictly speaking, we cannot apply Lemma 2.6 with G being an edge, since an edge is not a nice
3-graph (indeed, it has difference k = 2 but evidently contains no independent set of size k+ 1 = 3).
However, one can check that the proof also works when G is an edge (and, more generally, in any case
where k := ∆(G) = 2 and one can choose a (not necessarily independent) A ⊆ V (G) of size 3 which
satisfies Items 1-2 in Definition 2.3). By applying Lemma 2.6 with G being an edge, one recovers the
construction used by Sárközy and Selkow [15] to prove (1). Generalizing this construction to other
graphs G (e.g., for k ≥ 3) presents a challenge, which we overcome by using some of the ideas from
the proof of Lemma 2.4.

We now sketch the derivation of Lemma 2.1 from Lemmas 2.4 and 2.6 (the formal proof appears
in the next subsection). Given e, choose k so that (2k)! ≈ e; so k! ≈

√
e and k = O(log e/ log log e).

We first apply Lemma 2.4 with k. If we are at Item 1, then we get an arithmetic progression with
difference at most v(Fk) − k ≤ k! ≤

√
e of values v′ for which we can find (v′, e′)-configurations of

difference at most k, thus completing the proof in this case. Suppose then that we are at Item 2,
implying that H contains Ω(nk) copies of Fk. Since Fk is nice, we can apply Lemma 2.6 with G = Fk.
Since e(Fk) ≈ k! and (2k)! ≈ e, choosing, say, ` = 3k guarantees that e(G`) ≈ e(Fk) ·k` > e (via Item
1 of Lemma 2.6). If the application of Lemma 2.6 results in Item 3(b), then we can use Item 2 of that
lemma to find a (v′, e′)-configuration of difference O(k+ `) = O(k) with e−

√
e ≤ e− e(G) ≤ e′ ≤ e,

thus completing the proof. Finally, suppose that we are at Item 3(a). In this case we can find a
(v′, e′)-configuration G′ of difference O(k + `) = O(k) with e − e(Gj) ≤ e′ ≤ e. With the help of a
simple trick we can also find in H a copy G∗ of Gj which is edge-disjoint from G′. As in case 3(b)
above, we use Item 2 to find a sub-configuration G′′ of G∗ with e−e(G′)−e(G) ≤ e(G′′) ≤ e−e(G′).
If we now take G′′′ to be the union of G′ and G′′, we infer that G′′′ has difference O(k) and e−

√
e ≤

e− e(G) ≤ e(G′′′) ≤ e. So again we are done.

2.2 Deriving Lemma 2.1 from Lemmas 2.4 and 2.6

The required integer n0 = n0(e, ε) will be chosen implicitly. Let (Fk)k≥3 be the nice 3-graphs
whose existence is guaranteed by Lemma 2.4. Recall that e(Fk) = 5k!/12 for each k ≥ 4 and that
e(F3) = 3. Let K ≥ 8 be such that K! ≤ e < (K + 1)! and put k := bK/2c ≥ 4. Note that
e(Fk) ≤ k! ≤ (K/2)! ≤

√
K! ≤

√
e. It is not hard to check that K ≤ 2 log e/ log log e and hence

k ≤ log e/ log log e. We will now apply our second construction, given by Lemma 2.6. Set G := Fk
and let (G`)`≥0 be the sequence of 3-graphs whose existence is guaranteed by Lemma 2.6. Let ` be
the minimal integer satisfying e(G`) ≥ e. Then ` ≥ 1 (because e(G0) = e(G) = e(Fk) < e). We will
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now bound ` in terms of k. For our purposes, it will be enough to show that ` ≤ 3k. To this end,
observe that

e(G3k) =
k3k+1 − 1

k − 1
· e(G) ≥ k3k = bK/2c3bK/2c ≥ (K + 1)! > e,

where the first equality follows from Item 1 of Lemma 2.6 and the penultimate inequality holds for
every K ≥ 8. The fact that e(G3k) > e now readily implies that ` ≤ 3k.

Let H be a 3-graph with n ≥ n0 vertices and at least εn2 edges. Partition E(H) into equal-sized
parts E1, . . . , E`+1 and, for each 1 ≤ i ≤ ` + 1, let Hi be the hypergraph (V (H), Ei). Note that
e(Hi) ≥ e(H)/(`+ 1) ≥ εn2/(`+ 1) for each 1 ≤ i ≤ `+ 1.

Claim 2.7. For each 1 ≤ m ≤ `+ 1, either Hm satisfies the assertion of Lemma 2.1 or there exists
0 ≤ j ≤ ` − 1 such that Hm contains a (v′, e′)-configuration which contains a copy of Gj, where
v′ − e′ ≤ k + j and e− e(Gj) ≤ e′ ≤ e.

Proof. Evidently, it is enough to prove the claim for m = 1. We apply Lemma 2.4 to H1 with
parameters r = e + k and ε/(` + 1). Suppose first that the assertion of Item 1 in Lemma 2.4 holds
and let 3 ≤ j ≤ k − 1 and j ≤ q ≤ v(Fj) − 1 be as in that item. Let i be the maximal integer
satisfying q + i · (v(Fj) − q) ≤ e + j and note that 1 ≤ i ≤ e + j ≤ e + k. We may thus infer from
Item 1 in Lemma 2.4 that H1 contains a (v′, e′)-configuration with

v′ = q + i · (v(Fj)− q) ≤ e+ j, (2)

and
v′ − e′ ≤ j < k ≤ log e/ log log e. (3)

Note that the maximality of i guarantees that

v′ > e+ j − (v(Fj)− q). (4)

We now observe that we can assume that e′ ≤ e. Indeed, since by (3) we have v′ − e′ ≤ j, then we
can remove edges until the equality e′ = v′ − j holds. Having done that, we are guaranteed by (2)
that e′ ≤ e. As to the lower bound on e′, by (4) we have e− e′ = e+ j − v′ < v(Fj)− q ≤ v(Fj)− j.
By Lemma 2.4, we have v(Fj) − j = 5j!/12 if j ≥ 4 and v(Fj) − j = 3 if j = 3. In either case, we
get e− e′ ≤ j! ≤ k! ≤

√
e. So we see that H1 satisfies the assertion of Lemma 2.1, as required. This

completes the proof for the case that the assertion of Item 1 in Lemma 2.4 holds.

Suppose from now on that the assertion of Item 2 in Lemma 2.4 holds, namely, that H1 contains
at least ηnk copies of Fk = G. This means that we may apply Lemma 2.6 to H1. By Item 3 of
Lemma 2.6, applied with r = e + k + ` and with η in place of ε, the 3-graph H1 satisfies (at least)
one of the following:

(a) There are some 0 ≤ j ≤ `− 1 and k+ j ≤ q ≤ v(Gj)− 1 such that, for every 1 ≤ i ≤ e+ k+ `,
H1 contains a (v′, e′)-configuration which contains a copy of Gj , where v′ − e′ ≤ k + j and
v′ = q + i · (v(Gj)− q).

(b) H1 contains a copy of G` (in fact, at least δ(`, r, η) · nk+` such copies).

Suppose first that H1 satisfies Item (b). Let t ≥ 0 be the maximal integer satisfying t · e(G) ≤ e
and note that t ≤ e/e(G) ≤ e(G`)/e(G), where the second inequality uses our choice of `. By Item
2 of Lemma 2.6, H1 contains a (v′, e′)-configuration with v′ − e′ ≤ k + ` ≤ 4k ≤ 4 log e/ log log e and
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e′ = t · e(G) ≤ e. By our choice of t, we have e− e′ < e(G) = 5k!/12 ≤ k! ≤
√
e. So in this case the

assertion of Lemma 2.1 indeed holds for H1.

From now on we assume that H1 satisfies Item (a) and let 0 ≤ j ≤ `−1 and k+ j ≤ q ≤ v(Gj)−1
be as in that item. Let i be the maximal integer satisfying q + i · (v(Gj) − q) ≤ e + k + j. Then
1 ≤ i ≤ e + k + j < e + k + `. We may thus rely on (a) above to conclude that H1 contains a
(v′, e′)-configuration which contains a copy of Gj , where

v′ = q + i · (v(Gj)− q) ≤ e+ k + j, (5)

and
v′ − e′ ≤ k + j. (6)

Note that the maximality of i guarantees that

v′ > e+ k + j − (v(Gj)− q). (7)

We now observe that we can assume that e′ ≤ e. Indeed, since by (6) we have v′ − e′ ≤ k + j then
we can remove edges until the equality e′ = v′ − (k + j) holds. By (5), this would guarantee that
e′ ≤ e. Note (crucially) that since e(Gj) = v(Gj)− k − j ≤ v′ − k − j, we can make sure that even
after removing the required number of edges we still have a copy of Gj . As to the lower bound on
e′, by (6) and (7) we have e− e′ ≤ e− v′ + k+ j < v(Gj)− q ≤ v(Gj)− k− j = e(Gj). We conclude
that H1 indeed contains a (v′, e′)-configuration with the properties stated in the claim. �

We now return to the proof of the lemma. If some Hm satisfies the assertion of Lemma 2.1 then
we are done. Otherwise, Claim 2.7 implies that for each 1 ≤ m ≤ `+ 1 there is 0 ≤ jm ≤ `− 1 such
that Hm contains a (v′, e′)-configuration which contains a copy of Gjm , where v′ − e′ ≤ k + jm and
e− e(Gjm) ≤ e′ ≤ e. By the pigeonhole principle, there are two indices 1 ≤ i ≤ `+ 1 whose jm’s are
equal. It follows that for some 0 ≤ j ≤ ` − 1, H contains edge-disjoint subgraphs G∗ and G′ such
that G∗ is isomorphic to Gj and G′ satisfies v(G′)−e(G′) ≤ k+j and e−e(Gj) ≤ e(G′) ≤ e. Let t be
the maximal integer satisfying t · e(G) ≤ e− e(G′) and note that 0 ≤ t ≤ e(Gj)/e(G). Then, by Item
2 of Lemma 2.6 (with j in place of `), there is a subgraph G′′ of G∗ such that v(G′′)− e(G′′) ≤ k+ j
and e(G′′) = t · e(G). Our choice of t implies that 0 ≤ e − e(G′) − e(G′′) < e(G) ≤ k! ≤

√
e. Now,

letting G′′′ be the union of G′ and G′′, we see that e−
√
e ≤ e(G′′′) ≤ e and

v(G′′′)− e(G′′′) ≤ v(G′)− e(G′) + v(G′′)− e(G′′) ≤ 2(k + j) ≤ 2(k + `) ≤ 8k ≤ 8 log e/ log log e.

So we see that the assertion of the lemma holds with G′′′ as the required (v′, e′)-configuration.

2.3 Deriving Theorem 1 from Lemma 2.1

Our goal is to show that for every e ≥ 3 and ε ∈ (0, 1), there is n0 = n0(e, ε) such that every
3-graph with n ≥ n0 vertices and at least εn2 edges contains a (v, e)-configuration with v − e ≤
18 log e/ log log e. As in the proof of Lemma 2.1, the required integer n0 = n0(e, ε) will be chosen
implicitly. The proof is by induction on e. Let H be a 3-graph with n ≥ n0 vertices and at least εn2

edges. By (1), H contains a (v, e)-configuration with v−e ≤ 2+blog2 ec. If e ≤ exp(216), then we have
2 + blog2 ec ≤ 2 + 16 log e/ log log e ≤ 18 log e/ log log e (where the second inequality holds whenever
e ≥ 3), thus completing the proof in this case. So suppose from now on that e > exp(216) ≥ 40320.
(The inequality e ≥ 40320 is required to apply Lemma 2.1.)

By Lemma 2.1, H contains a (v′, e′)-configuration F ′ satisfying e −
√
e ≤ e′ ≤ e and v′ − e′ ≤

8 log e/ log log e. Set e′′ := e − e′, noting that 0 ≤ e′′ ≤
√
e. If e′′ ≤ 15, then, by adding at most 15
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edges to F ′, one obtains a (v, e)-configuration with v − e ≤ v′ + 3e′′ − (e′ + e′′) = v′ − e′ + 2e′′ ≤
8 log e/ log log e+ 30 ≤ 18 log e/ log log e, as required. (Here the last inequality is guaranteed by our
assumption that e is large.) So suppose from now on that e′′ ≥ 16. Let H ′ be the 3-graph obtained
from H by deleting the edges of F ′. Since e(H ′) ≥ e(H)− e(F ′) ≥ εn2− e(F ′) ≥ ε

2n
2 (provided that

n is large enough), we may apply the induction hypothesis to H ′, with parameter e′′ in place of e,
and thus obtain a (v′′, e′′)-configuration F ′′ which is edge-disjoint from F ′ (because it is contained
in H ′) and satisfies

v′′ − e′′ ≤ 18 log e′′

log log e′′
≤ 18 log

√
e

log log
√
e

=
9 log e

log log e− log 2
.

Here, in the second inequality we used the fact that the function x 7→ log x/ log log x is monotone
increasing for x ≥ 16. Letting F be the union of F ′ and F ′′, we see that e(F ) = e(F ′) + e(F ′′) = e
and v(F ) ≤ v(F ′) + v(F ′′), implying that

v(F )− e(F ) ≤ v(F ′)− e(F ′) + v(F ′′)− e(F ′′) ≤ 8 log e

log log e
+

9 log e

log log e− log 2
≤ 18 log e

log log e
,

where the last inequality holds whenever e ≥ exp(210). This completes the proof of the theorem.

2.4 Proof of Proposition 1.2

Let 2 ≤ k < r, e ≥ 3 and d ≥ 1. Let H be an n-vertex r-graph with

e(H) ≥
(
r

3

)
enk−2 · f3(n, e+ 2 + d, e).

Our goal is to show that H contains a (v, e)-configuration with v ≤ (r−k)e+k+d. By averaging, there
are vertices v1, . . . , vk−2 such that at least

(
r
3

)
e·f3(n, e+2+d, e) of the edges of H contain v1, . . . , vk−2.

Set E0 = {X \ {v1, . . . , vk−2} : v1, . . . , vk−2 ∈ X ∈ E(H)}, noting that |E0| ≥
(
r
3

)
e · f3(n, e+ 2 + d, e)

and that |Y | = r − k + 2 for each Y ∈ E0. We now consider two cases. Suppose first that there
is a triple T ∈

(
V (H)

3

)
and distinct Y1, . . . , Ye ∈ E0 such that T ⊆ Yi for each 1 ≤ i ≤ e. Setting

Xi = Yi∪{v1, . . . , vk−2} for each 1 ≤ i ≤ e, we observe that |X1∪· · ·∪Xe| ≤ (r−k−1) ·e+k−2+3 ≤
(r− k)e+ k. It follows that H contains a (v, e)-configuration with v ≤ (r− k)e+ k, thus completing
the proof in this case.

Suppose now that for each T ∈
(
V (H)

3

)
it holds that #{Y ∈ E0 : T ⊆ Y } ≤ e− 1. Then, for each

Y ∈ E0, there are at most
(
r
3

)
(e − 1) sets Y ′ ∈ E0 \ {Y } such that |Y ∩ Y ′| ≥ 3. This means that

there exists E1 ⊆ E0 of size

|E1| ≥
|E0|(

r
3

)
(e− 1) + 1

> f3(n, e+ 2 + d, e), (8)

such that |Y ∩ Y ′| ≤ 2 for each pair of distinct Y, Y ′ ∈ E1.
4 For each Y ∈ E1, choose arbitrarily

a triple TY ∈
(
Y
3

)
. Let H ′ be the 3-graph on V (H) whose edge-set is E(H ′) = {TY : Y ∈ E1}.

Then e(H ′) = |E1| > f3(n, e + 2 + d, e), where the equality holds due to our choice of E1 and the
inequality due to (8). It follows that H ′ contains an (e+ 2 +d, e)-configuration F . Now observe that
the edge-set {Y ∪ {v1, . . . , vk−2} : Y ∈ E1 and TY ∈ E(F )} spans in H a (v, e)-configuration with
v ≤ v(F ) + (r − k − 1)e+ k − 2 ≤ e+ 2 + d+ (r − k − 1)e+ k − 2 = (r − k)e+ k + d, as required.

4To see that such an E1 indeed exists, consider an auxiliary graph on E0 in which Y, Y ′ are adjacent if and only if
|Y ∩ Y ′| ≥ 3 and recall the simple fact that every graph G contains an independent set of size at least v(G)

∆(G)+1
(where

∆(G) is the maximum degree of G). Now take E1 to be such an independent set.
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Figure 1: The 3-uniform linear 3-cycle

3 Proof of Lemma 2.4

In this section we prove Lemma 2.4. The construction of the 3-graphs Fk appearing in the statement
of the lemma, as well as the proof that these 3-graphs have the required properties, is done by
induction on k. The inductive step, which constitutes the main part of the proof of Lemma 2.4, is
given by the following lemma.

Lemma 3.1. Let F be a nice 3-graph, put k = v(F )−e(F ) and assume that k ≥ 3. Then there exists
a nice 3-graph F ′ such that v(F ′) − e(F ′) = k + 1, e(F ′) = (k + 1) · e(F ) and the following holds.
For every r ≥ 1 and ε ∈ (0, 1), there are δ = δ(F, r, ε) ∈ (0, 1) and n0 = n0(F, r, ε) such that every
3-graph H with n ≥ n0 vertices and at least εnk copies of F satisfies (at least) one of the following:

1. There is k ≤ q ≤ v(F ) − 1 such that, for every 1 ≤ i ≤ r, H contains a (v′, e′) configuration
with v′ − e′ ≤ k and v′ = q + i · (v(F )− q).

2. H contains at least δnk+1 copies of F ′.

Ideally, we would like to start the induction by invoking Lemma 3.1 with F being an edge (so
k = ∆(F ) = 2). As is the case with Lemma 2.6 (see the remark following this lemma), Lemma
3.1 does in fact work with F being an edge, even though an edge is not nice as per Definition 2.3.
The 3-graph F ′ supplied by Lemma 3.1 (when applied with F being an edge) is the linear 3-cycle
(see Figure 1). In fact, applying Lemma 3.1 with F being an edge recovers the proof of the (6,3)-
theorem, which was discussed in Section 2.1. Unfortunately, the linear 3-cycle is not nice (this time in
a meaningful way; it really cannot be used as an input to Lemma 3.1), preventing us from continuing
the induction. To make matters even worse, there is in fact no 3-graph F with difference k = 3 which
is known to be a viable input to Lemma 3.1. Indeed, note that in order for the lemma to be useful
when applied with input F , we need to know that F is abundant5 in every sufficiently large n-vertex
3-graph with Ω(n2) edges (or at least in every such 3-graph that does not satisfy the conclusion of
Theorem 1 for some other reason). Unfortunately, no such nice F (of difference 3) is known.

5We say that a 3-graph F is abundant in an n-vertex 3-graph H if H contains Ω(nv(F )−e(F )) copies of F . In
particular, the edge is trivially abundant in every hypergraph with Ω(n2) edges and the condition (resp. conclusion)
of Lemma 3.1 can be stated as saying that F (resp. F ′) is abundant in H.
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In light of this situation, the base step of our induction will have to involve a nice 3-graph F
having difference at least 4. Fortunately, as stated in the following lemma, there does exist a nice
F of difference 4 which can be shown to be abundant in every 3-graph H with n vertices and Ω(n2)
edges, unless H satisfies the assertion of Theorem 1 for a trivial reason.

Lemma 3.2. There is a nice 3-graph F with v(F ) = 14 and e(F ) = 10 having the following property.
For every r ≥ 1 and ε ∈ (0, 1), there are δ = δ(r, ε) ∈ (0, 1) and n0 = n0(r, ε) such that every 3-graph
H with n ≥ n0 vertices and at least εn2 edges satisfies (at least) one of the following:

1. For every 1 ≤ i ≤ r, H contains a (3i+ 3, 3i)-configuration.

2. H contains at least δn4 copies of F .

We note that the 3-graph F in the above lemma played a key role in the proof in [19] that
f3(n, 14, 10) = o(n2). As such, the abundance statement regarding F was already proven in [19].
Consequently, our main task in the proof of Lemma 3.2 is to show that F is nice.

The rest of this section is organized as follows. In Section 3.1, we derive Lemma 2.4 from Lemmas
3.1 and 3.2. We then prove these two lemmas in Sections 3.2 and 3.3, respectively.

3.1 Deriving Lemma 2.4 from Lemmas 3.1 and 3.2

Let F3 be the linear 3-cycle (which has 6 vertices and 3 edges). Let F4 be the nice 3-graph whose
existence is guaranteed by Lemma 3.2. For each k ≥ 5, let Fk be the nice 3-graph F ′ obtained by
applying Lemma 3.1 with F := Fk−1. Then it is easy to check by induction that, for every k ≥ 4, it
holds that v(Fk)− e(Fk) = k, e(Fk) = 5k!/12 and the 3-graph Fk is nice.

Let r ≥ 1 and ε ∈ (0, 1). We define a sequence (δk)k≥4 as follows. Let δ4 = δ(r, ε) be defined
via Lemma 3.2 and, for each k ≥ 5, let δk = δ (Fk−1, r, δk−1) be given by Lemma 3.1. We now show
by induction on k ≥ 4 that the assertion of the lemma holds with η = η(k, r, ε) := δk. For k = 4,
Lemma 3.2 readily implies that H either satisfies the assertion of Item 2 of Lemma 2.4 or satisfies
the assertion of Item 1 with j = 3 and q = 3. Let now k ≥ 5. By the induction hypothesis, H
satisfies the assertion of (at least) one of the items of Lemma 2.4 with parameter k − 1 (in place of
k). If this is the case for Item 1, then the same item is also satisfied with parameter k and we are
done. Suppose then that H satisfies the assertion of Item 2 (with parameter k− 1), namely, that H
contains at least δk−1 · nk−1 copies of Fk−1. Then, by Lemma 3.1 (with parameters F = Fk−1 and
δk−1 in place of ε), either H satisfies the assertion of Item 1 in Lemma 2.4 (with j = k − 1) or it
contains at least δk · nk = η(k, r, ε) · nk copies of Fk, as required by Item 2.

3.2 Proof of Lemma 3.1

Let A ⊆ V (F ) be as in Definition 2.3. It will be convenient to set v := v(F ) and to assume (without
loss of generality) that V (F ) = [v] and A = [k + 1] ⊆ [v]. The required nice 3-graph F ′ is defined as
follows: take vertices x1, . . . , xk+1, x

′
1, . . . , x

′
k+1 and, for each 1 ≤ i ≤ k + 1, add a copy Fi of F in

which xj plays the role of j ∈ V (F ) for each j ∈ [k + 1] \ {i}, x′i plays the role of i ∈ V (F ) and all
other v(F )− k − 1 vertices are new.

Let us calculate the number of vertices and edges in F ′. First, as A ⊆ V (F ) is independent, the
copies F1, . . . , Fk+1 (which comprise F ′) do not share edges. Hence, e(F ′) = (k + 1) · e(F ). Second,
we have v(F ′) = k + 1 + (k + 1) · (v(F )− k) = k + 1 + (k + 1) · e(F ) = e(F ′) + k + 1, as required.

We now show that F ′ is nice. We will show that F ′ satisfies the requirements of Definition 2.3 with
respect to the set A′ := {x′1, . . . , x′k+1, x1}. (We remark that in the definition of A′ we could replace
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x1 with any other vertex among x1, . . . , xk+1.) For the rest of the proof, we set X = {x1, . . . , xk+1},
X ′ = {x′1, . . . , x′k+1} and Ai = (X \ {xi}) ∪ {x′i} for each 1 ≤ i ≤ k + 1. Observe that for each
1 ≤ i ≤ k + 1, the vertices of Ai are precisely the vertices which play the roles of the vertices of
A = {1, . . . , k + 1} ⊆ V (F ) in the copy Fi of F .

It is evident that |A′| = k + 2 and easy to see that A′ is independent in F ′. Our goal is then to
show that every U ⊆ V (F ′) satisfies the assertion of Items 1-2 in Definition 2.3 (with A′ in place
of A). So let U ⊆ V (F ′) and put Ui = U ∩ V (Fi) for each 1 ≤ i ≤ k + 1. Since every vertex of X
belongs to exactly k of the copies F1, . . . , Fk+1 and every other vertex of F ′ belongs to exactly one
of these copies, we have

|U | =
k+1∑
i=1

|Ui| − (k − 1)|U ∩X|.

Since F1, . . . , Fk+1 are pairwise edge-disjoint, we have

e(U) =

k+1∑
i=1

e(Ui).

It follows that

∆(U) =
k+1∑
i=1

∆(Ui)− (k − 1)|U ∩X|. (9)

For each 1 ≤ i ≤ k + 1, it follows from the niceness of F (and the fact that Ai plays the role of A in
the copy Fi of F ) that

∆(Ui) ≥ |Ui ∩Ai| − 1Ai⊆Ui . (10)

Setting s := #{1 ≤ i ≤ k + 1 : Ai ⊆ Ui}, we plug (10) into (9) to obtain

∆(U) ≥
k+1∑
i=1

|Ui ∩Ai| − (k − 1)|U ∩X| − s = |U ∩X|+ |U ∩X ′| − s

= |U ∩A′|+ |U ∩ {x2, . . . , xk+1}| − s.

(11)

To see that the first equality in (11) holds, note that A1 ∪ · · · ∪Ak+1 = X ∪X ′ and recall that every
element of X (resp. X ′) belongs to exactly k (resp. 1) of the sets A1, . . . , Ak+1.

We first prove that ∆(U) ≥ |U ∩ A′| − 1A′⊆U , as required by Item 1 in Definition 2.3. If s = 0,
then (11) readily gives ∆(U) ≥ |U ∩ A′|. Suppose then that s ≥ 1 and let 1 ≤ i ≤ k + 1 be
such that Ai ⊆ Ui. Then {x2, . . . , xk+1} \ {xi} ⊆ U , implying that |U ∩ {x2, . . . , xk+1}| ≥ k − 1.
Furthermore, if s ≥ 2, then {x2, . . . , xk+1} ⊆ U , in which case |U ∩ {x2, . . . , xk+1}| = k. Hence, it
follows from (11) that ∆(U) ≥ |U ∩ A′| − 1s=k+1. We also note, for later use, that if 1 ≤ s ≤ k − 1
then ∆(U) ≥ |U ∩ A′| + 1 (here we use the assumption that k ≥ 3). Observe that if s = k + 1,
then Ai ⊆ Ui for every 1 ≤ i ≤ k + 1, implying that A′ ⊆ X ∪ X ′ ⊆ U . So we indeed have
∆(U) ≥ |U ∩A′| − 1A′⊆U , as required.

Next, we assume that |U ∩A′| ≤ k and U \A′ 6= ∅ and show that in this case ∆(U) ≥ |U ∩A′|+ 1
(as required by Item 2 in Definition 2.3). The assumption that |U ∩ A′| ≤ k implies that s ≤ k − 1,
because if s ≥ k, then |U ∩ X ′| ≥ k and x1 ∈ U , which means that |U ∩ A′| ≥ k + 1. We already
saw that ∆(U) ≥ |U ∩A′|+ 1 if 1 ≤ s ≤ k − 1, so it remains to handle the case that s = 0, namely,
that Ai 6⊆ Ui for each 1 ≤ i ≤ k + 1. If U ∩ {x2, . . . , xk+1} 6= ∅, then (11) readily implies that
∆(U) ≥ |U ∩ A′| + 1 (since s = 0). So suppose that U ∩ {x2, . . . , xk+1} = ∅. Since U \ A′ 6= ∅,
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there is 1 ≤ i ≤ k + 1 such that Ui \ A′ 6= ∅. Our assumption that U ∩ {x2, . . . , xk+1} = ∅ implies
that |Ui ∩ Ai| ≤ k − 1 and Ui \ Ai 6= ∅ (here we use the fact that Ai ⊆ A′ ∪ {x2, . . . , xk+1} and
Ui \ A′ 6= ∅). Now it follows from the niceness of F (or, more precisely, of the copy Fi of F ) that
∆(Ui) ≥ |Ui ∩ Ai| + 1. Moreover, by (10), we have ∆(Uj) ≥ |Uj ∩ Aj | for each 1 ≤ j ≤ k + 1 (this
follows from our assumption that s = 0). By plugging all of this into (9), in a manner similar to the
derivation of (11), we obtain

∆(U) ≥ |Ui ∩Ai|+ 1 +
∑

j∈[k+1]\{i}

|Uj ∩Aj | − (k− 1)|U ∩X| = |U ∩X|+ |U ∩X ′|+ 1 ≥ |U ∩A′|+ 1,

as required.

Having proven that F ′ is nice, we go on to show that the assertion of the lemma holds. Given
r ≥ 1 and ε ∈ (0, 1), we set

δ = δ(F, r, ε) =
1

2
γ
(
k, 2−v(1+2vr) · v−v · ε

)
and n0 = n0(F, r, ε) = 1/δ. Here γ is from Theorem 3 and v = v(F ) as before.

Let H be a 3-uniform hypergraph with n ≥ n0 vertices and at least εnk copies of F . Partition
the vertices of H randomly into sets C1, . . . , Cv by choosing, for each vertex x ∈ V (H), a part Ci
(1 ≤ i ≤ v) uniformly at random and independently (of the choices made for all other vertices of
H) and placing x in this part. A copy of F in H will be called good if, for each i = 1, . . . , v, the
vertex playing the role of i in this copy is in Ci. Since H contains at least εnk copies of F , there
are in expectation at least v−v · εnk good copies of F . So fix a partition C1, . . . , Cv with at least
this number of good copies of F and denote the set of these copies by F . It will be convenient to
identify each good copy of F with the corresponding embedding ϕ : V (F )→ V (H) which maps each
i ∈ [v] = V (F ) to a vertex in Ci. So we will assume that the elements of F are such mappings.

We now define an auxiliary graph G on F as follows: for each pair ϕ1, ϕ2 ∈ F , we let {ϕ1, ϕ2}
be an edge in G if and only if the set U := U(ϕ1, ϕ2) := {i ∈ V (F ) : ϕ1(i) = ϕ2(i)} satisfies either
|U ∩A| ≥ k or |U ∩A| = k− 1 and U \A 6= ∅. We distinguish between two cases. Suppose first that
there is ϕ ∈ F whose degree in G is at least

d := 2v(1+2vr).

Let ϕ1, . . . , ϕd be distinct neighbours of ϕ in G. By the pigeonhole principle, there is I0 ⊆ [d] of size
at least 2−vd = 2v2

vr and a set U0 ⊆ V (F ) such that, for all i ∈ I0, it holds that U(ϕ,ϕi) = U0. Note
that by the definition of G, we have either |U0 ∩A| ≥ k or |U0 ∩A| = k− 1 and U0 \A 6= ∅. We now
consider the complete graph on I0 and color each edge {i, j} ∈

(
I0
2

)
of this graph with color U(ϕi, ϕj).

A well-known bound for multicolor Ramsey numbers (see [5]) implies that in every c-coloring of the
edges of the complete graph on ccr vertices, there is a monochromatic complete subgraph on r
vertices. Applying this claim with c = 2v, we conclude that there is I ⊆ I0 of size |I| = r, and a set
U ⊆ V (F ), such that U(ϕi, ϕj) = U for all {i, j} ∈

(
I
2

)
. Observe that for each {i, j} ∈

(
I
2

)
, we have

U = U(ϕi, ϕj) ⊇ U(ϕ,ϕi) ∩ U(ϕ,ϕj) = U0. This implies that either |U ∩ A| ≥ k or |U ∩ A| = k − 1
and U \ A 6= ∅. Our choice of A via Definition 2.3 implies that in both cases ∆(U) ≥ k. Note also
that U 6= V (F ) because the copies of F corresponding to (ϕi : i ∈ I) are distinct.

We now show that the assertion of Item 1 in the lemma holds. Suppose without loss of generality
that I = {1, . . . , r}, and write Vi := ϕi(V (F ) \ U) ⊆ V (H) for 1 ≤ i ≤ r. Note that V1, . . . , Vr
are pairwise disjoint. We also put W := ϕ1(U) = · · · = ϕr(U). Now, fix any 1 ≤ i ≤ r and
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set V := V1 ∪ · · · ∪ Vi ∪ W . Then |V | = |U | + i · (v(F ) − |U |) = i · v(F ) − (i − 1) · |U | and
eH(V ) ≥ eF (U) + i · (e(F )− eF (U)) = i · e(F )− (i− 1) · eF (U). It follows that

|V | − eH(V ) ≤ i · (v(F )− e(F ))− (i− 1)(|U | − eF (U)) = i · k − (i− 1) ·∆(U)

≤ i · k − (i− 1) · k = k.

Setting q := |U |, we note that q = |U | ≥ ∆(U) ≥ k and q ≤ v(F ) − 1 (as U 6= V (F )). Now we see
that the assertion of Item 1 of the lemma holds with this choice of q. This completes the proof in
the case that G has a vertex of degree at least d.

From now on we assume that the maximum degree of G is strictly smaller than d and prove that
the assertion of Item 2 in the lemma holds. Let F∗ ⊆ F be an independent set6 of G of size at
least v(G)/d = |F|/d. Recall that we identify V (F ) with [v] and A with [k + 1]. We now define
an auxiliary k-uniform (k + 1)-partite hypergraph J with parts C1, . . . , Ck+1, as follows. For each
ϕ ∈ F∗, put a k-uniform (k + 1)-clique in J on the vertices ϕ(1) ∈ C1, . . . , ϕ(k + 1) ∈ Ck+1. We
denote this clique by Kϕ. Note that by the definition of J , every edge of J is contained in a copy of
F in H, which corresponds to some embedding ϕ ∈ F∗.

Our first goal is to show that the cliques (Kϕ : ϕ ∈ F∗) are pairwise edge-disjoint. So fix any
distinct ϕ1, ϕ2 ∈ F∗ and suppose, for the sake of contradiction, that the cliques Kϕ1 ,Kϕ2 share an
edge. Then there is W ⊆ A = [k + 1] of size |W | = k such that ϕ1(i) = ϕ2(i) for every i ∈ W . It
follows that W ⊆ U := U(ϕ1, ϕ2) and hence |U ∩A| ≥ |W | = k. But this means that ϕ1 and ϕ2 are
adjacent in G, in contradiction to the fact that F∗ is an independent set of G.

We have thus shown that the cliques (Kϕ : ϕ ∈ F∗) are pairwise edge-disjoint. It follows that J
contains a collection of |F∗| ≥ |F|/d ≥ 2−v(1+2vr) · v−v · εnk pairwise edge-disjoint (k + 1)-cliques.
By Theorem 3 and our choice of δ = δ(F, r, ε), the number of (k+ 1)-cliques in J is at least 2δnk+1.

A (k + 1)-clique K in J is called colorful if it is not equal to Kϕ for any ϕ ∈ F∗. Note that all
but at most nk of the (k + 1)-cliques in J are colorful (because the non-colorful cliques are pairwise
edge-disjoint). It follows that J contains at least 2δnk+1 − nk ≥ δnk+1 colorful (k + 1)-cliques (here
we use our choice of n0).

Fix any colorful (k + 1)-clique K = {c1, . . . , ck+1}, with ci being the unique vertex in K ∩ Ci for
each 1 ≤ i ≤ k + 1. By the definition of J , for each i ∈ [k + 1] there is ϕi ∈ F∗ such that ϕi(j) = cj
for every j ∈ [k + 1] \ {i}. We claim that ϕ1, . . . , ϕk+1 are pairwise distinct. Suppose, for the sake
of contradiction, that ϕi = ϕi′ =: ϕ for some 1 ≤ i < i′ ≤ k + 1. Then, for each 1 ≤ j ≤ k + 1, we
have ϕ(j) = cj because one of i, i′ does not equal j. So we see that K = Kϕ, in contradiction to the
assumption that K is colorful. We conclude that ϕ1, . . . , ϕk+1 are indeed pairwise distinct. It now
follows that ϕi(i) 6= ci for each 1 ≤ i ≤ k + 1. Indeed, if ϕi(i) = ci then, fixing any j ∈ [k + 1] \ {i},
we observe that ϕi(`) = ϕj(`) for each ` ∈ [k + 1] \ {j}, in contradiction to the fact that Kϕi and
Kϕj are edge-disjoint.

Recall that F ′ consists of vertices x1, . . . , xk+1, x
′
1, . . . , x

′
k+1 and copies F1, . . . , Fk+1 of F such

that the vertex playing the role of j ∈ [k + 1] ⊆ V (F ) in Fi is xj if j 6= i and x′j if j = i (for
every 1 ≤ i, j ≤ k + 1) and F1, . . . , Fk+1 do not intersect outside of X = {x1, . . . , xk+1}. Now let
ϕ = ϕK : V (F ′)→ V (H) be the function which, for each 1 ≤ i ≤ k+1, maps xi to ci and agrees with
ϕi on the vertices of Fi (where we identify V (Fi) with V (F )). Then ϕ(xi) = ci and ϕ(x′i) = ϕi(i) for
each 1 ≤ i ≤ k + 1. It is not hard to see that in order to show that ϕ is an embedding of F ′ into H
it is enough to verify that Im(ϕi) ∩ Im(ϕj) = {c1, . . . , ck+1} \ {ci, cj} for each 1 ≤ i < j ≤ k + 1. So
fix any 1 ≤ i < j ≤ k + 1 and consider the set U = U(ϕi, ϕj) = {` ∈ V (F ) : ϕi(`) = ϕj(`)}. Then

6Here we use the simple fact (which was already used in Section 2.4) that every graph G has an independent set of
size at least v(G)/(∆(G) + 1), where ∆(G) is the maximum degree of G.

14



U ∩ [k + 1] = [k + 1] \ {i, j} and, in particular, |U ∩ A| = k − 1. If U = U ∩ [k + 1], then we are
done (because in this case we would have Im(ϕi) ∩ Im(ϕj) = {c1, . . . , ck+1} \ {ci, cj}, as required).
On the other hand, if U 6= U ∩ [k + 1], then U \ A 6= ∅, which implies that ϕi and ϕj are adjacent
in G, in contradiction to the fact that ϕi, ϕj ∈ F∗ and that F∗ is an independent set of G. We have
thus shown that each colorful (k + 1)-clique in J gives rise to a copy of F ′ in H. It is also easy to
see that these copies are pairwise distinct. It follows that H contains at least δnk+1 copies of F ′.

3.3 Proof of Lemma 3.2

In the proof of Lemma 3.2, we will need the following simple claim that can be verified by exhausting
all possible cases. The proof is thus omitted.

Claim 3.3. Consider the 3-uniform linear 3-cycle on vertices v1, . . . , v6, as depicted in Figure 1, and
let U ⊆ {v1, . . . , v6}. Then ∆(U) ≥ |U∩{v1, . . . , v4}|−1{v1,...,v4}⊆U . Moreover, if U \{v1, . . . , v4} 6= ∅
and either v1 /∈ U or U ∩ {v2, v3} = ∅, then ∆(U) ≥ |U ∩ {v1, . . . , v4}|+ 1.

Let F denote the 3-uniform linear 3-cycle (see Figure 1). Claim 3.3 implies that F satisfies
Condition 1 in Definition 2.3 with respect to A = {v1, . . . , v4}. However, F does not satisfy Condition
2 in that definition, as evidenced, e.g., by the set U = {v1, v2, v5}. So the “moreover”-part of Claim
3.3 can be thought of as a (non-equivalent) variant of Condition 2 in Definition 2.3. We also note
that by going over all possible choices of A, one can easily verify that F is not nice.

Proof of Lemma 3.2. Let F be the 3-graph depicted in Figure 2, having vertices

w1, w2, w3, w4, w
′
1, w

′
2, w

′
3, w

′
4, x5, x6, y5, y6, z5, z6,

and edges

{w1, w2, x5}, {x5, w′4, x6}, {x6, w3, w1}, {x5, w4, y6}, {y6, w′3, w1},
{w1, w

′
2, y5}, {y5, w4, x6}, {w′1, w2, z5}, {z5, w4, z6}, {z6, w3, w

′
1}.

Then v(F ) = 14 and e(F ) = 10. Solymosi and Solymosi [19] (implicitly) proved that for every
3-graph H with n ≥ n0(r, ε) vertices and at least εn2 edges, either H satisfies the assertion of Item
1 in the lemma or H contains at least δ(r, ε) · n4 copies of F (with δ(r, ε) being roughly γ(3, ε/r),
where γ is from Theorem 3). So, in order to complete the proof, it is enough to show that F is nice.

We prove that F satisfies the requirements of Definition 2.3 with A := {w4, w
′
1, w

′
2, w

′
3, w

′
4}. To this

end, define V1 = {w′1, w2, z5, w4, z6, w3}, V2 = {w1, w
′
2, y5, w4, x6, w3}, V3 = {w1, w2, x5, w4, y6, w

′
3}

and V4 = {w1, w2, x5, w
′
4, x6, w3}. Observe that F [Vi] is a linear 3-cycle for every 1 ≤ i ≤ 4.

Furthermore, considering the vertex-labeling of the linear 3-cycle in Figure 1, we see that for each
1 ≤ i, j ≤ 4, the role of vj in F [Vi] is played by wj if j 6= i and by w′j if j = i. Now fix any U ⊆ V (F )
and let us show that U satisfies Items 1-2 in Definition 2.3. For each 1 ≤ i ≤ 4, define Ui = U ∩ Vi
and Ai := ({w1, . . . , w4} \ {wi})∪{w′i}. Note that by Claim 3.3 we have ∆(Ui) ≥ |Ui ∩Ai| −1Ai⊆Ui .

Let us now express ∆(U) in terms of ∆(U1), . . . ,∆(U4). It is easy to check that

|U | =
4∑
i=1

|Ui| − 2 · |U ∩ {w1, . . . , w4}| − |U ∩ {x5, x6}| (12)

and

e(U) =

4∑
i=1

e(Ui)− 1{w1,w2,x5}⊆U − 1{w1,w3,x6}⊆U . (13)
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Setting r :=
∑4

i=1 (∆(Ui)− |Ui ∩Ai|) and

t := |U ∩ {w1, w2, w3}| − |U ∩ {x5, x6}|+ 1{w1,w2,x5}⊆U + 1{w1,w3,x6}⊆U ,

we combine (12) and (13) to obtain

∆(U) =
4∑
i=1

∆(Ui)− 2 · |U ∩ {w1, . . . , w4}| − |U ∩ {x5, x6}|+ 1{w1,w2,x5}⊆U + 1{w1,w2,x6}⊆U

=

4∑
i=1

|Ui ∩Ai|+ r − 2 · |U ∩ {w1, . . . , w4}| − |U ∩ {w1, w2, w3}|+ t

= |U ∩A|+ r + t. (14)

To complete the proof, it is enough to show that r+ t ≥ −1A⊆U and that r+ t ≥ 1 if |U ∩A| ≤ 3
and U \ A 6= ∅. In what follows we will frequently use the fact that ∆(Ui) ≥ |Ui ∩ Ai| − 1Ai⊆Ui for
each 1 ≤ i ≤ 4, as mentioned above. We consider two cases, depending on whether w1 ∈ U or not.
Suppose first that w1 /∈ U . In this case we have t = |U ∩ {w2, w3}| − |U ∩ {x5, x6}|. Furthermore,
Ai 6⊆ Ui for each 2 ≤ i ≤ 4, which implies that ∆(Ui) ≥ |Ui ∩ Ai| for these values of i. Note that if
x5 ∈ U , then Ui \ Ai 6= ∅ for i = 3, 4, so, by the “moreover”-part of Claim 3.3 (and as w1 /∈ U), we
have ∆(Ui) ≥ |Ui ∩Ai|+ 1 for these values of i. Similarly, if x6 ∈ U , then ∆(Ui) ≥ |Ui ∩Ai|+ 1 for
i = 2, 4. Altogether, we conclude that r ≥ |U ∩ {x5, x6}|+ 1− 1U∩{x5,x6}=∅ − 1A1⊆U1 and hence

r + t ≥ |U ∩ {w2, w3}|+ 1− 1U∩{x5,x6}=∅ − 1A1⊆U1 . (15)

If A1 ⊆ U1, then {w2, w3} ⊆ U and hence r + t ≥ 1. So we assume from now on that A1 6⊆ U1.
It then easily follows from (15) that r + t ≥ 1 unless U ∩ {w2, w3, x5, x6} = ∅. Suppose then that
U∩{w2, w3, x5, x6} = ∅ and note that in this case r ≥ 0 and t = 0, so in particular r+t ≥ 0 ≥ −1A⊆U .
Furthermore, if U \ A 6= ∅, then U \ (A1 ∪ · · · ∪ A4) 6= ∅ (because U ∩ {w1, w2, w3} = ∅), so there
must be some 1 ≤ i ≤ 4 such that Ui \ Ai 6= ∅. Now Claim 3.3 implies that ∆(Ui) ≥ |Ui ∩ Ai| + 1
and hence r ≥ 1. We conclude that if U \A 6= ∅, then r + t ≥ 1, as required.

Having handled the case that w1 /∈ U , we assume from now on that w1 ∈ U . Here we consider sev-
eral subcases, depending on the intersection of U with {w2, w3}. Suppose first that U ∩{w2, w3} = ∅.
Then Ai 6⊆ Ui for each 1 ≤ i ≤ 4, implying that r ≥ 0. Furthermore, t = 1 − |U ∩ {x5, x6}|. So
if U ∩ {x5, x6} = ∅, then r + t ≥ 1 and we are done. On the other hand, if U ∩ {x5, x6} 6= ∅,
then U4 \ A4 6= ∅, which implies, by Claim 3.3, that ∆(U4) ≥ |U4 ∩ A4| + 1. This shows that
r + t ≥ 0 ≥ −1A⊆U and in fact r + t ≥ 1 if |U ∩ {x5, x6}| ≤ 1. So from now on we assume that
{x5, x6} ⊆ U and show that r + t ≥ 1 unless |U ∩ A| ≥ 4. As {x5, x6} ⊆ U , we have Ui \ Ai 6= ∅ for
i = 2, 3. It now follows from Claim 3.3 that for each i = 2, 3, if w′i /∈ U , then ∆(Ui) ≥ |Ui ∩ Ai|+ 1,
which, combined with ∆(U4) ≥ |U4 ∩ A4| + 1, implies that r ≥ 2 and hence r + t ≥ 1. So, we are
done unless w′2, w

′
3 ∈ U . If w4 /∈ U , then U2 = {w1, w

′
2, y5, x6} and hence ∆(U2) = 3 = |U2 ∩A2|+ 1.

But this implies that r ≥ 2, again giving r + t ≥ 1. Therefore, we may assume that w4 ∈ U .
Similarly, if w′4 /∈ U , then U4 = {w1, x5, x6}, from which it follows that ∆(U4) = 3 = |U4 ∩ A4| + 2
and hence r ≥ 2. So again, we may assume that w′4 ∈ U . Altogether, we see that r + t ≥ 1 unless
{w′2, w′3, w4, w

′
4} ⊆ U , which only holds if |U ∩A| ≥ 4.

Suppose now that |U ∩ {w2, w3}| = 1. By symmetry, we may assume without loss of generality
that w2 ∈ U and w3 /∈ U . Then t = 2 − 1x6∈U and Ai 6⊆ Ui for every i ∈ {1, 2, 4}. It follows that
r + t ≥ 2 − 1x6∈U − 1A3⊆U3 and hence r + t ≥ 1 unless x6 ∈ U and A3 ⊆ U3. Suppose then that
x6 ∈ U and {w′3, w4} ⊆ A3 ⊆ U3 ⊆ U . As x6 ∈ U , we have U2 \A2 6= ∅. Therefore, if w′2 /∈ U , then by
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Figure 2: The (14,10)-configuration used in Lemma 3.2

Claim 3.3 we have ∆(U2) ≥ |U2 ∩A2|+ 1, which implies that r ≥ 0 and hence r+ t ≥ 1. So we may
assume that w′2 ∈ U . Similarly, if w′4 /∈ U , then either U4 = {w1, w2, x6} or U4 = {w1, w2, x5, x6}.
Since in both cases ∆(U4) = |U4 ∩A4|+ 1, we infer that if w′4 /∈ U , then r ≥ 0 and hence r + t ≥ 1.
Overall, we see that r + t ≥ 1 unless {w′2, w′3, w4, w

′
4} ⊆ U , as required.

It remains to handle the case that {w2, w3} ⊆ U . In this case, we have t = 3, so r + t ≥ 0 unless
r = −4. But if r = −4, then Ai ⊆ Ui for each 1 ≤ i ≤ 4, which implies that A ⊆ U . So we see that
r + t ≥ −1A⊆U , as required. Furthermore, if |U ∩A| ≤ 3, then #{1 ≤ i ≤ 4 : Ai ⊆ Ui} ≤ 2 (indeed,
if Ai ⊆ Ui for at least 3 indices 1 ≤ i ≤ 4, then |U ∩ {w′1, . . . , w′4}| ≥ 3 and w4 ∈ U , implying that
|U ∩A| ≥ 4), so in fact we have r ≥ −2 and hence ∆(U) ≥ |U ∩A|+1. This completes the proof. �

4 Proof of Lemma 2.6

In this section, we prove Lemma 2.6 through a sequence of claims. We start by defining the 3-graphs
(G`)`≥0 appearing in the statement of the lemma. Very roughly speaking, G` can be thought of as
the 3-graph obtained by starting with a complete k-ary tree of height ` and replacing each of its
vertices by a copy of G.

In each of the graphs G` we identity a special subset of vertices which will play a crucial role.
More precisely, for every ` ≥ 0, the graph G` will contain a subset of vertices A` ⊆ V (G`) which
we will denote by x1, . . . , xk and y0, . . . , y`. If G∗ is a copy of some G`, then we will use xi(G

∗)
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and yi(G
∗) to denote the vertices of G∗ playing the roles of xi and yi in G∗. We will also set

A`(G
∗) = {x1(G∗), . . . , xk(G∗), y0(G∗), . . . , y`(G∗)}. When both G∗ and the value of ` are clear from

the context, we will simply write A`, x1, . . . , xk, y0, . . . , y`.

Recall that G is assumed to be nice; so let A ⊆ V (G) be as in Definition 2.3, noting that |A| = k+1
and that A is an independent set. Assuming the vertices of A are (arbitrarily) named x1, . . . , xk, y0,
we now set G0 to be G, y0(G0) to be y0 and xi(G0) to be xi for every 1 ≤ i ≤ k. In particular,
A0(G0) = A. Proceeding by induction, we fix ` ≥ 1 and assume that G`−1, as well as the vertices
xi(G`−1) and yi(G`−1) (and thus also the set A`−1(G`−1)), have already been defined. Now G` is
defined as follows. Start with a set of k+ `+ 1 vertices x1, . . . , xk and y0, . . . , y`. We will set xi(G`)
to be xi for every 1 ≤ i ≤ k and yi(G`) to be yi for every 0 ≤ i ≤ `. In addition to these k + ` + 1
vertices, we also have k additional vertices x′1, . . . , x

′
k. For each 1 ≤ i ≤ k, add a copy of G`−1,

denoted Gi`−1, in which xj plays the role of xj(G`−1) for each j ∈ [k] \ {i}, x′i plays the role of
xi(G`−1), yj plays the role of yj(G`−1) for each 0 ≤ j ≤ `− 1 and all other v(G`−1)− k − ` vertices
are “new”. As a last step, add a copy G` of G in which xi plays the role of xi(G) for each 1 ≤ i ≤ k,
y` plays the role of y0(G) and all other v(G)− k− 1 vertices are “new”. The resulting 3-graph is G`.

Claim 4.1. For every ` ≥ 0, the set A`(G`) ⊆ V (G`) is independent and the graph G` satisfies the
assertion of Item 1 of Lemma 2.6.

Proof. We first prove by induction on ` that A`(G`) is an independent set. For ` = 0, this is
guaranteed by our choice of A0(G0) = A. So fixing ` ≥ 1 and assuming the claim holds for ` − 1,
we now prove it for `. By the definition of G`, each edge of G` belongs to one of the 3-graphs
G1
`−1, . . . , G

k
`−1, G

`. Moreover, we have V (Gi`−1) ∩ A`(G`) ⊆ A`−1(G
i
`−1) for every 1 ≤ i ≤ k and

similarly V (G`)∩A`(G`) = A0(G
`). So the fact that A`(G`) is independent follows from the induction

hypothesis for `− 1 and from the case ` = 0.

Since A`(G`) is independent, the subgraphs G1
`−1, . . . , G

k
`−1, G

`, which comprise G`, are pairwise
edge-disjoint. This implies that e(G`) = k · e(G`−1) + e(G). We now prove the two assertions of Item
1 of the lemma by induction on `. The case ` = 0 is immediate. As for the induction step, observe
that for each ` ≥ 1, we have

e(G`) = k · e(G`−1) + e(G) =

(
k · k

` − 1

k − 1
+ 1

)
· e(G) =

k`+1 − 1

k − 1
· e(G),

where the second equality follows from the induction hypothesis for `− 1. Moreover, we have

v(G`) = 2k + `+ 1 + k · (v(G`−1)− k − `) + v(G)− k − 1

= k + `+ k · (v(G`−1)− k − `+ 1) + v(G)− k
= k + `+ k · e(G`−1) + e(G) = k + `+ e(G`).

Here we used the fact that ∆(G) = k and the induction hypothesis that ∆(G`−1) = k + `− 1. The
above two expressions for e(G`) and v(G`) imply both assertions of Item 1. �

Item 2 of Lemma 2.6 follows from the following stronger claim.

Claim 4.2. Let ` ≥ 1 and e(G`−1)/e(G) < t ≤ e(G`)/e(G). Then there is a subgraph G′ of G` such
that v(G′)− e(G′) ≤ k + `, e(G′) = t · e(G) and A`(G`) ⊆ V (G′).

Before proving Claim 4.2, let us use this claim to establish the assertion of Item 2 of the lemma by
induction on `. The case ` = 0 is trivial, so let ` ≥ 1 and 1 ≤ t ≤ e(G`)/e(G). If t > e(G`−1)/e(G),
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then the assertion of Item 2 follows from Claim 4.2 and if t ≤ e(G`−1)/e(G), then it follows from the
induction hypothesis for `− 1 and the fact that G` contains a copy of G`−1.

In the proof of Claim 4.2, we will need the following simple claim. Recall that G1
`−1, . . . , G

k
`−1 are

the copies of G`−1 which feature in the definition of G`.

Claim 4.3. Let 0 ≤ `′ < `. Then G` contains a copy G∗ of G`′ such that V (G∗) ⊆ V (Gk`−1),
xi(G

∗) = xi(G`) for each 1 ≤ i ≤ k − 1 and yi(G
∗) = yi(G`) for each 0 ≤ i ≤ `′.

Proof. The proof is by induction on `, with the base case ` = 0 holding vacuously. Let 0 ≤ `′ < `. If
`′ = `− 1 then G∗ = Gk`−1 is easily seen to satisfy the requirements of the claim. Suppose then that
`′ ≤ `−2. By the induction hypothesis, G`−1 contains a copy G∗∗ of G`′ such that xi(G

∗∗) = xi(G`−1)
for each 1 ≤ i ≤ k − 1 and yi(G

∗∗) = yi(G`−1) for each 0 ≤ i ≤ `′. Let G∗ be the subgraph playing
the role of G∗∗ in the copy Gk`−1 of G`−1. Then it is evident that V (G∗) ⊆ V (Gk`−1). Moreover, for

each 1 ≤ i ≤ k − 1, we have xi(G
∗) = xi(G

k
`−1) = xi(G`), where the first equality follows from our

choice of G∗ and the second equality follows from the definition of G`. A similar argument shows
that yi(G

∗) = yi(G
k
`−1) = yi(G`) for each 0 ≤ i ≤ `′. �

Proof of Claim 4.2. The proof is by induction on `. We start with the base case ` = 1. Let
1 < t ≤ e(G1)/e(G) = k + 1. Recall that G0

1, . . . , G
0
k and G1 are the copies of G0 = G which feature

in the definition of G1. Let G′ be the subgraph of G1 consisting of G1
0, . . . , G

t−1
0 and G1. Then

e(G′) = (t− 1) · e(G) + e(G) = t · e(G). Moreover, A1(G1) = {x1(G1), . . . , xk(G1), y0(G1), y1(G1)} ⊆
V (G′) because {x1(G1), . . . , xk(G1), y1(G1)} ⊆ V (G1) ⊆ V (G′) and y0(G1) ∈ V (G1

0) ⊆ V (G′) (here
we are using the fact that t ≥ 2). Finally, note that

v(G′) = |A1(G1)|+ (t− 1) · (v(G)− k) + (v(G)− k − 1) = k + 1 + t · e(G) = e(G′) + k + 1,

as required.

Now let ` ≥ 2 and let t be such that

(k` − 1)/(k − 1) = e(G`−1)/e(G) < t ≤ e(G`)/e(G) = (k`+1 − 1)/(k − 1).

Here the equalities follow from Item 1 of the lemma. Let d be the unique integer satisfying

d · (k` − 1)/(k − 1) + 1 ≤ t < (d+ 1) · (k` − 1)/(k − 1) + 1

and note that 1 ≤ d ≤ k, where the first inequality follows from the assumption t > (k`−1)/(k−1) and
the second inequality follows from the assumption t ≤ (k`+1−1)/(k−1) = k ·(k`−1)/(k−1)+1. Set

t′ = t− d · (k` − 1)/(k − 1)− 1, (16)

noting that 0 ≤ t′ < (k` − 1)/(k − 1).

Suppose for now that t′ > 0. Then there is `′ ≥ 1 such that e(G`′−1)/e(G) < t′ ≤ e(G`′)/e(G).
Note also that `′ < ` because t′ < (k`−1)/(k−1). By Claim 4.3, G` contains a copyG∗ ofG`′ such that
V (G∗) ⊆ V (Gk`−1), xi(G

∗) = xi(G`) for each 1 ≤ i ≤ k − 1 and yi(G
∗) = yi(G`) for each 0 ≤ i ≤ `′.

By the induction hypothesis for `′ (which we apply to the copy G∗ of G`′), there is a subgraph G′′

of G∗ such that v(G′′)− e(G′′) ≤ k + `′, e(G′′) = t′ · e(G) and A`′(G
∗) ⊆ V (G′′). This last property

of G′′ implies that xi(G`) = xi(G
∗) ∈ V (G′′) for each 1 ≤ i ≤ k − 1 and yi(G`) = yi(G

∗) ∈ V (G′′)
for each 0 ≤ i ≤ `′. In particular, |V (G′′) ∩A`(G`)| ≥ k + `′.

Now, let G′ be the subgraph of G` consisting of G`, of G1
`−1, . . . , G

d
`−1 and, in the case that t′ > 0,

of the 3-graph G′′ chosen in the previous paragraph. Note that if t′ > 0 then d ≤ k − 1 (this follows
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from the definitions of d and t′). Combining this with the fact that V (G′′) ⊆ V (G∗) ⊆ V (Gk`−1), we

infer that G′′ is edge-disjoint from G1
`−1, . . . , G

d
`−1, G

` (which are themselves pairwise edge-disjoint
by the definition of G`). This in turn implies that

e(G′) = d · e(G`−1) + e(G) + e(G′′) · 1t′>0 =

(
d · k

` − 1

k − 1
+ t′ + 1

)
· e(G) = t · e(G). (17)

Here, the second equality follows from Item 1 of the lemma and from our choice of G′′, while the
last equality uses our choice of t′ in (16). Next, we observe that A`(G`) ⊆ V (G′). Indeed, this
follows from the fact that A`(G`)\{x1(G`), y`(G`)} ⊆ V (G1

`−1) ⊆ V (G′) (recall that d ≥ 1) and that

x1(G`), y`(G`) ∈ V (G`) ⊆ V (G′). Finally, it remains to estimate v(G′)−e(G′). To this end, note that

v(G′) = |A`(G`)|+ d · (v(G`−1)− k − `+ 1) + (v(G)− k − 1) + |V (G′′) \A`(G`)| · 1t′>0

≤ k + `+ d · (v(G`−1)− k − `+ 1) + (v(G)− k) + (v(G′′)− k − `′) · 1t′>0

≤ k + `+ d · e(G`−1) + e(G) + e(G′′) · 1t′>0 = e(G′) + k + `,

where in the first equality we used the definition of G′; in the first inequality we used the fact that
|A`(G`)| = k+ `+ 1 and |V (G′′)∩A`(G`)| ≥ k+ `′; in the second inequality we used the guarantees
of Item 1 of the lemma and the fact that v(G′′) − e(G′′) ≤ k + `′; and in the last equality we used
(17). We have thus shown that v(G′)− e(G′) ≤ k + `. This completes the proof of the claim. �

The rest of this section is devoted to establishing Item 3 of the lemma. To this end, we first prove
the following claim, which shows that the niceness of G (with respect to the set A) is carried over to
some extent to all G`. From now on, we will write A` = {x1, . . . , xk, y0, . . . , y`} (omitting G` from
the notation). We also set X := {x1, . . . , xk}.
Claim 4.4. Let ` ≥ 0 and let U ⊆ V (G`) be such that {y0, . . . , y`−1} ⊆ U . Then

1. ∆(U) ≥ |U ∩A`| − 1{x1,...,xk,y`}⊆U . In particular, if |U ∩A`| ≥ k + `, then ∆(U) ≥ k + `.

2. If |U ∩X| ≤ k − 2 and U \A` 6= ∅, then ∆(U) ≥ |U ∩A`|+ 1.

3. If |U ∩X| ≥ k − 1 and U ∩ V (G`) is not contained in X, then ∆(U) ≥ k + `.

Proof. We first prove Items 1-2 by induction on ` and then use these items to derive Item 3. In
the base case ` = 0, Items 1-2 immediately follow from the fact that G0 = G is nice and from our
choice of A0 = A via Definition 2.3. Let now ` ≥ 1 and let U ⊆ V (G`). We start with Item 1. For
1 ≤ i ≤ k, put Ui := U ∩ V (Gi`−1). Similarly, put U0 := U ∩ V (G`) and note that

|U ∩A`| = |U0 ∩ {x1, . . . , xk, y`}|+ ` (18)

because y0, . . . , y`−1 ∈ U by assumption. Since A` is independent (see Claim 4.1), we have e(U) =∑k
i=0 e(Ui). Observe also that

|U | =
k∑
i=0

|Ui| − (k − 1) · (|U ∩X|+ |U ∩ {y0, . . . , y`−1}|),

as each element ofX∪{y0, . . . , y`−1} is contained in exactly k of the sets V (G1
`−1), . . . , V (Gk`−1), V (G`)

and each of the other vertices of G` is contained in exactly one of these sets. From the above formulas
for e(U) and |U |, it follows that

∆(U) =

k∑
i=0

∆(Ui)− (k − 1) · (|U ∩X|+ `). (19)
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Here we used the fact that {y0, . . . , y`−1} ⊆ U by assumption. Recall that by the definition of G`,
for each 1 ≤ i ≤ k, we have

A`−1(G
i
`−1) = {x1, . . . , xk, y0, . . . , y`−1, x′i} \ {xi}.

By the induction hypothesis for `− 1, applied to the copy Gi`−1 of G`−1, we get

∆(Ui) ≥ |Ui ∩A`−1(Gi`−1)| − 1A`−1(G
i
`−1)⊆Ui

≥ |Ui ∩ (A` \ {xi, y`})|, (20)

where the second inequality follows by considering whether x′i ∈ Ui or not. From (20), we obtain

k∑
i=1

∆(Ui) ≥
k∑
i=1

|Ui ∩ (A` \ {xi, y`})|

= (k − 1) · |U ∩X|+ k · |U ∩ {y0, . . . , y`−1}|
= (k − 1) · |U ∩X|+ k`,

(21)

where in the first equality we used the fact that each element of X belongs to exactly k − 1 of the
sets A` \ {xi, y`} (where 1 ≤ i ≤ k) and each element of {y0, . . . , y`−1} belongs to all of these sets.
Plugging the above into (19) gives

∆(U) ≥ ∆(U0) + `. (22)

Since G is nice and G` is a copy of G in which y` plays the role of y0(G), we have

∆(U0) ≥ |U0 ∩ {x1, . . . , xk, y`}| − 1{x1,...,xk,y`}⊆U0
. (23)

By combining (18), (22) and (23), we get

∆(U) ≥ ∆(U0) + ` ≥ |U0 ∩ {x1, . . . , xk, y`}| − 1{x1,...,xk,y`}⊆U + ` = |U ∩A`| − 1{x1,...,xk,y`}⊆U ,

thus establishing Item 1.

Next, we prove Item 2. Suppose then that |U ∩ X| ≤ k − 2 and U \ A` 6= ∅. The inequality
|U ∩ X| ≤ k − 2 implies that |U0 ∩ {x1, . . . , xk, y`}| ≤ k − 1 and that A`−1(G

i
`−1) 6⊆ Ui for each

1 ≤ i ≤ k. Since U \ A` 6= ∅, there is 0 ≤ i ≤ k such that Ui \ A` 6= ∅. Suppose first that
i = 0. Then U0 \ {x1, . . . , xk, y`} 6= ∅, which, combined with |U0 ∩ {x1, . . . , xk, y`}| ≤ k − 1, implies
that ∆(U0) ≥ |U0 ∩ {x1, . . . , xk, y`}| + 1. Here we used the niceness of G (see Item 2 in Definition
2.3). By plugging our bound on ∆(U0) into (22) and using (18), we get ∆(U) ≥ ∆(U0) + ` ≥
|U0∩{x1, . . . , xk, y`}|+ 1 + ` = |U ∩A`|+ 1, as required. Now suppose that 1 ≤ i ≤ k. We claim that

∆(Ui) ≥ |Ui ∩ (A` \ {xi, y`})|+ 1. (24)

In other words, we show that the inequality bounding the leftmost term in (20) by the rightmost one
is strict. If x′i ∈ Ui, then

∆(Ui) ≥ |Ui ∩A`−1(Gi`−1)| − 1A`−1(G
i
`−1)⊆Ui

= |Ui ∩A`−1(Gi`−1)| ≥ |Ui ∩ (A` \ {xi, y`})|+ 1,

as required. Here, in the first inequality we used (20), in the equality we used the fact that
A`−1(G

i
`−1) 6⊆ Ui (as mentioned above) and in the last inequality we used the fact that

x′i ∈ A`−1(Gi`−1) \ A`. So suppose now that x′i /∈ Ui and note that in this case Ui \ A`−1(Gi`−1) 6= ∅
because Ui \ A` 6= ∅ and A`−1(G

i
`−1) ⊆ A` ∪ {x′i}. Moreover, the intersection of Ui with the set
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{x1(Gi`−1), . . . , xk(Gi`−1)} = {x1, . . . , xk, x′i} \ {xi} is of size at most k − 2, because |U ∩X| ≤ k − 2.
So by the induction hypothesis, applied to the copy Gi`−1 of G`−1, we have

∆(Ui) ≥ |Ui ∩A`−1(Gi`−1)|+ 1 ≥ |Ui ∩ (A` \ {xi, y`})|+ 1,

where the last inequality uses (20). We have thus proven (24). By repeating the calculation in (21)
and plugging in (24) and (20) (which we use for each j ∈ [k] \ {i}), we obtain

∆(U) =

k∑
i=0

∆(Ui)− (k − 1) · (|U ∩X|+ `) ≥ ∆(U0) + `+ 1

≥ |U0 ∩ {x1, . . . , xk, y`}|+ `− 1{x1,...,xk,y`}⊆U0
+ 1

= |U0 ∩ {x1, . . . , xk, y`}|+ `+ 1 = |U ∩A`|+ 1.

Here, the second inequality uses (23) and the last equality uses (18). This completes the inductive
proof of Items 1-2.

It remains to deduce Item 3 from Items 1-2. Suppose then that |U ∩X| ≥ k−1 and that U0 6⊆ X.
If X ⊆ U or y` ∈ U , then |U∩A`| ≥ k+`, in which case Item 1 implies that ∆(U) ≥ k+`, as required.
So we may assume that |U ∩X| = k − 1 and y` /∈ U . Since U0 is not contained in X, we must have
U0 \ {x1, . . . , xk, y`} 6= ∅. So by the niceness of G we have ∆(U0) ≥ |U0 ∩ {x1, . . . , xk, y`}| + 1 = k.
Plugging this into (22) gives ∆(U) ≥ k + `, as required. �

Item 3 of the lemma will be derived from the following claim, in a manner similar to the derivation
of Lemma 2.4 from Lemma 3.1.

Claim 4.5. For every ` ≥ 0, r ≥ 0 and ε ∈ (0, 1), there are δ = δ(`, r, ε) and n0 = n0(`, r, ε) such
that, for every 3-graph H on n ≥ n0 vertices, if H contains at least εnk+` copies of G`, then (at
least) one of the following conditions is satisfied:

1. There is k+ ` ≤ q ≤ v(G`)− 1 such that, for every 1 ≤ i ≤ r, the 3-graph H contains a (v′, e′)-
configuration which contains a copy of G`, where v′ − e′ ≤ k + ` and v′ = q + i · (v(G`)− q).

2. H contains at least δ · nk+`+1 copies of G`+1.

Proof. We proceed similarly to the proof of Lemma 3.1. Fixing ` ≥ 0, we set v := v(G`),

ζ := 2−v(1+2vr) · v−v · ε,

δ = δ(`, r, ε) = ζ
4 · γ

(
k, ζ2

)
and n0 = n0(`, r, ε) = 2

γ(k, ζ
2
)
, where γ is from Theorem 3.

Let H be a 3-graph on n ≥ n0 vertices, which contains at least εnk+` copies of G`. Partition
the vertices of H randomly into sets (Cz : z ∈ V (G`)) by choosing, for each vertex x ∈ V (H), a
vertex z ∈ V (G`) uniformly at random and independently (of the choices made for all other vertices
of H) and placing x in part Cz. A copy of G` in H will be called good if, for each z ∈ V (G`), the
vertex playing the role of z in this copy belongs to Cz. Since H contains at least εnk+` copies of G`,
there are in expectation at least v−v · εnk+` good copies of G`. So fix a partition (Cz : z ∈ V (G`))
with at least this number of good copies of G` and denote the set of these copies by F . We will
identify each good copy of G` with the corresponding embedding ϕ : V (G`) → V (H), while noting
that ϕ(z) ∈ Cz for each z ∈ V (G`). Recall that G` is the copy of G featured in the definition
of G`. Define an auxiliary graph G on F as follows. For each pair of distinct ϕ1, ϕ2 ∈ F , we
set U(ϕ1, ϕ2) := {z ∈ V (G`) : ϕ1(z) = ϕ2(z)} and let {ϕ1, ϕ2} be an edge in G if and only if
U := U(ϕ1, ϕ2) satisfies {y0, . . . , y`−1} ⊆ U , as well as (at least) one of the following three conditions:
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(i) |U ∩A`| ≥ k + `.

(ii) y` ∈ U and either |U ∩X| ≥ k − 1 or |U ∩X| = k − 2 and U \A` 6= ∅.

(iii) |U ∩X| ≥ k − 1 and U ∩ V (G`) is not contained in X.

Suppose first that there is ϕ ∈ F whose degree in G is at least

d := 2v(1+2vr).

Let ϕ1, . . . , ϕd be distinct neighbours of ϕ in G. By the pigeonhole principle, there is I ′ ⊆ [d] of size
at least 2−vd = 2v2

vr and a set U ′ ⊆ V (G`) such that, for all i ∈ I ′, it holds that U(ϕ,ϕi) = U ′.

As in the proof of Lemma 3.1, we consider the coloring {i, j} 7→ U(ϕi, ϕj) of the pairs {i, j} ∈
(
I′

2

)
and use a bound for multicolor Ramsey numbers [5] to obtain a set I ⊆ I ′ of size |I| = r and a set
U ⊆ V (G`) such that U(ϕi, ϕj) = U for all {i, j} ∈

(
I
2

)
. Observe that for each {i, j} ∈

(
I
2

)
, we have

U ⊇ U(ϕ,ϕi) ∩ U(ϕ,ϕj) = U ′. In particular, {y0, . . . , y`−1} ⊆ U ′ ⊆ U (by the definition of G). Note
also that U 6= V (G`) because the copies (ϕi : i ∈ I) of G` are distinct.

We now use Claim 4.4 to prove that ∆(U) ≥ k+ `. The definition of the graph G implies that the
set U ′ must satisfy one of the conditions (i)-(iii) above. Note that for each of these three conditions,
if it is satisfied by U ′, then it is also satisfied by every superset of U ′ and, in particular, by U . Now,
if U satisfies Condition (i) (resp. (iii)), then the bound ∆(U) ≥ k+ ` immediately follows from Item
1 (resp. 3) of Claim 4.4. Suppose then that U satisfies Condition (ii). If |U ∩ X| ≥ k − 1, then
|U ∩A`| ≥ k + ` (since Condition (ii) supposes that y` ∈ U), so again we can apply Item 1 of Claim
4.4. Finally, if |U ∩X| = k − 2 and U \ A` 6= ∅, then we have ∆(U) ≥ |U ∩ A`| + 1 = k + `, where
the inequality is given by Item 2 of Claim 4.4 and the equality holds because {y0, . . . , y`} ⊆ U and
|U ∩X| = k − 2. We have thus shown that ∆(U) ≥ k + ` in all cases.

Suppose without loss of generality that I = [r]. Put W := ϕ1(U) = · · · = ϕr(U) and denote
Vi := ϕi(V (G`) \U) ⊆ V (H) for each 1 ≤ i ≤ r. Note that V1, . . . , Vr are pairwise disjoint. Now, fix
any 1 ≤ i ≤ r and set V := V1 ∪ · · · ∪ Vi ∪W . Then

|V | = |U |+ i · (v(G`)− |U |) = i · v(G`)− (i− 1) · |U |

and
eH(V ) ≥ e(U) + i · (e(G`)− e(U)) = i · e(G`)− (i− 1) · e(U).

It follows that

|V | − eH(V ) ≤ i · (v(G`)− e(G`))− (i− 1)(|U | − e(U)) = i · (k + `)− (i− 1) ·∆(U)

≤ i · (k + `)− (i− 1) · (k + `) = k + `.

Moreover, it is evident that H[V ] contains a copy of G`. Finally, note that |U | ≥ ∆(U) ≥ k + ` and
|U | ≤ v(G`) − 1 (because U 6= V (G`), as mentioned above). Combining all the above, we see that
the assertion of Item 1 in the claim holds with q := |U |. This completes the proof in the case that
G has a vertex of degree at least d.

From now on we assume that the maximum degree of G is strictly smaller than d. Let F∗ ⊆ F be an
independent set in G of size at least v(G)/d = |F|/d. For each `-tuple of vertices u = (u0, . . . , u`−1) ∈
C̃ := Cy0 × · · · × Cy`−1

, we denote by F∗(u) the set of all ϕ ∈ F∗ such that ϕ(yi) = ui for each
0 ≤ i ≤ `− 1. Note that ∑

u∈C̃

|F∗(u)| = |F∗| ≥ |F|
d
≥ εnk+`

vvd
= ζnk+` . (25)
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We claim that |F∗(u)| ≤ nk for each u ∈ C̃. To see this, fix any such u and let ϕ1, ϕ2 ∈ F∗(u)
be distinct. If ϕ1(xi) = ϕ2(xi) for each 1 ≤ i ≤ k, then {x1, . . . , xk, y0, . . . , y`−1} ⊆ U(ϕ1, ϕ2). But
then U satisfies Condition (i) above, implying that {ϕ1, ϕ2} ∈ E(G), in contradiction to the fact
that F∗ is an independent set in G. So we see that for each u ∈ C̃ and for each ϕ ∈ F∗(u), the
values of ϕ(x1), . . . , ϕ(xk) determine ϕ uniquely. It follows that indeed |F∗(u)| ≤ nk. Now, by using
(25) and averaging, we get that there are at least ζ

2n
` tuples u ∈ C̃ which satisfy |F∗(u)| ≥ ζ

2n
k.

Let C ⊆ C̃ be the set of all such tuples u. We will show that for every u = (u0, . . . , u`−1) ∈ C,
there are at least 1

2γ(k, ζ2) · nk+1 copies of G`+1 in H in which ui plays the role of yi(G`+1) for every

0 ≤ i ≤ ` − 1. Combining this with the fact that |C| ≥ ζ
2n

`, we will conclude that H contains at

least ζ
2n

` · 12γ(k, ζ2) · nk+1 = δnk+`+1 copies of G`+1, as required.

Fix any u ∈ C. We define an auxiliary k-uniform (k + 1)-partite hypergraph J(u) with parts
Cx1 , . . . , Cxk , Cy` , as follows. For each ϕ ∈ F∗(u), put a k-uniform (k + 1)-clique in J(u) on the
vertices ϕ(x1) ∈ Cx1 , . . . , ϕ(xk) ∈ Cxk , ϕ(y`) ∈ Cy` . We denote this clique by Kϕ. We claim
that the cliques (Kϕ : ϕ ∈ F∗(u)) are pairwise edge-disjoint. To this end, fix any pair of distinct
ϕ1, ϕ2 ∈ F∗(u) and suppose, for the sake of contradiction, that the cliques Kϕ1 ,Kϕ2 share an edge.
Then there is Z ⊆ {x1, . . . , xk, y`} of size |Z| = k such that ϕ1(z) = ϕ2(z) for every z ∈ Z. It follows
that Z ∪ {y0, . . . , y`−1} ⊆ U(ϕ1, ϕ2). Therefore, |U(ϕ1, ϕ2) ∩ A`| ≥ k + `, implying that U(ϕ1, ϕ2)
satisfies Condition (i) above. This in turn implies that {ϕ1, ϕ2} ∈ E(G), which contradicts the fact
that F∗(u) ⊆ F(u) is an independent set in G. We have thus shown that the cliques (Kϕ : ϕ ∈ F∗(u))
are indeed pairwise edge-disjoint.

It follows from the previous paragraph that J(u) contains a collection of |F∗(u)| ≥ ζ
2n

k pairwise
edge-disjoint (k + 1)-cliques. By Theorem 3, the number of (k + 1)-cliques in J(u) is at least
γ(k, ζ2) ·nk+1. A (k+ 1)-clique K in J(u) is called colorful if it is not equal to Kϕ for any ϕ ∈ F∗(u).
Since there are at most |F∗(u)| ≤ nk non-colorful (k+1)-cliques, the number of colorful (k+1)-cliques
in J(u) is at least γ(k, ζ2) · nk+1 − nk ≥ 1

2γ(k, ζ2) · nk+1 (here we use our choice of n0).

To complete the proof, it remains to show that each colorful (k + 1)-clique in J(u) corresponds
to a copy of G`+1 in H. Fix any colorful (k+ 1)-clique K = {w1, . . . , wk, u`}, where u` is the unique
vertex of K contained in Cy` and, for each 1 ≤ i ≤ k, wi is the unique vertex of K contained in Cxi .
By the definition of J(u), each of the k + 1 edges of K corresponds to an embedding of G` into H.
More precisely, there are ϕ0, ϕ1, . . . , ϕk ∈ F∗(u) such that:

• For each 1 ≤ i ≤ k, ϕi(y`) = u` and ϕi(xj) = wj for each j ∈ [k] \ {i}.

• ϕ0(xi) = wi for each 1 ≤ i ≤ k.

We claim that ϕ0, . . . , ϕk are pairwise distinct. Assume, for the sake of contradiction, that ϕi =
ϕi′ =: ϕ for some 0 ≤ i < i′ ≤ k. Then ϕ(xj) = wj for each 1 ≤ j ≤ k. Indeed, this follows from
the two items above and from the (obvious) fact that one of i, i′ does not equal j. Similarly, since
i, i′ cannot both equal 0, the first item above implies that ϕ(y`) = u`. We now see that K = Kϕ, in
contradiction to the assumption that K is colorful. Hence, ϕ0, . . . , ϕk are indeed pairwise distinct.
Now the edge-disjointness of the cliques Kϕ0 ,Kϕ1 , . . . ,Kϕk implies that w′i := ϕi(xi) 6= wi for each
1 ≤ i ≤ k and that u`+1 := ϕ0(y`) 6= u`.

We now show how to construct a copy of G`+1 using the copies of G` corresponding to ϕ1, . . . , ϕk
and the copy of G corresponding to ϕ0(G

`). In this copy of G`+1, the role of xi(G`+1) will be played
by wi for every 1 ≤ i ≤ k, the role of the vertex x′i ∈ V (G`+1) will be played by w′i for every 1 ≤ i ≤ k
(recall the definition of G`+1) and the role of yi(G`+1) will be played by ui for every 0 ≤ i ≤ ` + 1.
(Recall that the vertices u0, . . . , u`−1 have already been fixed via the choice of u.) Note that for each
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1 ≤ i ≤ k, the embedding ϕi corresponds to a copy of G` in which wj plays the role of xj(G`) for
every j ∈ [k] \ {i}, w′i plays the role of xi(G`) and uj plays the role of yj(G`) for every 0 ≤ j ≤ `.
This copy of G` will play the role of Gi` in our copy of G`+1. Similarly, restricting ϕ0 to V (G`)
gives a copy of G in which wi plays the role of xi(G) for each 1 ≤ i ≤ k and u`+1 plays the role of
y0(G) (as y0(G

`) = y`(G`) and ϕ0(y`(G`)) = u`+1). By the definition of G`+1, in order to show that
Im(ϕ1)∪· · ·∪Im(ϕk)∪ϕ0(V (G`)) spans a copy ofG`+1, it suffices to verify that the k copies ofG` given
by ϕ1, . . . , ϕk, and the copy of G given by ϕ0(G

`), do not intersect outside of {w1, . . . , wk, u0, . . . , u`}.
Therefore, our goal is to show that Im(ϕi) ∩ Im(ϕj) = {w1, . . . , wk, u0, . . . , u`} \ {wi, wj} for each
1 ≤ i < j ≤ k and that Im(ϕi) ∩ ϕ0(V (G`)) = {w1, . . . , wk} \ {wi} for each 1 ≤ i ≤ k. We
start with the former statement. Fix any 1 ≤ i < j ≤ k. Setting U := U(ϕi, ϕj), note that
Im(ϕi) ∩ Im(ϕj) = ϕi(U) = ϕj(U), that y0, . . . , y` ∈ U and that U ∩ X = X \ {xi, xj} and hence
|U ∩ X| = k − 2. If we had U \ A` 6= ∅, then U would satisfy Condition (ii) above, which in turn
would imply that {ϕi, ϕj} ∈ E(G), thus contradicting the fact that F∗(u) ⊆ F∗ is an independent
set in G. So we see that U ⊆ A` and therefore U = A` \ {xi, xj}. This in turn is equivalent to having
Im(ϕi) ∩ Im(ϕj) = {w1, . . . , wk, u0, . . . , u`} \ {wi, wj}, as required.

Let us now show that Im(ϕi)∩ϕ0(V (G`)) = {w1, . . . , wk}\{wi} holds for every 1 ≤ i ≤ k. Fixing
1 ≤ i ≤ k, set U := U(ϕi, ϕ0) and note that A` \ {xi, y`} = {x1, . . . , xk, y0, . . . , y`−1} \ {xi} ⊆ U .
Now, if U ∩V (G`) were not contained in X, then U would satisfy Condition (iii) above, which would
imply the false statement that {ϕi, ϕ0} ∈ E(G). So we see that U ∩ V (G`) ⊆ X. Moreover, xi /∈ U ,
because otherwise the (k + 1)-cliques corresponding to ϕi and ϕ0, respectively, would not be edge-
disjoint (or, alternatively, because otherwise U would satisfy Condition (i) above). So we see that
U ∩ V (G`) = {x1, . . . , xk} \ {xi}, which implies that Im(ϕi) ∩ ϕ0(V (G`)) = {w1, . . . , wk} \ {wi}. �

Finally, we use Claim 4.5 in order to establish Item 3 of the lemma by induction on `. The case
` = 0 is trivial. Let us now fix ` ≥ 0, assume the validity of Item 3 for ` and prove the analogous
statement for `+ 1. It is easy to see that if the assertion of 3(a) holds for parameter `, then it also
holds for parameter `+ 1. So we may assume that the assertion of Item 3(b) holds, namely, that H
contains at least ε′ · nk+` copies of G` (where ε′ := δ(`, r, ε), as given by Item 3 in the lemma). So
we may apply Claim 4.5 to H (with parameter ε′ in place of ε). If Item 1 of Claim 4.5 holds, then
Item 3(a) of Lemma 2.6 holds with ` + 1 in place of ` (and with j = `). If instead Item 2 of Claim
4.5 holds, then H contains at least δ ·nk+`+1 copies of G`+1, as required by Item 3(b) in Lemma 2.6.
This completes the proof of the lemma.

5 An Improved Bound for a Problem of Erdős and Gyárfás

The Brown–Erdős–Sós problem has a known connection to (a special case of) the following generalized
Ramsey problem, introduced by Erdős and Gyárfás in [8]. Let g(n, p, q) denote the minimum number
of colors in a coloring of the edges of Kn in which every copy of Kp receives at least q colors.
For a fixed p ≥ 4, Erdős and Gyárfás [8] showed that g(n, p, q) is quadratic in n if and only if
q ≥ qquad(p) :=

(
p
2

)
− bp2c+ 2 and that Ω(n2) ≤ g(n, p, qquad(p)) ≤

(
n
2

)
− εn2 for some ε = ε(p) > 0.

They then asked for which qquad(p) < q ≤
(
p
2

)
it holds that g(n, p, q) =

(
n
2

)
− o(n2), observing that

this question is related to the Brown–Erdős–Sós problem and using this relation to prove several
partial results. The relation was further exploited by Sárközy and Selkow, who combined it with
(1) (or, more precisely, with a 4-uniform analogue thereof) to show that g(n, p, q) =

(
n
2

)
− o(n2)

whenever q > qquad(p) + d log2 p
2 e. By using our improved bound for the Brown–Erdős–Sós problem

(i.e., Corollary 2), we can improve upon the result of Sárközy and Selkow [17]. For completeness, we
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now sketch the proof of the reduction from the above generalized Ramsey problem to the Brown–
Erdős–Sós problem. This reduction has been used implicitly in [8, 17].

Proposition 5.1. Let p ≥ 4 and qquad(p) < q ≤
(
p
2

)
. Set e :=

(
p
2

)
− q+ 1. If f4(n, p, e) = o(n2), then

g(n, p, q) =
(
n
2

)
− o(n2).

Proof. Assume that f4(n, p, e) = o(n2) and suppose, for the sake of contradiction, that (for infinitely
many n) there is a coloring of the edges of Kn with t :=

(
n
2

)
− εn2 colors (where ε > 0 is fixed) in

which every copy of Kp receives at least q colors. Then at least εn2 edges have the same color as
some other edge.

Observe that each color appears fewer than bp2c times. Indeed, otherwise take edges e1, . . . , eb p
2
c,

all having the same color, and supplement them with (a suitable number of) vertices to obtain a
copy of Kp which receives at most

(
p
2

)
− bp2c + 1 < qquad(p) < q, a contradiction. It follows that at

least εn2/bp/2c ≥ 2εn2/p colors appear at least twice. For each such color c, fix a pair of distinct
edges (ec1, e

c
2) which are colored with c. We claim that there are less than (p − 1)n/2 colors c for

which ec1 and ec2 intersect. Indeed, assign to each such intersecting pair of edges their common
vertex. If the number of intersecting pairs is at least (p − 1)n/2, then there is a vertex u which is
the common vertex for at least bp−12 c such edge-pairs. In other words, there are distinct vertices

(xi, yi : 1 ≤ i ≤ bp−12 c) such that the color of {u, xi} is the same as that of yi for each 1 ≤ i ≤ bp−12 c.
As before, by adding a suitable number of vertices one obtains a copy of Kp which receives at most(
p
2

)
− bp−12 c < qquad(p) < q colors, in contradiction to our assumption.

It follows from the above two paragraphs that there are at least 2εn2/p − (p − 1)n/2 ≥ εn2/p
colors c (appearing at least twice) for which ec1, e

c
2 are disjoint. Define an auxiliary 4-graph H on

V (Kn) by putting a (4-uniform) edge on ec1 ∪ ec2 for each color c for which ec1, e
c
2 are disjoint. Since

K4 has 3 perfect matchings, we have e(H) ≥ εn2

3p . Observe, crucially, that H contains no (p, e)-
configuration. Indeed, if H contained a (p, e)-configuration, then, by the definition of H and our
choice of e, the vertex set of this configuration would correspond to a copy of Kp receiving at most(
p
2

)
− e = q − 1 colors, which is impossible. We thus conclude that e(H) ≤ f4(n, p, e). On the other

hand, e(H) ≥ εn2

3p , implying that f4(n, p, e) = Ω(n2), in contradiction to our assumption. �

By Corollary 2, applied with parameters r = 4, k = 2 and e =
(
p
2

)
− q+ 1, the bound f4(n, p, e) =

o(n2) holds whenever p ≥ 2e+ 18 log e/ log log e = 2(
(
p
2

)
− q+ 1) + 18 log e/ log log e. By rearranging,

we get the inequality q ≥
(
p
2

)
− p

2 +1+18 log e/ log log e. Recalling the value of qquad(p) and using the
(obvious) fact that e ≤

(
p
2

)
, we see that this inequality holds whenever q ≥ qquad(p)+C log p/ log log p

for some suitable absolute constant C. By combining this with Proposition 5.1, we obtain the
following improvement upon the aforementioned result from [17].

Theorem 4. There is an absolute constant C such that g(n, p, q) =
(
n
2

)
− o(n2) for every p ≥ 4 and

q ≥ qquad(p) + C log p/ log log p.
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[2] W. G. Brown, P. Erdős and V. T. Sós, Some extremal problems on r-graphs, in: New Directions
in the Theory of Graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press,
New York, 1973, 55–63.

26
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[8] P. Erdős and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997),
459–467.

[9] W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of
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