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Abstract

The celebrated Brown-Erdős-Sós conjecture states that for every fixed e, every 3-uniform
hypergraph with Ω(n2) edges contains e edges spanned by e+ 3 vertices. Up to this date all the
approaches towards resolving this problem relied on highly involved applications of the hypergraph
regularity method, and yet they supplied only approximate versions of the conjecture, producing
e edges spanned by e+O(log e/ log log e) vertices.

In this short paper we describe a completely different approach, which reduces the problem to
a variant of another well-known conjecture in extremal graph theory. A resolution of the latter
would resolve the Brown-Erdős-Sós conjecture up to an absolute additive constant.

1 Introduction

1.1 Background and previous results

Some of the most well studied problems in extremal combinatorics are those asking which objects
are guaranteed to appear in “dense” objects. Among notable examples are Roth’s Theorem [18] on
3-term arithmetic progressions in dense sets of integers, and the Kővári-Sós-Turán Theorem [16] on
bipartite subgraphs of dense graphs. In this paper we consider a question raised by Brown, Erdős
and Sós in 1973 [3, 2], which is one of the most famous open problems of this type.

Given an integer e ≥ 3, one would expect a dense 3-uniform hypergraph (3-graph for short) to
contain e edges spanned by a small number of vertices. To quantify this, let (v, e)-configuration
denote a set of e edges spanned by at most v vertices. The Brown–Erdős–Sós Conjecture (BESC)
states that for every fixed e ≥ 3 and all large enough n, every 3-graph with Ω(n2) edges contains an
(e + 3, e)-configuration. Despite a lot of effort over the past 50 years, the BESC is only known to
hold for e = 3, due to a result of Ruzsa and Szemerédi [21].

Since even the e = 4 case of the BESC seems hopeless, it is natural to try to prove approximate
versions of the conjecture, namely that 3-graphs with Ω(n2) edges contain (e+f(e), e)-configurations,
for some slowly growing function f . The first result of the above type was obtained by Sárközy
and Selkow [22] who showed that every 3-graph with Ω(n2) edges contains for every fixed e an
(e+ 2 + ⌊log2 e⌋, e)-configuration. This was improved by Solymosi and Solymosi [23] for the special
case e = 10 from 15 to 14 vertices. A general asymptotic improvement of the result of [23] was
obtained recently by Conlon, Gishboliner, Levanzov and Shapira [8], who proved the existence of
(e+O(log e/ log log e), e)-configurations.
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1



Besides its intrinsic interest, the BESC turned out to be one of the most influential problems
in extremal combinatorics. For example, the proof of the case e = 3 [21] was one of the first
applications of Szemerédi’s regularity lemma [24], and further introduced the famous graph removal
lemma. One of the main motivations for the development of the celebrated hypergraph regularity
method [11, 17, 19, 20, 26] was the hope that it will lead to a resolution of BESC. While this did not
materialize, the hypergraph regularity method was instrumental in the latest works [8, 23]. However,
although the above proofs rely on highly involved applications of the hypergraph regularity method,
it appears that the following natural approximate version of the BESC is beyond their reach.

Conjecture 1.1 (Constant deficiency BESC). There is an absolute constant d so that for every e
and every large enough n, every 3-graph with Ω(n2) edges contains an (e+ d, e)-configuration.

1.2 A new approach for Conjecture 1.1

Our aim in this paper is to reduce Conjecture 1.1 to a problem involving graphs. Let us denote
by ex(n,H) the maximum number of edges in an n vertex graph not containing a copy of H as a
subgraph. The Kővári-Sós-Turán Theorem [16] which we mentioned above, states that for every
fixed t ≤ s, we have ex(n,Ks,t) = O(n2−1/t) where Ks,t is the complete bipartite graph with parts of
size t and s. This bound is known to be tight for large s, see [4] for recent progress and references.
One of the main research directions in extremal graph theory is to obtain better bounds for sparser
bipartite graphs. One such problem was raised by Erdős [9], who conjectured that if H is a t-
degenerate bipartite graph then ex(n,H) = O(n2−1/t). While there are some approximate results
towards this conjecture [1, 10, 13, 15], the question is open even for t = 2. Note that in general,
the conjectured bound O(n2−1/t) for t-degenerate bipartite graphs cannot be improved since the
aforementioned Ks,t is t-degenerate. In particular, the bound is tight for every t-degenerate H which
contains a copy of Ks,t. In light of this, Conlon [5] conjectured that if we assume that a t-degenerate
bipartite graph H has no Kt,t then we have ex(n,H) = O(n2−1/t−δ) for some δ = δ(H) > 0. Lending
plausibility to this conjecture, Sudakov and Tomon [25] showed that if all vertices in one of the
parts of H have degree at most t but H has no Kt,t then ex(n,H) = o(n2−1/t). For t = 2 Conlon’s
conjecture can be stated as:

Conjecture 1.2 (Conlon [5]). For every 2-degenerate C4-free bipartite graph H there exists a con-
stant δ = δ(H) > 0 such that

ex(n,H) = O(n3/2−δ) .

There are several results supporting Conjecture 1.2. For example, Conlon and Lee [7] proved that if
H is a bipartite graph so that each vertex in one of H’s sides has maximum degree 2 (such a graph
is clearly 2-degenerate) and H is C4-free then ex(n,H) = O(n3/2−δ) for some δ = δ(H) > 0. Further
results in this direction were obtained in [6, 14].

Let Hk,t be the family of 2-degenerate graphs on k vertices and 2k−t edges. We raise the following
weaker version of Conjecture 1.2.

Conjecture 1.3. There are absolute constants t, k0 such that for every k ≥ k0 and large enough n,
every graph with Ω(n3/2) edges contains a copy of some H ∈ Hk,t.

Let us briefly explain why Conjecture 1.3 is indeed weaker than Conjecture 1.2. It is not hard
to see that for every t and large enough k, the family Hk,t contains C4-free graphs (see Claim 3.1).
Conjecture 1.2 then states that ifG has Ω(n3/2) edges thenG should contain a copy of everyH ∈ Hk,t

which is C4-free, while Conjecture 1.3 only asks G to contain a copy of some H ∈ Hk,t. Note also
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that Conjecture 1.3 is weaker than the statement that for every k ≥ k0 we have ex(n,H) = o(n3/2)
for some H ∈ Hk,t, which is itself weaker than Conjecture 1.2.

Our main result in this paper is the following alternative approach for resolving Conjecture 1.1.

Theorem 1.4. Conjecture 1.3 implies Conjecture 1.1.

Before turning to the proof of Theorem 1.4, we mention that it might very well be the case that
in Conjecture 1.3 we can replace the lower bound Ω(n3/2) by Ω(n3/2−δ) for some δ = δ(k) > 0.
Indeed, this bound is implied by Conjecture 1.2. It is not hard to see that in this case the proof of
Theorem 1.4 would give that for some absolute constant d and for every e there is ε = ε(e) > 0 so
that one can find (e+ d, e)-configurations in every 3-graph with n2−ε edges. Such a result would be
an approximate version of a conjecture suggested by Gowers and Long [12], stating that 3-graphs
with n2−ε edges contain (e+ 4, e)-configurations.

2 Proof of Theorem 1.4

To avoid confusion, we will refer to edges of a 3-graph as hyperedges. Fix e ≥ 3 and let G be a
3-graph with n vertices and Ω(n2) hyperedges. We will rely on the well known observation that in
the context of the BESC one can assume that G is linear and 3-partite on vertex sets (A,B, C). We
now apply a variant of the construction of Solymosi and Solymosi [23]. Given G, define an auxiliary
bipartite multigraph G′ as follows. Set V (G′) = (A,B) where A =

(A
2

)
and B =

(B
2

)
. For two vertices

{a1, a2} ∈ A and {b1, b2} ∈ B put an edge between them if there is a c ∈ C so that a1b1c and a2b2c
are hyperedges of G, and (independently) put an edge between them if there is a c′ ∈ C such that
a1b2c

′ and a2b1c
′ are hyperedges of G. Since G is linear, each pair of vertices in G′ are connected by

at most 2 edges. If we let d(c) denote the degree of a vertex c ∈ C in G then

|E(G′)| =
∑
c∈C

(
d(c)

2

)
≥ |C|

( 1
|C|

∑
c∈C d(c)

2

)
= |C|

(
|E(G)|/|C|

2

)
≥ |E(G)|2

4|C|
.

Since e(G) = Ω(n2), |C| ≤ n, and |V (G′)| ≤ n2, we obtain |E(G′)| = Ω(|V (G′)|3/2). Since, as noted
above, each pair of vertices in G′ are connected by at most 2 edges, G′ has a simple subgraph G
which also contains Ω(|V (G)|3/2) edges. Therefore, if k0 and t are the constants from Conjecture 1.3
and n is large enough, then we may assume the following.

Claim 2.1. For every k0 ≤ k ≤ e, the graph G contains a 2-degenerate bipartite graph F on k
vertices with at least 2k − t edges.

We would now like to understand what kind of (v, e)-configuration in G we get by “unpacking”
each of the graphs F in Claim 2.1. Optimistically, if v1, . . . , vk is the ordering of V (F ) certifying its
2-degeneracy, then every time we add a vertex vi to v1, . . . , vi−1 of degree 2 to the previous vertices,
we expect to get 4 new vertices in G; these are c1, c2 and either a1, a2 (if vi ∈ A) or b1, b2 (if vi ∈ B).
We also expect to get 4 new hyperedges in G; these are the 4 hyperedges that correspond to the 2
new edges in G that connect vi to 2 of the vertices v1, . . . , vi−1. If this holds for all but a bounded
number of F ’s vertices, then we will get a (4k, 4k−Ok(1)) configuration, hence taking k ≈ e/4 would
finish the proof. Unfortunately, we do not know how to prove such a statement, since in certain
cases (see below) some of the 4 vertices/hyperedges might have already appeared when adding one
of the previous vertices vj . Instead, the main idea in Lemma 2.2 below is to show that F gives rise
to a (e′+d, e′)-configuration, so that if e′ is not very close to 4k (as in the optimistic analysis above)
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then we have d ≤ 0. It is then easy to show how repeated applications of Lemma 2.2 give Theorem
1.4. In what follows G and G are those we discussed above.

Lemma 2.2. Let k ≥ t ≥ 4 be integers, and suppose F is a 2-degenerate subgraph of G with k
vertices and 2k − t edges. Then G contains a subgraph F such that

(1) |V (F)| − 4t ≤ |E(F)| ≤ 4k, and

(2) Either |E(F)| ≥ 4k − 104t3 or |E(F)| ≥ |V (F)| > 0.

We first derive Theorem 1.4 from Lemma 2.2. Assuming Conjecture 1.3 holds with constants t, k0
we show that Conjecture 1.1 holds with d = max{24k0, 3(4t+104t3)}. Indeed, we claim that for every
0 ≤ e′ ≤ e we can find e′ hyperedges in G spanned by at most e′ + d vertices. If e′ ≤ max{8k0, 4t+
104t3}, we just take e′ arbitrary hyperedges from G. For larger e′ we apply Lemma 2.2 with the above
t and with k = ⌊e′/4⌋ ≥ k0 (by Claim 2.1 we know that G contains an F with these parameters). If
the lemma returns a configuration F ′ whose number of edges satisfies e′ − 104t3 − 4 ≤ |E(F ′)| ≤ e′

(and is on at most e′ + 4t vertices), we just add to F ′ arbitrarily chosen e′ − |E(F ′)| ≤ 104t3 + 4
hyperedges to get a set of e′ edges on at most e′ + d vertices. Otherwise, we have |E(F ′)| ≥ |V (F ′)|
so we can remove F ′ from G and then restart the process with e′′ = e′ − |E(F ′)| (the 3-graph G \ F
still has Ω(n2) hyperedges assuming n is large). We will obtain a set F ′′ of e′′ hyperedges on at most
e′′ + d vertices, and can then return F ′′ ∪ F ′ as the set of e′ hyperedges on at most e′ + d vertices.

Proof of Lemma 2.2. Suppose G contains a subgraph F as above. Let v1, . . . , vk be the vertices
of F in the order that certifies its 2-degeneracy. For each i ∈ [k] let Fi = F [v1, . . . , vi] be the induced
subgraph on the first i vertices. Let Fi ⊆ G be a subgraph of G that corresponds to Fi. That is,

V (Fi) ∩ (A ∪ B) = {p ∈ A ∪ B : {p, q} ∈ V (Fi) for some q ∈ A ∪ B},

and for every edge uv of Fi, where u = {a1, a2} and b = {b1, b2} let c ∈ C be the (unique) vertex
certifying that uv ∈ E(F ) (in particular {a1b1c, a2b2c} ⊆ E(G) or {a1b2c, a2b1c} ⊆ E(G)). We include
c in V (Fi) and the corresponding pair of hyperedges in E(Fi), and applying the same procedure for
each edge of Fi we take the union of the resulting hyperedges.

Proof of assertion (1): Initially we have a graph F0 := (∅, ∅) with 0 edges and vertices. Given
some i ∈ [k], let F− := Fi−1 and F− := Fi−1. Suppose without loss of generality that vi ∈ A,
that is, v := vi corresponds to a pair {a1, a2} ∈

(A
2

)
. Let d(v) denote the degree of v in Fi, by our

assumptions we have d(v) ≤ 2. Let ∆E(i) := |E(Fi) \ E(F−)| and ∆V (i) := |V (Fi) \ V (F−)|.
Note that

0 ≤ ∆E(i) ≤ 2d(v) ≤ 4,

which, summing over all i gives the inequality |E(F)| ≤ 4k stated in assertion (1). To prove the
second inequality, we need to consider the degree of v: if d(v) = 2, let us call v a regular vertex,
otherwise (if d(v) is 0 or 1) we say that v is singular. Accordingly, we are speaking of a regular or
singular step i. A crucial observation is that since F is 2-degenerate and has 2k − t edges, then the
total number of singular steps is at most 2t.

Suppose first that v is regular, and let u and w be the two neighbours of v in F−. Let u and
w correspond to {b1, b2} ∈

(B
2

)
and {b3, b4} ∈

(B
2

)
respectively, with {b1, b2} ≠ {b3, b4} (note that

some individual b1, b2, b3, b4 may coincide). Furthermore, we have vertices c1, c2 ∈ C such that (after
relabelling) a1b1c1, a2b2c1, a1b3c2 and a2b4c2 are hyperedges of Fi. Note that we must have c1 ̸= c2
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for otherwise, by linearity of G, we would have b1 = b3 and b2 = b4, and so {b1, b2} = {b3, b4}. Since
all other hyperedges of Fi were already contained in F−, we have

E(Fi) \ E(F−) ⊆ {a1b1c1, a2b2c1, a1b3c2, a2b4c2} . (2.1)

Similarly, V (Fi) \ V (F−) ⊆ {a1, a2, c1, c2}, and so we also have 0 ≤ ∆V (i) ≤ 4.

We now claim that ∆V (i) ≤ ∆E(i), and that in fact ∆V (i) < ∆E(i) when ∆E(i) ∈ {1, 2, 3} (this
will be used in the proof of assertion (2)). Indeed, if ∆E(i) = 4, then there is nothing to prove
since ∆V (i) ≤ 4. If ∆E(i) = 3, then without loss of generality the hyperedge a1b1c1 was already
contained in F−. Hence, {a1, c1} ⊆ V (F−), implying ∆V (i) ≤ 2. Similarly, if ∆E(i) = 2, we have
∆V (i) ≤ 1 (if a1b1c1 and a2b2c1 were in F− then only c2 can be a new vertex, and if a1b1c1 and
one of the hyperedges containing c2 were already in F− then only a2 can be a new vertex), and if
∆E(i) = 1, then ∆V (i) = 0 (if only a1b1c1 is a new hyperedge then c1 was added with a2b2c1 and a1
was added with a1b3c2.). Finally, if ∆E(i) = 0 then {a1, a2, c1, c2} ⊆ V (F−) so ∆V (i) = 0. So, we
obtain |E(Fi)| − |V (Fi)| ≥ |E(Fi−1)| − |V (Fi−1)|.

If v is singular, a similar case analysis shows that |E(Fi)| − |E(Fi−1)| ≥ |V (Fi)| − |V (Fi−1)| − 2.
Since there are at most 2t singular steps in total, summing over all i yields |E(F)| ≥ |V (F)| − 4t as
desired.

Proof of assertion (2): In order to prove the second assertion we need to study the above process
in more detail.

Suppose a step i is regular. If ∆E(i) = 0 we call it a 0-step, if ∆E(i) = ∆V (i) = 4 we say this
is a 4-step. If we have ∆V (i) < ∆E(i), then we call this step a good regular step. Note that by the
argument in the paragraph following (2.1), every regular step which is not a 0-step or a 4-step is a
good step. Note also that at each good regular step the difference |E(Fi)|− |V (Fi)| strictly increases
and, as we have seen in the proof of (1), this difference decreases only at singular steps, in which it
decreases by at most 2. Hence, if the total number of good regular steps is at least 4t we would have
|E(F)| ≥ |V (F )| > 0 as needed. So let us assume for the rest of the proof that we have fewer than
4t good regular steps. Let us say that a (regular or singular) step is good if it is either good regular
in the above sense or singular. So, the total number of good steps is less than 6t.

If the number of 0-steps is at most s := 6t(12t + 2)2, then all but s + 6t of the steps are 4-steps
and so we have |E(F)| ≥ 4k − 4(s + 6t) ≥ 4k − 104t3 as needed. So suppose towards contradiction
that this is not the case, i.e., that the number of 0-steps is greater than s. We will now show that
this means that the total number of good and steps is at least 6t, contradicting the statement made
in the previous paragraph.

We say that a vertex c ∈ C is involved in step i (or equivalently, step i involves c) if c plays the
role of either c1 or c2 in the extension of Fi−1 to Fi described above. Note that each regular step
involves precisely two vertices of C. Similarly, we say that a hyperedge e ∈ E(G) is involved in step
i if it plays the role of one of the hyperedges arising in the extension of Fi−1 to Fi (we stress that
this is regardless of whether e had already been contained in Fi−1).

Observation 2.3. A pair of hyperedges e1 = a1b1c and e2 = a2b2c, where a1, a2 ∈ A, b1, b2 ∈ B, c ∈
C, can simultaneously be involved in at most one step.

Indeed, for every step i involving both hyperedges there must be vertices u,w ∈ V (F ) with u =
{a1, a2} and w = {b1, b2} such that one of u and w is the vertex vi and the other is vj for some j < i.

We now claim that every 0-step involving some vertex c ∈ C must be preceded by a good step
involving c. Indeed, suppose that c is involved in a 0-step at time i. Suppose that vi repre-
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sents some {a1, a2} ∈
(A
2

)
with E(Fi) \ E(Fi−1) = {viu, viw} for some u,w ∈ V (F ) representing

{b1, b2}, {b3, b4} ∈
(B
2

)
respectively (the case when vi ∈ B is identical), and that the hyperedges

of G certifying that {viu, viw} ⊆ E(Fi) (after relabelling) are {a1b1c, a2b2c, a1b3c′, a2b4c′} for some
c′ ∈ C (and note that since this is a 0-step, all these hyperedges are already contained in E(Fi−1)).
Let j1 be the first step involving the hyperedge e1 := a1b1c, i.e. j1 < i is the unique j such that
e1 ∈ E(Fj) \ E(Fj−1). Let j2 be defined analogously with respect to e2 := a2b2c. If step j1 or
j2 are singular, we have proved the claim (since singular steps are good by definition). So, let us
assume they are both regular. If j1 ̸= j2 then at time max(j1, j2) (say, this is j2) we have a good
step involving c, since ∆V (j2) < 4 yet ∆E(j2) ≥ 1, so this cannot be a 0-step or a 4-step and thus
must be a good step. On the other hand we cannot have j1 = j2 since that would mean both e1 and
e2 would be involved in two different steps, contradicting Observation 2.3. This proves the above
claim.

Now let Z ⊆ C be the set of all vertices in C involved in 0-steps. Suppose first that |Z| > 12t.
Then, as for every z ∈ Z each 0-step involving z is preceded by a good step also involving z, the
number of vertices of C involved in good steps is greater than 12t. Since every step involves at most
2 vertices of C, we obtain that the total number of good steps is greater than 6t, as needed.

So, let us assume that |Z| ≤ 12t. Then, by pigeonhole, some z ∈ Z was involved in at least
(2s)/(12t) = (12t + 2)2 of the 0-steps. This implies that z must be contained in at least 12t + 2
hyperedges of F , as each 0-step involving z involves two hyperedges containing z, and no such pair
may be involved twice by Observation 2.3.

Let now J ⊂ [k] be the set of all j ∈ [k] such that at step j for some hyperedge e ∈ F with z ∈ e
we have e ∈ E(Fj) \ E(Fj−1). Since at any given step j we can have at most 2 such hyperedges e,
we have |J | ≥ (12t+ 2)/2 = 6t+ 1. On the other hand for every step in j ∈ J except j0 = min J we
have ∆V (j) < 4, since z ∈ Fj0 , and ∆E(j) > 0, by definition of J . This means that each of these
|J | − 1 ≥ 6t steps is not a 0-step or a 4-step, and therefore must be a good step.

We have thus shown that if the number of 0-steps is at most s then the number of good steps is
at least 6t, which completes the proof of the lemma.

3 C4-free graphs in Hk,t

We say that a graph is exactly-(2, t)-degenerate if it can be obtained from a set of t isolated vertices
by repeatedly adding new vertices of degree exactly 2. Note that every exactly-(2, t)-degenerate
graph belongs to Hk,t. The following claim shows that Hk,t contains not only C4-free graphs, but in
fact graphs of arbitrary large girth.

Claim 3.1. For every g there is t = t(g) so that for every k ≥ t, there is a k-vertex exactly-(2, t)-
degenerate bipartite graph of girth at least g.

Proof. We claim that starting with an independent set of size t = t(g) (to be chosen later), we
can repeatedly add vertices so that each k-vertex graph in the sequence is exactly-(2, t)-degenerate,
bipartite, of girth at least g, and in addition satisfies the following two conditions: (i) it has maximum
degree at most 8 and (ii) it has a bipartition into two set of sizes ⌈k/2⌉ and ⌊k/2⌋. The initial
independent set under a balanced bipartition clearly satisfies these two conditions, so let us show
how to add a vertex and maintain them. Suppose the graph has k − 1 vertices and bipartition into
sets A,B satisfying |A| ≤ |B|. Since it has maximum degree at most 8, it contains O(k) pairs of
vertices connected by a path of length at most g − 2. Since the average degree of the vertices in B
is less than 4, at least half the vertices have degree at most 7. Hence, at least

(
(k−1)/4

2

)
≥ k2

50 of the
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pairs of vertices in B both have degree at most 7. Assuming t is large enough so that k ≥ t satisfies
k2

50 −O(k) > 1, we thus have a pair of vertices u, v ∈ B so that both of them have degree at most 7
and there is no path of length at most g − 2 connecting them. Hence, we can add a new vertex to
A and connect it to u and v.

Acknowledgement: We would like to thank David Conlon for useful discussions.
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[15] O. Janzer, Disproof of a conjecture of Erdős and Simonovits on the Turán number of graphs
with minimum degree 3, Int. Math. Res. Not., to appear. 1.2

7
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