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Abstract

It is well-known that, of all graphs with edge-density p, the random graph G(n, p) contains the
smallest density of copies of Kt,t, the complete bipartite graph of size 2t. Since Kt,t is a t-blowup
of an edge, the following intriguing open question arises: Is it true that of all graphs with triangle
density p3, the random graph G(n, p) contains close to the smallest density of Kt,t,t, which is the
t-blowup of a triangle?

Our main result gives an indication that the answer to the above question is positive by
showing that for some blowup, the answer must be positive. More formally we prove that if G

has triangle density p3, then there is some 2 ≤ t ≤ T (p) for which the density of Kt,t,t in G is at
least p(3+o(1))t2 , which (up to the o(1) term) equals the density of Kt,t,t in G(n, p). We also raise
several open problems related to these problems and discuss some applications to other areas.

1 Introduction

One of the main family of problems studied in extremal graph theory is how does the lack and/or
number of copies of one graph H in a graph G affect the lack and/or number of copies of another
graph H ′ in G. Perhaps the most well known problems of this type are Ramsey’s Theorem and
Turán’s Theorem. Our investigation here is concerned with the relation between the densities of
certain fixed graphs in a given graph. Some well known results of this type are Goodman’s Theorem
[15], the Chung-Graham-Wilson Theorem [10] as well as the well known conjectures of Sidorenko
[23] and Simonovits [24]. Some recent results of this type have been obtained recently by Razborov
[21] and Nikiforov [20], and an abstract investigation of problems of this type was taken recently
by Lovász and Szegedy [19]. In this paper we introduce an extremal problem of this type, which is
related to some of these well-studied problems, and to problems in other areas such as quasi-random
graphs and Communication Complexity.

Let us start with some standard notation. Given a graph H on h vertices v1, . . . , vh and a
sequence of h positive integers a1, . . . , ah, we denote by B = H(a1, . . . , ah) the (a1, . . . , ah)-blowup
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of H obtained by replacing every vertex vi ∈ H with an independent set Ii of ai vertices, and by
replacing every edge (vi, vj) of H with a complete bipartite graph connecting the independent sets
Ii and Ij . For brevity, we will call B = H(b, . . . , b) the b-blowup of H, that is, the blowup in which
all vertices are replaced with an independent set of size b.

For a fixed graph H and a graph G we denote by cH(G) the number of copies of H in G, or more
formally the number of injective mappings from V (H) to V (G) which map edges of H to edges of G.
For various reasons, it is usually more convenient to count homomorphisms from H to G, rather than
count copies of H in G. Let us then denote this quantity by HomH(G), that is, the number of (not
necessarily injective) mappings from V (H) to V (G) which map edges of H to edges of G (allowing1

two endpoints of an edge to be mapped to the same vertex of G). We now let dH(G) = HomH(G)/nh

denote the H-density of G (or the density of H in G). Note that 0 ≤ dH(G) ≤ 1 and we can think
of dH(G) as the probability that a random map φ : V (H) 7→ V (G) is a homomorphism. We will also
say that a graph on n vertices has edge-density p if it has p

(
n
2

)
edges.

The main motivation of our investigation comes from extremal graph theory. It is a well known
fact that of all graphs with edge-density p, the random graph G(n, p) contains the smallest asymptotic
density of copies of C4 (the 4-cycle) 2. Let Ka,b denote the complete bipartite graph on sets of vertices
of sizes a and b and note that Ka,b is the (a, b)-blowup of an edge and that C4 is just K2,2. It is
actually known that for any Ka,b the random graph G(n, p) has the smallest density of Ka,b over all
graphs with edge density p. We also recall the famous conjectures of Sidorenko [23] and Simonovits
[24] which state that the above phenomenon holds for all bipartite graphs, that is, that for any
bipartite graph B, of all graphs with edge density p, the random graph G(n, p) has the smallest
B-density.

The question we raise in this paper can thus be thought of as an attempt to extend the above
results/conjectures from blowups of an edge, to blowups of arbitrary graphs. Let us state it explicitly.

Problem 1 Let H be a fixed graph and set B = H(a1, . . . , ah). Assuming that dH(G) = γ, how
small can dB(G) be?

Motivated by the fact regarding blowups of an edge, it is natural to ask if it is the case that
over all graphs G satisfying dH(G) = γ, the density of B is minimized by a random graph of an
appropriate density (where B is some blowup of H). This turns out to be false even when H is a
triangle and B is the 2-blowup of H. This fact was noted by Conlon et al. [11] who observed that a
blow-up of K5 has triangle-density 12/25 and B-density 0.941(12/25)4. On the other hand, a random
graph with triangle-density 12/25 has B-density (12/25)4. Hence we get that blowups of triangles

1We note that the standard definition of homomorphism does not allow the end points of an edge to be mapped to

the same vertex. However, this relaxed definition is easier to consider and will not make any difference when counting

the asymptotic number of homomorphisms.
2This fact is implicit in some early works of Erdős
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and blowups of edges behave quite differently. We also recall the Chung-Graham-Wilson Theorem
[10] which says that if a graph has edge-density p and K2,2-density p4 then the graph is quasi-random.
It is thus natural to ask the following; let B be the 2-blowup of K3. Is it true that if G has the same
K3-density and B-density as G(n, p) then G is quasi-random? As it turns out, the example of [11]
shows that this is not the case. We refer the reader to the excellent survey on quasi-random graphs
by Krivelevich and Sudakov [17] for the precise definitions related to quasi-random graphs.

As we will see shortly, Problem 1 seems challenging even for the first non-trivial case of H being
the triangle (denoted K3), so we will mainly consider this case. To simplify the notation, let us
denote by Ka,b,c the (a, b, c)-blowup of K3. So K2,2,2 is the 2-blowup of the triangle and the question
we are interested in is the following: Suppose the triangle-density of G is γ. How small can the
density of B = Ka,b,c be in G? Let us denote by fB(γ) the infimum of this quantity over all graphs
with triangle-density at least γ. That is:

Definition 1.1 For a real γ > 0 and an integer n, let Gγ(n) denote the set of n vertex graphs with
triangle-density at least γ. For a blowup B = Ka,b,c we define3

fB(γ) = lim inf
n→∞ min

G∈Gγ(n)
dB(G) . (1)

So Problem 1 can be restated as asking for a bound on the function fB(γ). Let’s start with
some simple bounds one can obtain for fB(γ). A simple upper bound for fB(γ) can be obtained by
considering the number of triangles and copies of Ka,b,c in the random graph G(n, γ1/3). In the other
direction, a simple lower bound can be obtained from the Erdős-Simonovits Theorem [12] regarding
the number of copies of complete 3-partite hypergraphs in dense 3-uniform hypergraphs. These two
bounds give the following:

Proposition 1.2 Let B = Ka,b,c. Then we have the following bounds

γabc ≤ fB(γ) ≤ γ(ab+bc+ac)/3 .

Our main results in this paper suggest that it should be possible to improve upon the simple
bounds in the above proposition. But before turning to the technical part of the paper, let us mention
two other problems that are related to the problem we address here. As it turns out, in the case of
B = K2,2,2, the question of bounding fB(γ) was also considered recently (and independently) due
to a different motivation. Alon, Raz and Yehudayoff [3] observed that improving the lower bound
of B = K2,2,2 from fB(γ) ≥ γ8 to fB(γ) ≥ γ8−c for some c > 0 would give a lower bound for
the disjointedness problem in the number-on-the-forehead model. Although this lower bound was
obtained recently by other means [9, 18] it would be very intriguing to obtain such results via results
from extremal graph theory. See [9, 18] and their references for more details on this problem.

3It is actually not too hard to deduce from the regularity-lemma that the lim inf in (1) is actually a proper limit.
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Finally, note that one can naturally consider the following variant of Problem 1: Let H be a fixed
graph and let B′ be any subgraph of H(a1, . . . , ah). How small can fB′(G) be if fH(G) = γ? We
note that while Problem 1 for the case of H being an edge is well understood, the above variant of
Problem 1 is open even when H is an edge. This is the conjecture of Sidorenko [23] and Simonovits
[24] (which we have mentioned earlier). We thus focus our attention on Problem 1.

1.1 Balanced blowups and the main results

When considering the case B = K2,2,2, the bounds given by Proposition 1.2 become γ8 ≤ fB(γ) ≤ γ4.
Recall also the result of [11] which can be stated as saying that we can further improve this upper
bound to fB(γ) < 0.941γ4. So we see that the K2,2,2-density can be smaller than the K2,2,2-density
in a random graph with the same triangle-density. It is thus natural to ask if there are examples in
which the K2,2,2-density is polynomially smaller than in the random graph. By taking an appropriate
graph power of the example of [11] we can show that this is indeed the case.

Proposition 1.3 Set B = K2,2,2. Then for all small enough γ we have

fB(γ) ≤ γ4.08 .

The proof of Proposition 1.3 appears at the end of Subsection 2.3. The above proposition implies
that one cannot hope to show that the random graph has the smallest K2,2,2-density, even up to a
small polynomial factor.

Let us now turn to consider the more general case in which B = Kt,t,t. In this case Proposition
1.2 gives the bounds γt3 ≤ fB(γ) ≤ γt2 and the question is finding the correct exponent of fB(γ).
Given Proposition 1.3 it is thus natural to ask if we can obtain a similar polynomial improvement
over the upper bound of Proposition 1.2 for other blowups Kt,t,t. Our first main result in this paper
is the following general improved upper bound.

Theorem 1 There are absolute constants t0, c > 0, so that for all t ≥ t0 and all small enough γ,

fB(γ) ≤ γt2(1+c) ,

where B = Kt,t,t.

So the above theorem states that for every large enough t there are graphs whose Kt,t,t-density
is far from the corresponding density in a random graph with the same triangle-density. Our second
main result in this paper complements the above theorem by showing that if a graph G has triangle-
density γ, then for at least one blowup Kt,t,t, the graph must have Kt,t,t-density asymptotically close
to γt2 , namely, as the density expected in the random graph. More formally, we prove the following.
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Theorem 2 For every 0 < γ, δ < 1 there are N = N(γ, δ) and T = T (γ, δ) such that if G is a
graph on n ≥ N vertices and its triangle-density is γ, then there is some 2 ≤ t ≤ T for which the
Kt,t,t-density of G is at least γ(1+δ)t2.

So Theorem 2 states that in any graph G with K3-density γ, there is some t for which the
Kt,t,t-density in G is almost as large as the Kt,t,t-density in a random graph with the same triangle-
density. A natural question is if the dependence on G in Theorem 2 can be removed, that is, if one
can strengthen Theorem 2 by showing that it holds with T depending only on γ and t. Observe,
however, that by Theorem 1 this is not the case for any small enough γ and δ = c, where c is the
constant in Theorem 1. So we see that the value of t must depend on the specific graph, although it
is bounded by a quantity that depends only on γ and δ. We still believe though that the following
is true.

Conjecture 1 There is an absolute constant C such that

fB(γ) ≥ γCt2

where B = Kt,t,t.

Recall that by Theorem 1 even if the above conjecture is true, we must have C > 1. See Section
4 for further discussion on this conjecture and some related results.

1.2 Organization

The rest of this paper is organized as follows. In section 2 we focus on large blowups and prove
Theorem 2. Our first main tool for the proof of Theorem 2 is the quantitative version of the Erdős-
Stone Theorem, the so called Bollobás-Erdős-Simonovits Theorem [6, 7], regarding the size of blowups
of Kr in graphs whose density is larger than the Turán density of Kr. To the best of our knowledge,
this is the first application of the Bollobás-Erdős-Simonovits Theorem in which the exact bound on
the size of the blowup of Kr plays in important role. Our second main tool is a functional variant
of Szemerédi’s regularity lemma [26] due to Alon et al. [2]. We believe that this combination of
the results of [6, 7] and [2] may be of independent interest. In Section 3 we prove Theorem 1. The
main idea is to first prove Theorem 1 for γ close to 1 using a simple (yet hard to analyze) graph.
We then extend the result to all small enough γ using tensor products and random graphs. In
section 4 we consider some additional result. Specifically we consider the densities of small skewed
blowups and prove that in some cases one can obtain nearly tight bounds of their densities. The
proof of these results apply the so called Triangle Removal Lemma of Rusza-Szemerédi as well as the
Rusza-Szemerédi graphs. We also mention some additional problems related to the study of fB(γ).
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2 The Density of Large Symmetric Blowups

2.1 Background on the Regularity Lemma

We start with the basic notions of regularity, some of the basic applications of regular partitions and
state the regularity lemmas that we use in the proof of Theorem 2. See [16] for a comprehensive
survey on the Regularity Lemma. We start with some basic definitions. For every pair of nonempty
disjoint vertex sets A and B of a graph G, we define e(A,B) to be the number of edges of G between
A and B. The edge-density of the pair is defined by d(A, B) = e(A,B)/|A||B|.

Definition 2.1 (γ-regular pair) A pair (A,B) is γ-regular, if for any two subsets A′ ⊆ A and
B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality |d(A′, B′)− d(A, B)| ≤ γ holds.

Let G be a graph obtained by taking a copy of K3, replacing every vertex with a sufficiently large
independent set, and every edge with a random bipartite graph. The following well known lemma
shows that if the bipartite graphs are “sufficiently” regular, then G contains the same number of
triangles as the random graph does. For brevity, let us say that three vertex sets A,B, C are ε-regular
if the three pairs (A,B), (B,C) and (A,C) are all ε-regular. Several versions of this lemma were
previously proved in papers using the Regularity Lemma. See e.g. Lemma 4.2 in [14].

Lemma 2.2 For every ζ there is an ε = ε2.2(ζ) satisfying the following. Let A,B, C be pairwise
disjoint independent sets of vertices of size m each that are ε-regular and satisfy d(A,B) = α1,
d(A,C) = α2 and d(B,C) = α3. Then (A,B,C) contain at most (α1α2α3 + ζ) m3 triangles.

Comment 2.3 Although this is not stated explicitly, the function ε2.2(ζ) in Lemma 2.2 can be as-
sumed to be monotone increasing in ζ. We will use this assumption for all similar functions through-
out the paper.

The following lemma also follows from Lemma 4.2 in [14].

Lemma 2.4 For every t and ζ there is an ε = ε2.4(t, ζ) such that if G is a 3t-partite graph on
disjoint vertex sets A1, . . . , At, B1, . . . , Bt, C1, . . . , Ct of size m, and these sets satisfy:

• (Ai, Bj , Ck) are ε-regular for every 1 ≤ i, j, k ≤ t.

• For every 1 ≤ i, j, k ≤ t we have d(Ai, Bj) ≥ α1, d(Ai, Ck) ≥ α2 and d(Bj , Ck) ≥ α3.

Then G contains at least (α1α2α3 − ζ)t2 m3t copies of Kt,t,t each having precisely one vertex from
each partite set.

The following lemma is an easy consequence of Lemma 2.4, obtained by taking t multiple copies
of each partite set.
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Lemma 2.5 For every t and ζ there is an ε = ε2.5(t, ζ) such that if G is a 3-partite graph on disjoint
vertex sets A, B,C of size m and these sets satisfy:

• (A,B, C) is ε-regular.

• d(A,B) ≥ α1, d(A,C) ≥ α2 and d(B, C) ≥ α3.

Then G contains at least (α1α2α3 − ζ)t2 m3t distinct homomorphisms of Kt,t,t.

A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi| and
|Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular each Vi has one of two possible
sizes). The order of an equipartition denotes the number of partition classes (k above). A refinement
of an equipartition A is an equipartition of the form B = {Vi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ `} such that Vi,j

is a subset of Vi for every 1 ≤ i ≤ k and 1 ≤ j ≤ `.

Definition 2.6 (γ-regular equipartition) An equipartition B = {Vi | 1 ≤ i ≤ k} of the vertex set
of a graph is called γ-regular if all but at most γk2 of the pairs (Vi, Vi′) are γ-regular.

The Regularity Lemma of Szemerédi can be formulated as follows.

Lemma 2.7 ([26]) For every m and γ > 0 there exists T = T2.7(m, γ) with the following property:
If G is a graph with n ≥ T vertices, and A is an equipartition of the vertex set of G of order at most
m, then there exists a refinement B of A of order k, where m ≤ k ≤ T and B is γ-regular.

Our main tool in the proof of Theorem 2 is Lemma 2.9 below, proved in [2]. This lemma can
be considered a strengthening of Lemma 2.7, as it guarantees the existence of an equipartition and
a refinement of this equipartition that have stronger properties compared to those of the standard
γ-regular equipartition. This stronger notion is defined below.

Definition 2.8 (E-regular equipartition) For a function E(r) : N 7→ (0, 1), a pair of equiparti-
tions A = {Vi | 1 ≤ i ≤ k} and its refinement B = {Vi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ `}, where Vi,j ⊂ Vi for
all i, j, are said to be E-regular if

1. All but at most E(0)k2 of the pairs (Vi, Vj) are E(0)-regular.

2. For all 1 ≤ i < i′ ≤ k, for all 1 ≤ j, j′ ≤ ` but at most E(k)`2 of them, the pair (Vi,j , Vi′,j′) is
E(k)-regular.

3. All 1 ≤ i < i′ ≤ k but at most E(0)k2 of them are such that for all 1 ≤ j, j′ ≤ ` but at most
E(0)`2 of them |d(Vi, Vi′)− d(Vi,j , Vi′,j′)| < E(0) holds.

It will be very important for what follows to observe that in Definition 2.8 we may use an arbitrary
function rather than a fixed γ as in Definition 2.6 (such functions will be denoted by E throughout
the paper). The following is one of the main results of [2].
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Lemma 2.9 ([2]) For any integer m and function E(r) : N 7→ (0, 1) there is S = S2.9(m, E) such
that any graph on at least S vertices has an E-regular equipartition A, B where |A| = k ≥ m and
|B| = k` ≤ S.

2.2 Main Idea and Main Obstacle

Let us describe the main intuition behind the proof of Theorem 2, and where its naive implementation
fails. Recall that Lemma 2.2 says that an ε-regular triple contains the “correct” number of triangles
we expect to find in a “truly” random graph with the same density. So given a graph with triangle
density γ, we can apply the Regularity Lemma with (say) ε = γ. Suppose we get a partition into k

sets, for (say) some k ≤ T2.7(γ, 1/γ2). So the situation now is that the number of triangles spanned
by any triple Vi, Vj , Vk is more or less determined by the densities between the sets. Since G has
triangle-density γ, we get (by averaging) that there must be some triple Vi, Vj , Vk whose triangle-
density is also close to being at least γ. Suppose the densities between Vi, Vj , Vk are α1, α2 and α3.
Since the number of triangles between Vi, Vj , Vk is determined by the densities connecting them, we
get that α1α2α3 is close to γ. Now, if ε is small enough, then we can also apply Lemma 2.4 on
Vi, Vj , Vk in order to infer that they contain close to (n/k)3tαt2

1 αt2
2 αt2

3 copies of Kt,t,t. Hence, by the
above consideration, this number is close to (n/k)3tγt2 . Now, since for large enough t ≥ t(k) we have
(n/k)3tγt2 = n3tγ(1+o(1))t2 we can choose a large enough t = t(k) to get the desired result. Since k

is bounded by a function of γ so is t.
The reason why the above argument fails is that in order to apply Lemma 2.4 with a given t,

the value of ε in the ε-regular partition needs to depend on t. So we arrive at a circular situation in
which ε needs to be small enough in terms of t (to allow us to apply Lemma 2.4), and t needs to be
large enough in terms of ε (to allow us to infer that (n/k)3tγt2 = n3tγ(1+o(1))t2).

We overcome the above problem by applying Lemma 2.9 which more or less allows us to find a
partition which is f(k)-regular where k is the number of partition classes. However, this is an over
simplification of this result (as can be seen from Definition 2.8), and our proof requires several other
ingredients that enable us to apply Lemma 2.9. Most notably, we need to use a classic result of
Bollobás, Erdős and Simonovits [6, 7] and adjust it to our setting.

2.3 Some preliminary lemmas

We now turn to discuss two simple (yet crucial) lemmas that will be later used in the proof of Theorem
2. Let us recall that Turán’s Theorem asserts that every graph with edge-density larger than 1− 1

r−1

contains a copy of Kr, the complete graph on r vertices. The Erdős-Stone Theorem strengthens this
result by asserting that if the edge-density is larger than 1− 1

r−1 , then the graph actually contains
a blowup of Kr. More precisely, there is a function f(n, β, r) such that every n-vertex graph with
edge-density 1− 1

r−1 + β contains an f(n, β, r)-blowup of Kr (and f(n, β, r) goes to infinity with n).

8



The determination of the growth rate of f(n, β, r) received a lot of attention until Bollobás, Erdős
and Simonovits [6, 7] determined that for fixed β and r we have f(n, β, r) = Θ(log n). See [20] for a
short proof of this result and for related results and references. As it turns out, the bound Θ(logn)
will be crucial for our proof (a bound like log1−ε n would not be useful for us). Let us state an
equivalent formulation of this result for the particular choice of r = 3 and β = 1/24.

Theorem 3 (Bollobás-Erdős-Simonovits [6, 7]) There is an absolute constant c, such that ev-
ery graph on at least ct vertices and edge-density at least 13/24 contains a copy of Kt,t,t.

As a 3-partite graph with edge-density at least 7/8 between any two parts has overall density greater
than 13/24 we have:

Corollary 1 There is an absolute constant C, such that every 3-partite graph with parts of equal
size Ct and edge-density at least 7/8 between any two parts, contains a copy of Kt,t,t.

We will need the following lemma guaranteeing many copies of a large blowup of K3.

Lemma 2.10 If G is a 3-partite graph on vertex sets X, Y and Z of equal size m, and the three
densities d(X, Y ), d(X,Z) and d(Y, Z) are all at least 31/32, then G contains at least bm3t/C3t2c
copies of Kt,t,t, where C is an absolute constant.

Proof: Let C be the constant of Corollary 1. If m < Ct there is nothing to prove (as bm3t/C3t2c =
0) so let us assume that m ≥ Ct. We first claim that at least 1/4 of the graphs spanned by three
sets of vertices X ′ ⊆ X, Y ′ ⊆ Y , Z ′ ⊆ Z, where |X ′| = |Y ′| = |Z ′| = Ct, have edge-density at least
7/8. Indeed, suppose we randomly pick the sets X ′, Y ′ and Z ′. The expected density of non-edges
between (X ′, Y ′), (X ′, Z ′) and (Y ′, Z ′) is 1/32 (for each pair separately), so by Markov’s inequality,
with probability at least 1/4 this density is at most 1/8 for all three pairs simultaneously.

By Corollary 1, every graph of size at least Ct, whose edge-density is at least 7/8, contains a
copy of Kt,t,t. So by the above consideration, at least 1/4 of the

(
m
Ct

)3 choices of A′, B′, C ′ contain a
Kt,t,t. Since each such Kt,t,t is counted

(
m−t
Ct−t

)3 times, we have that the number of distinct copies of
Kt,t,t in G is at least

1
4

(
m

Ct

)3

/

(
m− t

Ct − t

)3

≥ m3t/C3t2 .

Let us briefly mention that if one fixes an integer t, then it is always possible to choose an ε = ε(t)
such that if the densities of the three bipartite graphs in Lemma 2.10 are 1− ε (rather than 31/32)
then one can find many copies of Kt,t,t. This follows from a simple counting argument, and in this
case there is no need to use the Bollobás-Erdős-Simonovits Theorem. However, in our application
we will not have the freedom of choosing the parameters this way. The reason is that ε in the above
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reasoning will be given by E(0) from Definition 2.8, while t will be roughly the integer S in Theorem
2.9, which is much larger than 1/E(0). In particular, we will not have the freedom of choosing
ε = E(0) to be small enough as a function of t, for the reason that t itself will depend on ε = E(0).

The proof of Theorem 2 that we give in the next subsection only covers the case of γ ¿ δ. As
the following lemma shows, we can then “lift” this result to arbitrary 0 < γ, δ < 1. For the proof we
will use the notion of graph tensor products, defined as follows: for an integer k let G⊗k be the kth

tensor product of G = (V, E), that is, the graph whose vertices are sequences of k (not necessarily
distinct) vertices of G, and where vertex v = (v1, . . . , vk) is connected to vertex u = (u1, . . . , uk) if
and only if for every 1 ≤ i ≤ k either vi = ui or (vi, ui) ∈ E.

Lemma 2.11 If Theorem 2 holds for every δ > 0 and every small enough γ < γ0(δ), then it also
holds for every 0 < γ, δ < 1.

Proof: Assume to the contrary that there exist a δ > 0, a γ ≥ γ0(δ) and arbitrarily large
graphs with triangle-density γ in which the Kt,t,t-density is smaller than γ(1+δ)t2 for every 2 ≤
t ≤ T (γ2

0(δ), δ). Let G be one such graph on at least N(γ2
0(δ), δ) vertices. The key observation is

that for every graph H, if the H-density of G is γ then the H-density of G⊗k is γk. Let then k be
the smallest integer satisfying γk < γ0(δ) and note that in this case we have γ2

0(δ) ≤ γk < γ0(δ). We
thus get that G⊗k is a graph on at least N(γ2

0(δ), δ) ≥ N(γk, δ) vertices, with triangle-density γk and
for all 2 ≤ t ≤ T (γk, δ) ≤ T (γ2

0(δ), δ) its Kt,t,t-density is smaller than γk(1+δ)t2 , which contradicts
the assumption of the lemma.

We end this subsection with the proof of Proposition 1.3.

Proof (of Proposition 1.3): Let K be an m/5 blowup of K5. Recall that [11] noted that for
large m, the triangle-density of K is 12/25, while its K2,2,2-density is 156/55 < 0.941(12/25)4. For
any integer k, let G = K⊗k be the kth tensor-product of K. So the triangle-density of G is (12/25)k

and its K2,2,2-density is at most (0.941)k(12/25)4k = (12/25)k(4+ζ), where ζ = log 0.941
log 12/25 > 0.08. For

any positive integer k, setting γ = (12/25)k we thus get a graph whose triangle-density is γ while
its K2,2,2-density is at most γ4.08. This proves the bound stated in Proposition 1.3 for a sequence of
γ’s approaching 0. One can extend this to arbitrary small γ using the same idea used in the proof
of Theorem 1.

2.4 Proof of Theorem 2

We prove the theorem for every 0 < δ < 1 and for every 0 < γ < 1 which is small enough so that

γ <

(
1

128C3

)2/δ

, (2)

10



where C is the absolute constant from Lemma 2.10. By Lemma 2.11 this will establish the theorem
for all 0 < δ, γ < 1. We note that the main idea of the proof given below basically implements
the “naive” idea described in Subsection 2.2, while utilizing Lemma 2.9 in order to actually make it
work.

For a given positive integer r, let t = t(r, δ, γ) be a large enough integer such that

1
r3t

( γ

64

)t2

≥ 2C3t2γ(1+δ)t2 (3)

holds. Since we assume that γ and δ satisfy (2), it is enough to make sure that t satisfies

1
r3t

≥ γ
1
2
δt2 ,

hence we can take
t(r, δ, γ) = max{2,

6 log r

δ log 1
γ

} . (4)

We now define a function E(r) as follows:

E(r) =





min{ 1
32 , γ/30, ε2.2(γ/4)}, r = 0

min{ 1
32 , ε2.5(t(r, δ, γ), γ/64), ε2.4(t(r, δ, γ), γ/64)}, r ≥ 1 .

(5)

Given γ and δ let E(r) be the function defined above. Set m = 30/γ and let S = S2.9(m, E)
be the constant from Lemma 2.9. Given a graph G on n ≥ S vertices and parameters γ and
δ, we apply Lemma 2.9 with m = 30/γ and with the function E(r) defined above. The lemma
returns an E-regular partition consisting of an equipartition A = {Vi | 1 ≤ i ≤ k} and a refinement
B = {Vi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ `}, where k` ≤ S(m, E) and k ≥ m. Note that S depends only on δ

and γ.
We now remove from G any edge whose endpoints belong to the same set Vi. We thus remove

at most n2/(2m) < γ
60n2 edges. We also remove any edge connecting pairs (Vi, Vj) that are not

E(0)-regular. The first property of an E-regular partition guarantees that we thus remove at most
E(0)n2 ≤ γ

30n2 edges. We also remove any edge connecting a pair (Vi, Vj) for which there are more
that E(0)`2 pairs i′, j′ which do not satisfy |d(Vi, Vj)−d(Vi,i′ , Vj,j′)| < E(0). By the third property of
an E-partition we infer that we thus remove at most γ

30n2 edges. All together we have removed less
than γ

12n2 edges and so we have destroyed at most γ
2n3 triangles in G (recall that we are counting

homomorphisms so each triangle is counted 6 times). And so the new graph we obtain has triangle-
density at least γ/2. Let us call this new graph G′.

As G′ has triangle-density at least γ/2, we get (by averaging) that there must be three sets
(Vi, Vj , Vp) that contain at least 1

2γ(n/k)3 triangles with one vertex in each of the sets Vi, Vj , Vp For
what follows, let us set α1 = d(Vi, Vj), α2 = d(Vi, Vp) and α3 = d(Vj , Vp). Because we have removed
edges between non-E(0)-regular pairs, we get that (Vi, Vj , Vp) must be E(0)-regular. Letting ∆ denote

11



the number of triangles spanned by (Vi, Vj , Vp) we see that as E(0) ≤ ε2.2(γ/4), we can apply Lemma
2.2 on (Vi, Vj , Vp) to conclude that

1
2
γ

(n

k

)3
≤ ∆ ≤ (α1α2α3 +

1
4
γ)

(n

k

)3
,

implying that

α1α2α3 ≥ 1
4
γ . (6)

Let us say that a 3s-tuple (where s is any positive integer) 1 ≤ i1 < · · · < is ≤ `, 1 ≤ j1 < · · · <
js ≤ `, 1 ≤ p1 · · · < ps ≤ ` is good if it satisfies the following four properties:

1. For every ia, jb, pc we have that (Vi,ia , Vj,jb
, Vp,pc) are E(k)-regular.

2. For every ia, jb we have d(Vi,ia , Vj,jb
) ≥ α1 − E(0) ≥ α1 − 1

8γ ≥ 1
2α1.

3. For every ia, pc we have d(Vi,ia , Vp,pc) ≥ α2 − E(0) ≥ α2 − 1
8γ ≥ 1

2α2.

4. For every jb, pc we have d(Vj,jb
, Vp,pc) ≥ α3 − E(0) ≥ α3 − 1

8γ ≥ 1
2α3.

Suppose i1, . . . , it, j1, . . . , jt, p1, . . . , pt is a good 3t-tuple. Then the definition of E (via the
function ε2.4(t, ζ) from Lemma 2.4) and the first property of a good 3t-tuple, guarantee that we can
apply Lemma 2.4 on Vi,i1 , . . . , Vi,it , Vj,j1 , . . . , Vj,jt , Vp,p1 , . . . , Vp,pt , to conclude that they have at least

( n

k`

)3t
(

1
8
α1α2α3 − 1

64
γ

)t2

≥
( n

k`

)3t ( γ

64

)t2

copies of Kt,t,t, where we have also used (6). Our choice of t = t(k, δ, γ) in (4) guarantees (via (3))
that the number of copies of Kt,t,t in a good 3t-tuple is at least

( n

k`

)3t ( γ

64

)t2

≥ 2C3t2
(n

`

)3t
γ(1+δ)t2 . (7)

But how can we be certain that a good 3t-tuple exists? And if they do, how many are there? We
first consider the case ` ≥ Ct. Let us now recall that E(r) ≤ 1

32 for every r ≥ 0 and so the second
and third properties of an E-regular partition guarantee that at least 31

32`2 of the choices 1 ≤ i′, j′ ≤ `

are such that (Vi,i′ , Vj,j′) is E(k)-regular and satisfies |d(Vi, Vj) − d(Vi,i′ , Vj,j′)| ≤ E(0). The same
holds with respect to the other two pairs (Vj , Vp) and (Vi, Vp). Therefore, by Lemma 2.10, the sets
Vi, Vj , Vp contain at least b`3t/C3t2c ≥ 0.5`3t/C3t2 choices of good 3t-tuples. Hence, combining this
with (7) we infer that the number of copies of Kt,t,t spanned by (Vi, Vj , Vp) is at least

`3t

2C3t2
· 2C3t2

(n

`

)3t
γ(1+δ)t2 = n3tγ(1+δ)t2 ,

implying that the Kt,t,t-density of G′ (and so also in G) is at least γ(1+δ)t2 .
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We now consider the case ` < Ct. Assume that in this case we can find just one good 3-tuple.
Then the definition of E (via the function ε2.5(t, ζ) from Lemma 2.5) and the first property of a good
3-tuple, together guarantee that we can apply Lemma 2.5 on this 3-tuple in order to conclude that
it contains at least ( n

k`

)3t
(

1
8
α1α2α3 − γ

64

)t2

≥
( n

k`

)3t ( γ

64

)t2

distinct homomorphisms of Kt,t,t. Our choice of t = t(k, δ, γ) in (4) guarantees (via (3)) that the
number of homomorphisms of Kt,t,t in a good 3-tuple is at least

( n

k`

)3t ( γ

64

)t2

≥ 2C3t2
(n

`

)3t
γ(1+δ)t2 ≥ n3tγ(1+δ)t2 ,

implying that the Kt,t,t-density in G′ (and so also in G) is at least γ(1+δ)t2 . To see that a single
good 3-tuple i1, j1, p1 exists, consider picking i1, j1 and p1 randomly and uniformly from [`]. Since
E(k), E(0) ≤ 1

32 we infer that with positive probability i1, j1 and p1 will satisfy the four properties
of a good 3-tuple, so a good 3-tuple exists.

Finally, note that since k ≤ S we see that k is upper bounded by some function of γ and δ. As
t = t(k, δ, γ) is chosen in (4) we see that 2 ≤ t ≤ T (γ, δ) for some function T (γ, δ) and so the proof
is complete.

3 Proof of Theorem 1

We will prove Theorem 1 by first proving it for some large γ (see Lemma 3.1 below), and then, by
applying tensor products and taking random subgraphs, obtain a similar result for all small enough
γ. Actually, the proof of Theorem 1 will cover all γ in the range (0, 1− 2

t ) so we actually need a very
mild assumption on how small γ is.

Let G(n, 6t) denote the complete 6t-partite graph with n vertices in each part. The main part of
the proof of Theorem 1 is the following lemma.

Lemma 3.1 There exists an absolute constant c > 0 and an integer t0, so that for all t ≥ t0 and
for all n sufficiently large, if γt denotes the triangle-density of G(n, 6t), then the Kt,t,t-density of
G(n, 6t) is at most γ

t2(1+c)
t .

Proof: Throughout the proof n is assumed to be sufficiently large depending on t. Also t is assumed
to be sufficiently larger than some absolute constant.

Let us first compute a lower bound on the triangle-density of G(n, 6t). Clearly,

γt > (1− 1/6t)(1− 2/6t) > 1− 1/2t.

Since
γt2

t > 0.9e−t/2 , (8)
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we can prove the lemma by showing that the Kt,t,t-density of G(n, 6t) is C−t/2 for some C > e.
Computing the Kt,t,t-density of G(n, 6t) requires, however, much more care. We start with the
following combinatorial lemma.

Claim 3.2 Let r and s be positive integers where s ≤ r. Suppose r labeled elements are placed at
random into s labeled bins. The probability that no empty bin will remain is at most

(
r−1
s−1

)
r!

sr2r−s
.

Proof: There are precisely sr ways to place the balls in the bins. Let’s provide an upper bound
for the number of such placements in which no empty bin remains. A vector of positive integers
(b1, . . . , bs) with

∑s
i=1 bi = r corresponds to a configuration in which bin i receives bi balls. There are

precisely
(
r−1
s−1

)
configurations. For a given configuration, the number of assignments corresponding

to it is precisely
r!

Πs
i=1bi!

≤ r!
2r−s

.

It follows that the probability in the statement of the lemma is at most as claimed.

It will be convenient to name the vertex classes of Kt,t,t as A1, A2, A3, and to name the vertex
classes of G(n, 6t) as V1, . . . , V6t. Let Q be the set of ordered partitions of [6t] into four nonempty
parts. Thus, an element Q is a 4-tuple (Q0, Q1, Q2, Q3). A copy of Kt,t,t in G is of configuration
(Q0, Q1, Q2, Q3) if all the vertices of Ai are in ∪j∈QiVj , and precisely the vertex classes Vj with
j ∈ Q0 are those that do not contain any vertex of the copy.

Let z = (z0, z1, z2, z3) be a vector of positive integers with z0 + z1 + z2 + z3 = 6t and with
z0 ≥ 3t. A tuple (Q0, Q1, Q2, Q3) is of type z if |Qi| = zi for i = 0, . . . , 3. Similarly, a copy of Kt,t,t

of configuration (Q0, Q1, Q2, Q3) is of type z = (|Q0|, |Q1|, |Q2|, |Q3|).
There are O(t3) possible types. Thus, it suffices to prove that for any fixed type, the Kt,t,t-

density of that given type is at most γ
(1+c′)t2
t for some absolute constant c′. We therefore fix a type

z = ((6− 3β)t, β1t, β2t, β3t) where β = (β1 + β2 + β3)/3 and focus at proving an upper bound for its
density.

We first observe that the number of configurations corresponding to z is

(6t)!
(β1t)!(β2t)!(β3t)!((6− 3β)t)!

.

For a given configuration (Q0, Q1, Q2, Q3) of type z, we compute the density of Kt,t,ts having this
configuration using the following equivalent combinatorial procedure. We have 3t elements, with
three colors 1, 2, 3, where there are t elements of each color. We have 6t bins, and we ask for the
probability of a random assignment of elements to the bins that has the following property: All the
elements of color i are placed in bins j with j ∈ Qi, and each bin j ∈ Qi has at least one element
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placed in it. This probability is a product of two probabilities papb. The first one, pa, is that each
element falls in a bin belonging to the correct class, and, conditioned on that, the second one, pb, is
that no bin in Qi is empty for each i = 1, 2, 3. Thus, pb = pc,1pc,2pc,3 where pc,i is the probability
that no bin in Qi is empty, given that all elements of color i are placed only in these bins.

The first probability is trivial to compute. It is precisely just

pa = (β1/6)t(β2/6)t(β3/6)t .

Instead of computing pci , we shall provide an upper bound for it. We will use the upper bound
provided by Claim 3.2 with r = t and s = βit. It yields:

pci ≤
(

t−1
βit−1

)
t!

(βit)t2(1−βi)t
.

The Kt,t,t-density of our configuration is, therefore, bounded by

(6t)!
(β1t)!(β2t)!(β3t)!((6− 3β)t)!

3∏

i=1

( (
t−1

βit−1

)
t!

(βit)t2(1−βi)t
·
(

βi

6

)t
)

.

Using Stirling’s formula asserting that x! =
√

2πx(x/e)x(1 + O(1/x)), the last expression is at most
(

66

ββ1
1 ββ2

2 ββ3
3 (6− 3β)6−3β

+ ot(1)

)t 3∏

i=1

(
βi

ββi
i (1− βi)1−βiβi21−βi6e

+ ot(1)

)t

.

Following (8), it therefore remains to prove that

63

(6− 3β)6−3βe323−3β

3∏

i=1

1

β2βi
i (1− βi)1−βi

< e−1/2.

Now, the function

f(β1, β2, β3) =
3∏

i=1

β2βi
i (1− βi)1−βi

subject to 0 ≤ βi ≤ 1 and to the fact that β1 + β2 + β3 = 3β, satisfies

f(β1, β2, β3) ≥ (β2β(1− β)1−β)3 . (9)

To see this, observe that ln f =
∑3

i=1 g(βi) where g(x) = 2x lnx + (1 − x) ln(1 − x). Since g(x) is
convex in (0, 1) we get by Jensen’s inequality that

3∑

i=1

g(βi) ≥ 3g(
3∑

i=1

βi/3) = 3g(β)

yielding (9).
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It therefore remains to prove that

63

(6− 3β)6−3βe323−3β

(
1

β2β(1− β)1−β

)3

< e−1/2.

Rearranging the terms, this is equivalent to showing that

(3e6−ββ2β(2− β)2−β(1− β)1−β)6 > e (10)

in [0, 1]. We first prove that h(x) = 6−xx2x(2− x)2−x(1− x)1−x is log-convex in (0, 1). Indeed,

lnh(x) = −x ln 6 + 2x ln x + (2− x) ln(2− x) + (1− x) ln(1− x) .

The second derivative of lnh(x) is thus 2/x+1/(2−x)+1/(1−x) which is positive in (0, 1). Hence,
the minimum of h(x) in (0, 1) is unique and is attained at the minimum of lnh(x). Equating the
first derivative of lnh(x) to zero we obtain the equation

− ln 6 + 2 lnx− ln(2− x)− ln(1− x) = 0 .

This amounts to solving the quadratic equation 5x2 − 18x + 12 = 0 whose unique solution in (0, 1)
is x = 9/5−√21/5. At this point, the value of the left hand side of (10) is greater than 2.76 > e.

Proof of Theorem 1: Let c and t0 be the absolute constants from Lemma 3.1, and let t ≥ t0. We
first prove that fB(γ) ≤ γt2(1+c) for all values γ of the form γk

t where k ≥ 1 is an integer. Indeed,
by Lemma 3.1, for all n sufficiently large, G(n, 6t) has triangle-density γt and Kt,t,t-density less than
γ

(1+c)t2

t . For any integer k, let Gn = (G(n, 6t))⊗k be the kth tensor-product of G(n, 6t). So the
triangle-density of Gn is γ = γk

t and its Kt,t,t-density is at most γ
k(1+c)t2

t = γ(1+c)t2 . It follows that
fB(γ) ≤ γt2(1+c).

To handle values of γ that are not of the form γ = γk
t , suppose γk+1

t < γ < γk
t for some integer

k ≥ 1, and set, as above, Gn = (G(n, 6t))⊗k. Then Gn has triangle-density γk
t and Kt,t,t-density at

most γ
k(1+c)t2

t . Suppose we now randomly remove every edge of Gn with probability 1− (γ/γk
t )1/3.

Let’s call the new graph we obtain G′
n. Then every triangle in Gn remains a triangle in G′

n with
probability γ/γk

t , so the expected triangle-density of G′
n is γ. Similarly, every copy of Kt,t,t remains

a copy in G′
n with probability (γ/γk

t )t2 , hence the expected Kt,t,t-density of G′
n is at most

(γ/γk
t )t2 · γk(1+c)t2

t = γt2γkct2

t ≤ γ(1+c/2)t2 ,

where the inequality follows since we assume that γ ≥ γk+1
t ≥ γ2k

t . So the expected triangle and
Kt,t,t densities in G′

n satisfy the same relation we obtained above for γ of the form γk
t , with a slightly

smaller constant c/2. But to show that there is actually a subgraph of Gn with both of these densities
as their expected values, we need to show that both densities attain a value close to their expectation
with high probability. We can think of the process of obtaining G′

n from Gn as a Doob martingale
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(see [4]). In this case, after exposing every edge the triangle-density can change by O(1/n2). Since
there are O(n2) such events, we get from Azuma’s Inequality (see [4]) that the probability that
the triangle-density of G′

n deviates from its expectation by an additive O(1/
√

n) term is bounded
from above by 2−O(n). A similar bound holds for the Kt,t,t-density of G′

n. We infer that with high
probability G′

n has both triangle-density γ± o(1) and Kt,t,t-density γ(1+c/2)t2 ± o(1) thus completing
the proof.

4 Additional Results

In this section we describe some additional results related to the study of the function fB(γ). We start
with considering the case of B being a skewed blowup. Proposition 1.2 implies that when B = K1,1,2

we have γ2 ≤ fB(γ) ≤ γ5/3. In an independent recent investigation, motivated by an attempt to
improve the bounds in the well-known Triangle Removal Lemma (see Theorem 5), Trevisan (see [27]
page 239) observed that the γ2 lower bound for the case B = K1,1,2 can be (slightly) improved. This
is a special case of the following theorem which extends the result of Trevisan to any K1,1,t.

Theorem 4 Set B = K1,1,t. Then we have the following bound

fB(γ) ≥ ω(γt) .

The proof of Theorem 4 is a simple adaptation of the proof of Trevisan for the case B = K1,1,2.
We will need the Triangle Removal Lemma of [22]:

Theorem 5 ([22]) If G is an n vertex graph from which one should remove at least εn2 edges in
order to destroy all triangles, then G contains at least f(ε)n3 triangles.

Proof of Theorem 4: Suppose G has γn3 triangles. Then by Theorem 5 we know that G contains
a set of edges F of size at most f(γ)n2, the removal of which makes G triangle-free, where f(γ) = o(1),
that is limγ→0 f(γ) = 0. For each edge e ∈ E(G) let c(e) be the number of triangles in G containing
e as one of their edges. Observe that a copy of K1,1,t is obtained by taking t triangles sharing an
edge. Also, as the removal of edges in F makes G triangle-free, every triangle in G has an edge of F

as one if its edges. Therefore, we have that the number of copies of K1,1,t in G is

∑

e∈F

(
c(e)
t

)
≥ 1

tt

∑

e∈F

c(e)t ≥ 1
tt|F |t−1

(∑

e∈F

c(e)

)t

≥ 1
tt|F |t−1

γtn3t ≥ 1
ttf(γ)t−1

γtnt+2 ,

implying the desired result with 1/(ttf(γ)t−1) being the ω(1) term in the statement of the theorem.
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We note that since the proof of Theorem 4 applies the Triangle Removal Lemma, which, in
turn, applies Semerédi’s Regularity Lemma, already for t = 2, the ω(γ2) bound in Theorem 4 “just
barely” beats the simple γ2 bound of Proposition 1.2. The bound which the proof gives is roughly
of order log∗(1/γ)γ2, and Tao [27] asked if it is possible to improve this bound to something like
log log(1/γ)γ2. While we can not rule out such a bound, we can still rule out a polynomially better
bound by improving the upper bound of Proposition 1.2. This is a special case of the following
theorem whose proof uses a variant of the Ruzsa and Szemerédi Theorem [22].

Theorem 6 Set B = K1,1,t. Then we have the following bound

fB(γ) ≤ γt−o(1)

where the o(1) term goes to 0 with γ.

Proof: Suppose S ⊆ [n] is a set of integers containing no 3-term arithmetic progression. We claim
that in this case there is a graph G = (V,E) with |V | = 6n and |E| = 3n|S|, whose edges can be
(uniquely) partitioned into n|S| edge disjoint triangles. Furthermore, G contains no other triangles.
To do this we define a 3-partite graph G on vertex sets A, B and C, of sizes n, 2n and 3n respectively,
where we think of the vertices of A, B and C as representing the sets of integers [n], [2n] and [3n].
For every 1 ≤ i ≤ n and s ∈ S we put a triangle Ti,s in G containing the vertices i ∈ A, i + s ∈ B

and i + 2s ∈ C. It is easy to see that the above n|S| triangles are edge disjoint, because every edge
determines i and s. To see that G does not contain any more triangles, let us observe that G can
only contain a triangle with one vertex in each set. If the vertices of this triangle are a ∈ A, b ∈ B

and c ∈ C, then we must have b = a + s1 for some s1 ∈ S, c = b + s2 = a + s1 + s2 for some
s2 ∈ S, and a = c − 2s3 = a + s1 + s2 − 2s3 for some s3. This means that s1, s2, s3 ∈ S form an
arithmetic progression, but because S is free of 3-term arithmetic progressions it must be the case
that s1 = s2 = s3, implying that this triangle is one of the triangles Ti,s defined above.

We now recall the well known construction of Behrend [5], which guarantees that for any integer
m, there is a subset S ⊆ [m] containing no 3-term arithmetic progression, satisfying |S| ≥ m/8

√
log m.

Let G′ be the graph described above when using [m] and the subset S. Finally, let G be an n/6m

blowup of G′, that is, the graph obtained by replacing every vertex v of G′ with an independent set
Iv of size n/6m, and replacing every edge (u, v) of G′ with a complete bipartite graph connecting Iu

and Iv. Observe that G has n vertices, and that each triangle in G′ gives rise to (n/6m)3 triangles
in G. Hence, the number of ways to map a triangle into G is

6m|S|
( n

6m

)3
=

n3

62m8
√

log m

(recall that there are six ways to map a labeled triangle into a triangle of G). The crucial observation
is that because all the triangles in G′ are edge disjoint, the only copies of K1,1,t in G are those that
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are formed by picking t vertices from a set Ia, one vertex from a set Ib and one vertex from a set Ic

for which a, b and c formed a triangle in G′. This means that the number of ways to map a K1,1,t

into G is

m|S|(t + 2)! · 3
( n

6m

)2
( n

6m

t

)
≤ 3(t + 1)(t + 2)nt+2

6t+2mt8
√

log m
.

Now setting

γ =
1

62m8
√

log m

we see that the triangle-density of G is γ, while the density of K1,1,t in G is at most

3(t + 1)(t + 2)
6t+2mt8

√
log m

= γt · (3(t + 1)(t + 2)6t−28(t−1)
√

log m) = γt−o(1) ,

thus completing the proof.

Note that Theorems 4 and 6 together determine the correct exponent of fB(γ) for B = K1,1,t.
That is, we get the following corollary.

Corollary 2 Set B = K1,1,t. Then we have

ω(γt) < fB(γ) < γt−o(1) . (11)

The problem of determining the correct order of the o(1) terms in (11) remains open and seems
challenging.

Comment 4.1 Both Theorems 4 and 6 were also obtained independently by N. Alon [1].

If we consider B = K1,2,2, then Proposition 1.2 gives γ4 ≤ fB(γ) ≤ γ8/3. The same proof as
that of Theorem 4, and the same construction used for the proof of Theorem 6, give the following
improved bounds ω(γ4) ≤ fB(γ) ≤ γ3−o(1). Note that as opposed to the case of B = K1,1,2 in which
our bounds determined the correct exponent of fB(γ), in the case of B = K1,2,2 we only know that
the correct exponent of fB(γ) is between 3 and 4.

Alon [1] has recently proved the following result, related to Theorem 2.

Theorem 7 (Alon [1]) Set B = Kt,t,t. Then we have

fB(γ) ≥ γt2/γ2
.

Alon’s result implies that for any t ≥ 1/γ2 one can improve upon the lower bound of Proposition
1.2. Alon’s argument is based on an idea used by Nikiforov [20] to tackle an Erdős-Stone [13] type
question. We now show that a slightly weaker bound can be derived directly from a recent result of
Nikiforov [20].

Theorem 8 If a graph has triangle-density γ, then its Kt,t,t-density is at least 2−O(t2/γ3).
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Proof (sketch): By a result of Nikiforov [20], a graph with triangle-density γ has a Kt,t,t with
t = γ3 log n. Or in other words, every graph on at least 2t/γ3

vertices, whose triangle-density is γ,
has a copy of Kt,t,t. As in the proof of Lemma 2.10, if a graph has triangle-density γ, then most
subsets of vertices of size 2t/γ3

have (roughly) the same density, so they contain a Kt,t,t. We thus
get that G has 1

4

( n
2t/γ3

)
sets which contain a Kt,t,t and since each Kt,t,t is counted

( n−3t

2t/γ3−3t

)
times we

get that G has n3t/2O(t2/γ3) distinct copies of Kt,t,t.

Observe that in a random graph G(n, γ1/3), whose triangle density is γ, we expect to find a
Kt,t,t with t = c log1/γ n for some absolute constant c. It seems very interesting to try and improve
Nikiforov’s result [20] mentioned above by showing the following:

Problem 2 Is there an absolute constant c > 0, such that if a graph G has triangle-density γ, then
G has a Kt,t,t of size t = c log1/γ n?

Besides being an interesting problem on its own, we note that such an improved bound, together
with the argument we gave in the proof of Theorem 8, would imply that if the triangle-density of a
graph is γ, then its Kt,t,t-density is at least γO(t2), which would establish Conjecture 1.

Acknowledgement: We would like to thank Noga Alon, Guy Kindler and Benny Sudakov for
helpful discussions related to this paper.
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[13] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946),
1089-1091.

[14] E. Fischer, The difficulty of testing for isomorphism against a graph that is given in advance,
SIAM J. on Computing 34 (2005), 1147-1158.

[15] A. W. Goodman, On sets of aquaintances and strangers at any party, Amer. Math. Monthly 66
(1959), 778-783.
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