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Abstract

A common thread in all the recent results concerning the testing of dense graphs is the use of
Szemerédi’s regularity lemma. In this paper we show that in some sense this is not a coincidence.
Our first result is that the property defined by having any given Szemerédi-partition is testable
with a constant number of queries. Our second and main result is a purely combinatorial char-
acterization of the graph properties that are testable with a constant number of queries. This
characterization (roughly) says that a graph property P can be tested with a constant number of
queries if and only if testing P can be reduced to testing the property of satisfying one of finitely
many Szemerédi-partitions. This means that in some sense, testing for Szemerédi-partitions is as
hard as testing any testable graph property. We thus resolve one of the main open problems in
the area of property-testing, which was first raised in the 1996 paper of Goldreich, Goldwasser
and Ron [27] that initiated the study of graph property-testing. This characterization also gives
an intuitive explanation as to what makes a graph property testable.

1 Background

1.1 Basic definitions

The meta-problem in the area of property testing is the following: given a combinatorial structure S,
one should distinguish between the case that S satisfies some property P and the case that S is ε-far
from satisfying P. Roughly speaking, a combinatorial structure is said to be ε-far from satisfying
some property P if an ε-fraction of its representation should be modified in order to make S satisfy
P. The main goal is to design randomized algorithms, which look at a very small portion of the
input, and using this information distinguish with high probability between the above two cases.
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Such algorithms are called property testers or simply testers for the property P. Preferably, a tester
should look at a portion of the input whose size can be upper bounded by a function of ε only. Blum,
Luby and Rubinfeld [12] were the first to formulate a question of this type, and the general notion of
property testing was first formulated by Rubinfeld and Sudan [37], who were interested in studying
various algebraic properties such as linearity of functions.

The main focus of this paper is the testing of properties of graphs. More specifically, we focus
on property testing in the dense graph model as defined in [27]. In this case a graph G is said to be
ε-far from satisfying a property P, if one needs to add and/or delete at least εn2 edges to G in order
to turn it into a graph satisfying P. A tester for P should distinguish with high probability, say 2/3,
between the case that G satisfies P and the case that G is ε-far from satisfying P. More precisely, it
should accept G with probability at least 2/3 if it satisfies P and reject G with probability at least
2/3 if it is ε-far from P. Here we assume that the tester can query some oracle whether a pair of
vertices, i and j, are adjacent in the input graph G. We also assume that the tester has access to
the size of the input graph1. In what follows we will say that a tester for a graph property P has
one-sided error if it accepts every graph satisfying P with probability 1 (and still rejects those that
are ε-far from P with probability at least 2/3). If the tester may reject graphs satisfying P with
non-zero probability then it is said to have two-sided error. The following notion of efficient testing
will be the main focus of this paper:

Definition 1.1 (Testable) A graph property P is testable if there is a randomized algorithm T ,
that can distinguish for every ε > 0 and with probability 2/3, between graphs satisfying P and graphs
that are ε-far from satisfying P, while making a number of edge queries2 which is bounded by some
function q(ε) that is independent of the size of the input.

The study of the notion of testability for combinatorial structures, and mainly the dense graph
model, was introduced in the seminal paper of Goldreich, Goldwasser and Ron [27]. Graph property
testing has also been studied in the bounded-degree model [29], and the newer general density model
[33]. We note that in these models a property is usually said to be testable if the number of queries
is o(n). Following [12, 27, 37] property testing was studied in various other contexts such as boolean
functions [4, 19, 21, 22, 32, 34], geometric objects [2, 14] and algebraic structures [10, 12, 23, 24].
See the surveys [17, 36] for additional results and references.

1.2 Background on the characterization project

With this abundance of results on property testing, a natural question is what makes a combinatorial
property testable. In particular, characterizing the testable graph properties was considered one of
the main open problems in the area of property testing, and was raised already in the 1996 paper
of Goldreich, Goldwasser and Ron [27], see also [11, 25, 28]. In this paper we obtain for the first
time a characterization of the testable graph properties. We next discuss some results related to this
problem.

A natural strategy toward obtaining a characterization of the testable graphs was to either prove
the testability/non-testability of general families of graph properties or to obtain characterizations

1We need this extra assumption to avoid certain issues related to the computability of the query complexity as a
function of ε. See [8] for a thorough discussion of these issues.

2We allow the tester to be adaptive, although one can assume with a slight loss of generality that it is non-adaptive.
See Lemma 4.2.
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for special cases of testers. The main result of [27] was that a general family of so called “partition-
problems” are all testable. These include the properties of being k-colorable, having a large cut and
having a large clique. [28] gave a characterization of the partition-problems that can be tested with
1-sided error. They also proved that not all graph properties that are closed under edge-removal
are testable. [15] studied property testing via the framework of abstract combinatorial programs and
gave certain characterizations within this framework. [3] tried to obtain a logical characterization of
the testable graph properties. More specifically, it was shown that every first order graph-property
of type ∃∀ (see [3]) is testable, while there are first-order graph properties of type ∀∃ that are not
testable. The main technical result of [3] was that certain abstract colorability properties are all
testable. These results were generalized in [16]. In [6] it was shown that every graph property that is
closed under removal of edges and vertices is testable. This result was extended in [7], where it was
shown that in fact, being closed under vertex removal is already sufficient for being testable (see also
[13] for an alternative proof). [7] also contains a characterization of the graph properties that can
be tested with one-sided error by certain restricted testers. Finally, [28] following [3], proved that a
tester may be assumed to be non-adaptive (see Lemma 4.2 below), and [20] proved that if a graph
property is testable then it is also possible to estimate how far is a given graph from satisfying the
property (see Theorem 3 below). These last two results are key ingredients in the present paper.

2 The Main Result

2.1 Background on Szemerédi’s regularity lemma

Our main result in this paper gives a purely combinatorial characterization of the testable graph
properties. As we have previously mentioned, the first properties that were shown to be testable in
[27] were certain graph partition properties. As it turns out, our characterization relies on certain
“enhanced” partition properties, whose existence is guaranteed by the celebrated regularity lemma of
Szemerédi [38]. We start by introducing some standard definitions related to the regularity lemma.
For a comprehensive survey about the regularity lemma the reader is referred to [31].

For every two nonempty disjoint vertex sets A and B of a graph G, we define e(A, B) to be
the number of edges of G between A and B. The edge density of the pair is defined by d(A, B) =
e(A,B)/(|A||B|).

Definition 2.1 (γ-regular pair) A pair (A,B) is γ-regular, if for any two subsets A′ ⊆ A and
B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality |d(A′, B′)− d(A, B)| ≤ γ holds.

Throughout the paper it will be useful to observe that in the above definition it is enough to
require that |d(A′, B′)−d(A,B)| ≤ γ for sets A′ ⊆ A and B′ ⊆ B of sizes |A′| = γ|A| and |B′| = γ|B|.
A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi| and
|Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular every Vi has one of two possible
sizes). The order of an equipartition denotes the number of partition classes (k above).

Definition 2.2 (γ-regular equipartition) An equipartition B = {Vi | 1 ≤ i ≤ k} of the vertex set
of a graph is called γ-regular if all but at most γ

(k
2

)
of the pairs (Vi, Vj) are γ-regular.

In what follows an equipartition is said to refine another if every set of the former is contained
in one of the sets of the latter. Szemerédi’s regularity lemma can be formulated as follows.
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Lemma 2.3 ([38]) For every m and γ > 0 there exists T = T2.3(m, γ) with the following property:
If G is a graph with n ≥ T vertices, and A is any equipartition of the vertex set of G of order at
most m, then there exists a refinement B of A of order k, where m ≤ k ≤ T and B is γ-regular.
In particular, for every m and γ > 0 there exists T = T2.3(m, γ), such that any graph with n ≥ T
vertices has a γ-regular equipartition of order k, where m ≤ k ≤ T .

The regularity lemma guarantees that every graph has a γ-regular equipartition of (relatively)
small order. As it turns out in many applications of the regularity lemma, one is usually interested
in the densities of the bipartite graphs connecting the sets Vi of the regular partitions. In fact, one
important consequence of the regularity lemma is that in many cases knowing the densities connecting
the sets Vi (approximately) tells us all we need to know about a graph. Roughly speaking, if a graph
G has a regular partition of order k and we define a weighted complete graph R(G), of size k, where
the weight of edge (i, j) is d(Vi, Vj), then by considering an appropriate property of R(G) one can
infer many properties of G. As the order of the equipartition is guaranteed to be bounded by a
function of γ, this means that for many applications, every graph has an approximate description of
constant-complexity (we will return to this aspect in a moment). As it turns out, this interpretation
of the regularity lemma is the key to our characterization. We believe that our characterization of
the testable graph properties is an interesting application of this aspect of the regularity lemma.

Given the above discussion it seems natural to define a graph property, which states that a graph
has a given γ-regular partition, that is, an equipartition which is γ-regular and such that the densities
between the sets Vi belong to some predefined set of densities.

Definition 2.4 (Regularity-Instance) A regularity-instance R is given by an error-parameter
0 < γ ≤ 1, an integer k, a set of

(k
2

)
densities 0 ≤ ηij ≤ 1 indexed by 1 ≤ i < j ≤ k, and a set

R of pairs (i, j) of size at most γ
(k
2

)
. A graph is said to satisfy the regularity-instance if it has an

equipartition {Vi | 1 ≤ i ≤ k} such that for all (i, j) 6∈ R the pair (Vi, Vj) is γ-regular and satisfies
d(Vi, Vj) = ηi,j. The complexity of the regularity-instance is max(k, 1/γ).

Comment 2.5 In the above definition, as well as throughout the paper, when we say that d(Vi, Vj) =
ηi,j we mean that the number of edges between Vi and Vj is bηi,j |Vi||Vj |c. This will allow us to disregard
divisibility issues that will have no real difference in any of our proofs.

Note, that in the above definition the set R corresponds to the set of pairs (i, j) for which (Vi, Vj)
is not necessarily a γ-regular pair (note that there may be up to γ

(k
2

)
such pairs). Also, note that

the definition of a regularity-instance does not impose any restriction on the graphs spanned by any
single set Vi. By Lemma 2.3, for any 0 < γ ≤ 1 any graph satisfies some regularity instance with
an error parameter γ and with an order bounded by a function of γ. The first step needed in order
to obtain our characterization of the testable properties, is that the property of satisfying any given
regularity-instance is testable. This is also the main technical result of this paper.

Theorem 1 For any regularity-instance R, the property of satisfying R is testable.

2.2 The characterization

Many of the recent results on testing graph properties in the dense graph model relied on the
Regularity Lemma. Our main result shows that this is not a coincidence. Previous results which
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applied the regularity lemma to test a graph property used it to infer a property of the graph that
could actually be inferred by looking at a regular partition of the graph. These results however,
use the properties of the regular partition in an implicit way. For example, the main observation
needed in order to infer that triangle-freeness is testable, is that if the regular partition has three
sets Vi, Vj , Vk, which are connected by regular and dense bipartite graphs, then the graph contains
many triangles. However, to test triangle freeness we do not need to know the regular partition,
we just need to find a triangle in the graph. As Theorem 1 allows us to test for having a certain
regular partition, it seems natural to try and test properties by explicitly checking for properties of
the regular partition of the input. Returning to the previous discussion on viewing the regularity
lemma as a constant complexity description of a graph, being able to explicitly test for having a
given regular partition should allow us to test more complex properties as we can obtain all the
information about the regular partition and not just certain consequences of having some regular
partition. The next definition tries to capture the graph properties P that can be tested via testing
a certain set of regularity instances.

Definition 2.6 (Regular-Reducible) A Graph property P is regular-reducible if for any δ > 0
there exists an r = rP(δ) such that for3 any n there is a family R of at most r regularity-instances
each of complexity at most r, such that the following holds for every ε > 0 and every n-vertex graph
G:

1. If G satisfies P then for some R ∈ R, G is δ-close to satisfying R.

2. If G is ε-far from satisfying P, then for any R ∈ R, G is (ε− δ)-far from satisfying R.

The reader may observe that in the above definition the value of δ may be arbitrarily close to 0.
If we think of δ = 0 then we get that a graph satisfies P if and only if it satisfies one of the regularity
instances of R. With this interpretation in mind, in order to test P one can test the property of
satisfying any one of the instances of R. Therefore, in some sense we “reduce” the testing of the
property P to the testing of regularity-instances. We are now ready to state our characterization of
the testable graph properties.

Theorem 2 (Main Result) A graph property is testable if and only if it is regular-reducible.

If we have to summarize the moral of our characterization in one simple sentence, then it says that
a graph property P is testable if and only if P is such that knowing a regular partition of a graph G is
sufficient for telling whether G is far or close to satisfying P. In other words, there is a short “proof”
that G is either close or far from satisfying P. Thus, in a more “computational complexity” jargon,
we could say that a graph property is testable if and only if it has the following “interactive proof”:
A prover gives a verifier the description of a regularity-instance R, which the input G is (supposedly)
close to satisfying. The verifier, using Theorem 1, then verifies if G is indeed close4 to satisfying R.
The way to turn this interactive proof into a testing algorithm is to apply the constant-complexity

3We note that we allow different values of n to have different regularity instances in order to handle cases where the
property we are testing depends on the size of the graphs. Some papers (e.g. [7, 13]) consider only properties whose
definition does not involve the size of the input.

4Actually, Theorem 1 only allows us to test if a graph satisfies R. To be able to tell if a graph is close to R we will
apply a result from [20]
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properties of the regularity lemma that we have previously discussed; as the order of the regular
partition is bounded by a function of ε, there are only finitely many regularity-instances that the
prover may potentially send to the verifier. Therefore, the verifier does not need to get an alleged
regularity-instance, it can simply try them all! Theorem 2 thus states that in some sense testing
regularity-instances is the “hardest” property to test, because by Theorem 2 any testing algorithm
can be turned into a testing algorithm for regularity-instances. However, we stress that this is true
only on the qualitative level. The reason is that applying Theorem 2 to a testable property P, thus
obtaining a tester that tests for regularity-instances, may result in a tester whose query complexity
is much larger than the query complexity of the optimal tester for P. The main reason is that the
proofs of Theorems 1 and 2 apply Lemma 2.3 and thus only give weak upper bounds (it is known
that the constants in Lemma 2.3 have a tower-type dependence on γ, see [30]). We also note that
the reason for choosing the term regular-reducible in Definition 2.6 is because in order to prove one
of the directions of Theorem 2 we actually test a property P, which is regular-reducible to a set R,
by testing the regularity-instances of R. Theorem 2 also gives further convincing evidence to the
“combinatorial” nature of property testing in the dense graph model as was recently advocated by
Goldreich [26].

As is evident from Definition 2.6, the characterization given in Theorem 2 is not a “quick recipe”
for inferring whether a given property is testable. Still, we can use Theorem 2 in order to obtain
unified proofs for several previous results. As we have alluded to before, these results can be inferred
by showing that it is possible (or impossible) to reduce the testing of the property to testing if a
graph satisfies certain regularity-instances. We believe that these proofs give some (non-explicit)
structural explanation as to what makes a graph property testable. See Section 7 for more details.
It is thus natural to ask if one can come up with more “handy” characterizations. We doubt that
such a characterization exists, mainly because it should (obviously) be equivalent to Theorem 2.
One supporting evidence is a recent related (and independent) study of graph homomorphism [13]
that led to a different characterization of the testable graph parameters, which is also somewhat
complicated to apply. See [13] for more details.

2.3 Organization and overview of the paper

The first main technical step of the proof of Theorem 1 is taken in Section 3. In this section we prove
that if the densities of pairs of subsets of vertices of a bipartite graph are close to the density of the
bipartite graph itself, then the bipartite graph can be turned into a regular-pair using relatively few
edge modifications. Rephrasing this gives that we can increase the regularity measure of a bipartite
pair by making relatively few edge modifications. The second main step is taken in Section 5. In
this section, we show that sampling a constant number of vertices guarantees that the sample and
the graph will have (roughly) the same set of regular partitions. We believe that this result may
be of independent interest. By applying the results of Sections 3 and 5 we prove Theorem 1 in
Section 6. In this section we also prove one of the directions of Theorem 2, asserting that if a graph
property is regular-reducible then it is testable. Along with Theorem 1, a second tool that we need
in order to prove this direction is the main result of [20]. We apply this result in order to infer
that for any regularity-instance R, one can not only test the property of satisfying R, but can also
estimate how far is a given graph from satisfying R. This estimation of the distance to satisfying
regularity-instances is key to testing a property via a regularity-reduction.

The proof of the second direction of Theorem 2 appears in Section 4. To prove this direction
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we first show that knowing that a graph G satisfies a regularity instance enables us to estimate the
number of copies of certain graphs in G. We then apply the main result of [28] about canonical
testers along with the main result of Section 3 in order to “pick” those regularity-instances that can
constitute the family R in Definition 2.6. In Section 7 we use Theorem 2 in order to reprove some
previously known results in property-testing. The main interest of these proofs is that they apply
Theorem 2 in order to prove in a unified manner results that had distinct proofs. Section 8 contains
some concluding remarks.

Throughout the paper, whenever we use a notation like α3.2 we refer to the constant α defined in
Lemma/Theorem/Claim 3.2. To avoid using floor/ceiling signs, in most parts of the paper we will
assume that the number of vertices of a graph is divisible by some small integer k. This will allow
us to assume, for example, that the sets of an equipartition are all of the same size. This will not
change any of the asymptotic results of the paper.

3 Enhancing Regularity with Few Edge Modifications

The definition of a γ-regular pair of density η requires a pair of sets of vertices to satisfy several
density requirements. The main goal in this section is to show that if a pair of vertex sets “almost”
satisfy these requirements, then it is indeed close to a γ-regular pair of density η. For example,
consider the property of being a 0.1-regular pair with edge density 0.4. Intuitively, it seems that if
the edge density of a bipartite graph G on vertex sets A and B of size m each is close to 0.4, and the
density of any pair A′ ⊆ A and B′ ⊆ B of sizes 0.1m is close to 0.4± 0.1, then G should be close to
satisfying the property. However, note that it may be the case that there are pairs (A′, B′), whose
density is smaller than 0.3, and other pairs, whose density is larger than 0.5. Thus, only removing or
only adding edges (even randomly) will most likely not turn G into a 0.1-regular pair of density 0.4.
In order to show that G is indeed close to satisfying the property, we take a “convex combination”
of G with a random graph, whose density is 0.4. The intuition is that the random graph will not
change the density of G much, but, because a random graph is highly regular, it will increase the
regularity of G. The main result of this section is formalized in the following lemma, which is an
important ingredient in the proofs of both directions of Theorem 2.

In this lemma, as well as throughout the rest of the paper, when we write x = a ± b we mean
that a− b ≤ x ≤ a + b.

Lemma 3.1 The following holds for any 0 < δ ≤ γ ≤ 1: Suppose that (A,B) is a (γ + δ)-regular
pair with density η ± δ, where |A| = |B| = m ≥ m3.1(η, δ). Then, it is possible to make at most
50 δ

γ2 m2 edge modifications and turn (A,B) into a γ-regular pair with density precisely η.

The proof of Lemma 3.1 has two main steps, which are captured in Lemmas 3.2 and 3.3 below.
The first step, given in Lemma 3.2 below, enables us to make relatively few edge modifications and
thus make sure that the density of a pair is exactly what it should be, while at the same time not
decreasing its regularity by much.

Lemma 3.2 Suppose that (A,B) is a (γ + δ)-regular pair satisfying d(A,B) = η ± δ, where |A| =
|B| = m ≥ m3.2(η, δ). Then, it is possible to make at most 2δm2 modifications, and thus turn (A,B)
into a (γ + 2δ)-regular pair with density precisely η.
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The second and main step, which implements the main idea presented at the beginning of this
section, takes a bipartite graph, whose density is precisely η, and returns a bipartite graph, whose
density is still η but with a better regularity measure.

Lemma 3.3 The following holds for any 0 < δ ≤ γ ≤ 1. Let A and B be two vertex sets of size
m ≥ m3.3(δ, γ), satisfying d(A,B) = η. Suppose further that for any pair of subsets A′ ⊆ A and
B′ ⊆ B of size γm we have d(A′, B′) = η ± (γ + δ). Then, it is possible to make at most 3δ

γ m2 edge
modifications that turn (A,B) into a γ-regular pair with density precisely η.

We now turn to prove the above three lemmas. Following them is a corollary of Lemma 3.1,
which will be used in the proof of Theorem 2. For the proofs of this section we need the following
standard Chernoff-type large deviation inequality (see, e.g., the appendix of [9]).

Lemma 3.4 Suppose X1, . . . , Xn are n independent Boolean random variables, where Prob[Xi =
1] = pi. Let E =

∑n
i=1 pi. Then, Prob[|∑n

i=1 Xi − E| ≥ δn] ≤ 2e−2δ2n.

Proof of Lemma 3.2: Suppose that d(A,B) = η + p, where |p| ≤ δ, and assume for now that
0 ≤ p ≤ δ. Suppose first that p ≤ δ(γ +2δ)2. In this case we just remove any pm2(≤ δm2) edges and
thus make sure that d(A,B) = η. Furthermore, as for any pair (A′, B′) of size (γ + 2δ)m we initially
had d(A′, B′) = η + p± (γ + δ), it is easy to see that because we remove pm2 ≤ δ(γ + 2δ)2m2 edges,
we now have η − γ − 2δ ≤ d(A′, B′) ≤ η + γ + δ, which satisfies d(A′, B′) = η ± (γ + 2δ). Thus, in
this case we turned (A,B) into a (γ + 2δ)-regular pair of density η.

Suppose now that p ≥ δ(γ + 2δ)2. Our way for turning (A,B) into a (γ + 2δ)-regular pair with
density η will consist of two stages. In the first we will randomly remove some of the edges between
A and B. We will then deterministically make some additional modifications. To get that after these
two stages (A,B) has the required properties we show that with probability 3/4 the pair (A, B) is
(γ + 2δ)-regular and with the same probability d(A,B) = η. By the union bound we will get that
with probability at least 1/2 the pair (A,B) has the required two properties.

In the first (random) step, we remove each of the edges connecting A and B randomly and
independently with probability p

η+p . Then the expected number of edges removed is

p

η + p
(η + p)|A||B| = p|A||B| ≤ δ|A||B| ,

and the expected value of d(A,B) is thus η. As we assumed that p ≥ δ(γ+2δ)2 we have d(A,B) ≥ p ≥
δ(γ + 2δ)2. Therefore, by Lemma 3.4, for large enough m ≥ m3.2(δ, γ), the probability that d(A,B)
deviates from η by more than 1/m0.5 is at most 1/4 5. In particular, the number of edge modifications
made is at most 3

2δm2 with probability at least 3/4. Now (this is the second, deterministic step) we
can add or remove at most m1.5 edges arbitrarily and thus make sure that d(A,B) = η. The total
number of edge modifications is also at most 3

2δm2 + m1.5 ≤ 2δm2, for large enough m ≥ m3.2(δ, γ).
Note that we have thus established that with probability at least 3/4 after the above two stages
d(A,B) = η.

5Note that we need a lower bound on the density as otherwise we cannot apply Lemma 3.4 to obtain a tail bound
that goes to zero fast enough.

8



As (A,B) was assumed to be (γ + δ)-regular, we initially had d(A′, B′) = η + p± (γ + δ) for any
pair of subsets A′ ⊆ A and B′ ⊆ B of size (γ +2δ)m. As in the first step we removed each edge with
probability p

η+p , the expected value of d(A′B′) after the first step is between

(η + p + γ + δ)(1− p

η + p
) ≤ η + γ + δ

and
(η + p− γ − δ)(1− p

η + p
) ≥ η − γ − δ.

Recall that we have already established that with probability at least 3/4 we have d(A,B) = η and
that for any pair (A′, B′) of size (γ + 2δ)m the expected value of d(A′, B′) is η ± (γ + δ). Hence,
to show that after the two steps (A,B) is a (γ + 2δ)-regular pair with probability at least 1/2, it
suffices to show that with probability at least 3/4, the densities of all pairs (A′, B′) do not deviate
from their expectation by more than δ.

Suppose first that d(A′, B′) was originally at most 1
2δ. This means that when we randomly remove

edges from (A, B) we can change d(A′, B′) by at most 1
2δ. Thus in this case d(A′, B′) can deviate from

its expectation by at most 1
2δ. Also, when adding or removing m1.5 edges to (A,B) in the second

step we can change d(A′, B′) by at most 1/m0.5(γ+2δ)2 ≤ 1
2δ for large enough m ≥ m3.2(δ, γ). Thus,

for such pairs we are guaranteed that d(A′, B′) = η ± (γ + 2δ).
Suppose now that d(A′, B′) was at least 1

2δ. Thus the number of edges, which were considered for
removal between A′ and B′ in the first step was at least 1

2δ(γ+2δ)2m2. Hence, by Lemma 3.4 the prob-
ability that d(A′, B′) deviates from its expectation by more than 1

2δ is at most 2e−2( 1
2
δ)2 1

2
δ(γ+2δ)2m2

.
Thus, as there are at most 22m pairs of such sets (A′, B′), we conclude by the union-bound that for
large enough m ≥ m3.2(δ, γ), with probability at least 3/4 all sets (A′, B′) of size (γ + 2δ)m satisfy
d(A′, B′) = η± (γ + 3

2δ). As in the previous paragraph, adding or removing m1.5 edges in the second
step can change d(A′, B′) by at most 1

2δ, so in this case we also have d(A′, B′) = η ± (γ + 2δ).
Finally, in the case that p above satisfies −δ ≤ p ≤ 0 we can use essentially the same argument.

The only modification is that we add edges instead of remove them.

Proof of Lemma 3.3: For any pair of vertices a ∈ A and b ∈ B we do the following: we flip a coin
that comes up heads with probability 2δ

(δ+γ) and tails with probability 1 − 2δ
(δ+γ) . If the coin comes

up tails we make no modification between the vertices a and b. If the coin comes up heads then we
disregard the adjacency relation between a and b and do the following: we flip another coin that
comes up heads with probability η and tails with probability 1− η. If the coin comes up heads then
we put an edge connecting a and b, and otherwise we do not put such an edge. In what follows we
call the coins flipped in the first step the first coins, and those flipped in the second step the second
coins.

Claim 3.5 With probability at least 3/4, we make at most 3δ
γ m2 edge modifications.

Proof: Note that the number of edge modifications is at most the number of first coins that came
up heads. The distribution of these m2 coins is given by the Binomial distribution B(m2, 2δ

(δ+γ)),

whose expectation is 2δ
(δ+γ)m

2, and by Lemma 3.4 the probability of deviating by more than 1
2δm2

9



from this expectation is at most 2e−2(δ/2)2m2
. For large enough m ≥ m3.3(δ, γ) we get that with

probability at least 3/4 we make at most 2δ
(δ+γ)m

2 + 1
2δm2 ≤ 2.5δ

γ m2 modifications.

The following observation will be useful for the next two claims: Fix a pair of adjacent vertices
a ∈ A and b ∈ B. For them to become non-adjacent the first coin should come up heads (this
happens with probability 2δ

(δ+γ)) and the second tails (this happens with probability (1 − η)), thus

the probability of them staying adjacent is (1− 2δ
(δ+γ) + 2ηδ

(δ+γ)). Now, fix a pair of non-adjacent vertices
a ∈ A and b ∈ B. For them to become adjacent, both coins must come up heads, so the probability
of them becoming adjacent is 2ηδ

(δ+γ) .

Claim 3.6 With probability at least 3/4, we have d(A, B) = η ± 1/m0.5.

Proof: Recall that by assumption the number of adjacent vertices was ηm2. Thus, by the above
observation the expected number of adjacent vertices is

ηm2(1− 2δ

(δ + γ)
+

2ηδ

(δ + γ)
) + (1− η)m2 2ηδ

(δ + γ)
= ηm2.

By Lemma 3.4 we get that for large enough m ≥ m3.3(δ, γ) the probability of deviating from this
expectation by more than m1.5 is at most 1/4. Normalizing by m2 we get the required bound on
d(A,B).

Claim 3.7 With probability at least 3/4, all sets A′ ⊆ A and B′ ⊆ B, whose size is γm, satisfy
d(A′, B′) = η ± (γ − 1

2δ).

Proof: Fix any pair of such sets. Let e denote the number of edges originally spanned by these
sets. As in the previous claim we get that the expected number of edges spanned by (A′, B′) is

e(1− 2δ

(δ + γ)
+

2ηδ

(δ + γ)
) + (|A′||B′| − e)

2ηδ

(δ + γ)
= e(1− 2δ

(δ + γ)
) + |A′||B′| 2ηδ

(δ + γ)
.

Recall that by assumption e = |A′||B′|(η ± (γ + δ)). Thus, the expected number of edges spanned
by (A′, B′) is at most

|A′||B′|(η + γ + δ)(1− 2δ

(δ + γ)
) + |A′||B′| 2ηδ

(δ + γ)
=

|A′||B′|(η + γ + δ − 2δγ

δ + γ
− 2δ2

δ + γ
) =

|A′||B′|(η + γ − δ) .

Similarly, we infer that the expected number of edges spanned by (A′, B′) is at least

|A′||B′|(η − γ − δ)(1− 2δ

(δ + γ)
) + |A′||B′| 2ηδ

(δ + γ)
=

|A′||B′|(η − γ − δ +
2δγ

δ + γ
+

2δ2

δ + γ
) =

|A′||B′|(η − γ + δ) .

10



By Lemma 3.4 the probability that the number of edges between A′ and B′ will deviate from its
expectation by more than 1

2δ|A′||B′| is at most 2e−2(δ/2)2|A′||B′| = 2e−2(δ/2)2(γm)2 . As the number of
pairs (A′, B′) is at most 22m we get by the union bound, that if m ≥ m3.3(δ, γ) is large enough then
with probability at least 3/4 all the pairs (A′, B′) of size γm satisfy this property. Thus for all pairs
(A′, B′) of size γm we have d(A′, B′) = η ± (γ − 1

2δ).

Combining the above three claims we get that with constant probability we make at most 2.5δ
γ m2

modifications and thus make sure that d(A,B) = η±1/m0.5 and furthermore that for any pair of sets
(A′, B′) of size γm we have d(A′, B′) = η± (γ − 1

2δ). Now we can add or remove at most m1.5 edges
to make sure that d(A,B) = η. For any pair of sets (A′, B′) of size γm this will change d(A′, B′) by
at most 1/m0.5γ2 ≤ 1

2δ for large enough m. This means that we will have d(A′, B′) = η±γ, implying
that (A,B) is γ-regular with density η, completing the proof of the lemma.

Proof of Lemma 3.1: By Lemma 3.2 we can make at most 2δm2 edge modifications and thus
turn (A,B) into a (γ + 2δ)-regular pair with density η. Thus, every pair of subsets A′′ ⊆ A and
B′′ ⊆ B of size γm has density at most

(η + γ + 2δ)(γ + 2δ)2m2/γ2m2 ≤ (η + γ + 2δ)(1 + 8δ/γ) ≤ η + γ + 14δ/γ.

Similarly, the density of such a pair is at least η − γ − 14δ/γ. We thus conclude that (A,B) has
density precisely η, and every pair of subsets (A′′, B′′) of size γm has density η ± (γ + 14δ/γ). Now
we can use Lemma 3.3 to make at most 314δ/γ

γ m2 = 42 δ
γ2 m2 additional edge modifications and thus

turn (A,B) into a γ-regular pair with density precisely η. The total number of modifications is
42 δ

γ2 m2 + 2δm2 ≤ 50 δ
γ2 m2 as needed.

We finish this section with the following application of Lemma 3.1 that will be useful later in the
paper.

Corollary 3.8 Let R be a regularity-instance of order k, error-parameter γ,
(k
2

)
edge densities ηi,j

and a set of non-regular pairs R. Suppose a graph G has an equipartition V = {V1, . . . , Vk} of order
k such that

1. d(Vi, Vj) = ηi,j ± γ2ε
50 for all i < j.

2. Whenever (i, j) 6∈ R, the pair (Vi, Vj) is (γ + γ2ε
50 )-regular.

Then G is ε-close to satisfying R.

Proof: For any (i, j) 6∈ R we can use Lemma 3.1 and make at most 50γ2ε/50
γ2 (n/k)2 ≤ εn2/k2 edge

modifications to turn (Vi, Vj) into a γ-regular pair with density ηi,j . As there are at most
(k
2

)
pairs

this is a total of at most εn2 modifications. We have thus turned G into a graph satisfying R by
making at most εn2 edge modifications, as needed.
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4 Any Testable Property is Regular-Reducible

In this section we prove the first direction of Theorem 2.

Lemma 4.1 If a graph property is testable then it is regular-reducible.

Our starting point in the proof of Lemma 4.1 is the following result of [28] (extending a result of
[3]) about canonical testers:

Lemma 4.2 ([3, 28]) If a graph property P can be tested on n-vertex graphs with q = q(ε, n) edge
queries, then it can also be tested by a one that makes its queries by uniformly and randomly choosing
a set of 2q vertices, querying all the pairs and then accepting or rejecting (deterministically) according
to the (isomorphism class of the) graph induced by the sample, the value of ε and the value of n. In
particular, it is a non-adaptive tester making

(2q
2

)
queries.

Restating the above, by (at most) squaring the query complexity, we can assume without loss
of generality that a property-tester works by sampling a set of vertices of size q(ε, n) and accepting
or rejecting according to some graph property of the sample. Such a testing algorithm is said to be
canonical. As noted in [28], the graph property that the algorithm may search for in the sample may
be different from the property which is being tested. In fact, the property the algorithm checks for
in the sample may depend on ε and on the size of the input graph6. We will use Lemma 4.2 in order
to “pick” the graphs of size q that cause a tester for P to accept. The first technical step that we
take towards proving Lemma 4.1 is proving some technical results about induced copies of (small)
graphs spanned by graphs satisfying a given regularity-instance. These results enable us to deduce
from the fact that a graph satisfies some regularity-instance, what is the (approximate) probability
that a given tester accepts the graph. We then use these results along with Lemma 4.2, Corollary
3.8 and some additional arguments in order to prove that any testable property is regular reducible.
The details follow.

Definition 4.3 Let H be a graph on h vertices, let W be a weighted complete graph on h vertices,
where the weight of an edge (i, j) is ηi,j. For a permutation σ : [h] → [h] define

IC(H, W, σ) =
∏

(i,j)∈E(H)

ησ(i),σ(j)

∏

(i,j) 6∈E(H)

(1− ησ(i),σ(j))

Suppose V1, . . . , Vk are k vertex sets, each of size m, and suppose the bipartite graph spanned
by Vi and Vj is a bipartite random graph with edge density ηi,j . Let H be a graph of size k,
and let σ : [k] → [k] be some permutation. What is the expected number of k-tuples of vertices
v1 ∈ V1, . . . , vk ∈ Vk that span an induced copy of H, such that for every i we have vi playing
the role of σ(i)? It is easy to see that the answer is IC(H,W, σ)mk, where W is the weighted
complete graph with weights ηi,j . The following claim shows that this is approximately the case
when instead of random bipartite graphs we take regular enough bipartite graphs. The proof is a
standard application of the definition of a regular pair and is thus omitted. See Lemma 4.2 in [18]
for a version of the proof.

6For most “natural” graph properties there will not be any dependence on the size of the input, but as we are
dealing here with arbitrary properties we must take this possibility into account.
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Claim 4.4 For any δ and h, there exists a γ = γ4.4(δ, h) such that the following holds: Suppose
V1, . . . , Vh are h sets of vertices of size m each, and that all the pairs (Vi, Vj) are γ-regular. Define
W to be the weighted complete graph on h vertices, whose weights are ηi,j = d(Vi, Vj). Then, for any
graph H on h vertices and for any σ : [k] → [k], the number of h-tuples v1 ∈ V1, . . . , vh ∈ Vh, which
span an induced copy of H with each vi playing the role of the vertex σ(i) is

(IC(H,W, σ)± δ)mh

Definition 4.5 Let H be a graph on h vertices, let W be a weighted complete graph on h vertices,
where the weight of edge (i, j) is ηi,j. Let Aut(H) denote the number of automorphisms of H. Define

IC(H, W ) =
1

Aut(H)

∑
σ

IC(H,W, σ).

Continuing the discussion before Claim 4.4, suppose now we want to estimate the total number
of induced copies of H having one vertex in each of the sets Vi. It is easy to see that in this
case the expected number of such copies of H is IC(H, W ). Again, we can show that the same is
approximately true when we replace random bipartite graphs with regular enough bipartite graphs.

Claim 4.6 For any δ and k, there exists a γ = γ4.6(δ, k) such that the following holds: Suppose that
V1, . . . , Vk are sets of vertices of size m each, and that all the pairs (Vi, Vj) are γ-regular. Define K
to be the weighted complete graph on k vertices, whose weights are ηi,j = d(Vi, Vj). Then, for any
graph H of size k, the number of induced copies of H, which have precisely one vertex in each of the
sets V1, . . . , Vk is

(IC(H, W )± δ)mk

Proof: Set γ4.6(δ, k) = γ4.4(δ/k!, k). Suppose V1, . . . , Vk are as in the statement of the claim and
let H be any graph on k vertices. By Claim 4.4 for every permutation σ : [k] → [k], the number
of induced copies of H which have precisely one vertex vi in each set Vi such that vi plays the
role of vertex σ(i) is IC(H, W, σ) ± δmk/k!. If we sum over all permutations σ : [k] → [k] we get∑

σ(IC(H, W, σ) ± δ/k!)mk. This summation, however, counts copies of H several times. More
precisely, each copy is thus counted Aut(H) times. Dividing by Aut(H) gives that the number of
such induced copies is

1
Aut(H)

(∑
σ

(IC(H, W, σ)± δ/k!)

)
mk =

(
1

Aut(H)

∑
σ

IC(H, W, σ)± δ

)
mk =

(IC(H, W )± δ)mk .

We would now want to consider the number of induced copies of a graph H, when the number
of sets Vi is larger than the size of H.
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Definition 4.7 Let H be a graph on h vertices, let R be a weighted complete graph of size at least h,
where the weight of an edge (i, j) is ηi,j, and let W denote all the subsets of V (W ) of size h. Define

IC(H, R) =
∑

W∈W
IC(H, W ).

The following lemma shows that knowing that a graph satisfies some regularity-instance R,
enables us to estimate the number of induced copies spanned by any graph satisfying R.

Lemma 4.8 For any δ and q, there are k = k4.8(δ, q) and γ = γ4.8(δ, q) with the following properties:
For any regularity-instance R of order at least k and with error parameter at most γ, and for every
graph H of size h ≤ q, the number of induced copies of H in any n-vertex graph satisfying R is

(IC(H,R)± δ)

(
n

h

)

Proof: Put
k = k4.8(δ, q) =

δ

10q2
,

and
γ = γ4.8(δ, q) = min{ δ

3q2
, γ4.6(

1
3
δ, q)} .

Let R be any regularity instance as in the statement, let G be any graph satisfying R, and let H
be any graph of size h ≤ q. Let V1, . . . , V` be an equipartition of G satisfying R. For the proof of
the lemma it will be simpler to consider an equivalent statement of the lemma, stating that if one
samples an h-tuple of vertices from G, then the probability that it spans an induced copy of H is
IC(H,R)± δ.

First, note that by our choice of k we get from a simple birthday-paradox argument, that the
probability that the h-tuple of vertices has more than one vertex in any one of the sets Vi is at most
1
3δ. Second, observe that as the equipartition of R is γ-regular and γ ≤ δ, we get that the probability
that the h-tuple of vertices contains a pair vi ∈ Vi and vj ∈ Vj such that (Vi, Vj) is not γ-regular is
at most

(h
2

)
γ ≤ (q

2

)
γ ≤ 1

3δ. Consider the events (i) the h vertices v1, . . . , vh belong to distinct sets Vi

(ii) if the tuple v1, . . . , vh is such that vi ∈ Vi then for every i < j the pair (Vi, Vj) is γ-regular. As
each of these events holds with probability 1 − 1

3δ it is enough for us to show that conditioned on
them that the probability that v1, . . . , vh span an induced copy of H is IC(H,R) ± 1

3δ. Assuming
events (i) and (ii) hold let us compute the probability that the h-tuple of vertices spans an induced
copy of H, while conditioning on the h sets from V1, . . . , V` which contain the h vertices. For every
possible set W of h sets Vi we get from the choice of γ via Claim 4.6 that the probability that they
span an induced copy of H is IC(H, W )± 1

3δ. This means that the conditional probability that the
h-tuple of vertices spans an induced copy of H is IC(H,R)± 1

3δ, as needed.

The following corollary strengthens the above lemma by allowing us to consider families of graphs.

Corollary 4.9 For any δ and q, there are k = k4.9(δ, q) and γ = γ4.9(δ, q) with the following prop-
erties: For any regularity-instance R of order at least k and with error parameter at most γ, and for
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every family A of graphs of size q, the number of induced copies of graphs H ∈ A in any n-vertex
graph satisfying R is

(
∑

H∈A
IC(H,R)± δ)

(
n

q

)

Proof: We just take k = k4.9(δ, q) = k4.8(δ/2(q
2), q) and γ = γ4.9(δ, q) = γ4.8(δ/2(q

2), q). By Lemma
4.8, the number of induced copies of a graph H or size q, in any graph satisfying a regularity instance
R of order at least k and with error parameter at most γ, is (IC(H, R)± δ/2(q

2))
(n
h

)
. As A contains

at most 2(
q
2) graphs the total error after summing over all graphs H ∈ A is bounded by δ

(n
h

)
.

Proof of Lemma 4.1: Suppose P is testable by a tester T , and assume without loss of generality
that T is canonical. This assumption is possible by Lemma 4.2. Let q(ε) be the upper bound
guarantee for the query complexity of T . Fix any n and δ and assume that δ < 1/12 (otherwise,
replace δ with 1/13). Let q = q(δ, n) ≤ q(δ) be the query complexity, which is sufficient for T to
distinguish between n-vertex graphs satisfying P and those that are δ-far from satisfying it, with
success probability at least 2/3. As T is canonical, if it samples a set of vertices and gets a graph of
size q, it either rejects or accepts deterministically. Hence, we can define a set A, of all the graphs
Q of size q, such that if the sample of vertices spans a graph isomorphic to Q, then T accepts the
input. We finally put

k = k4.9(δ, q) ,

γ = γ4.9(δ, q) ,

and
T = T2.3(k, γ) .

For any k ≤ t ≤ T consider all the (finitely many) regularity-instances of order t, where for the
edge densities ηi,j we choose a real from the set {0, δγ2

50q2 , 2 δγ2

50q2 , 3 δγ2

50q2 , . . . , 1}. Let I be the union of
all these regularity-instances. Note, that all the above constants, as well as the size of I and the
complexity of the regularity-instances in I, are determined as a function of δ only (and the property
P).

We claim that we can take R in Definition 2.6 to be

R = {R ∈ I :
∑

H∈A
IC(R, H) ≥ 1/2} ,

where IC(R, H) was defined in Definition 4.7. Indeed, first note that the expression
∑

H∈A IC(R,H)
is an estimation of the fraction of induced copies of graphs from A in a graph satisfying R. As we
chose k and γ via Corollary 4.9 we infer that the expression

∑
H∈A IC(R, H) is an estimate of the

number of induced copies of graphs from A in a graph satisfying R, up to an additive error of at
most δ

(n
q

)
.

Suppose a graph G satisfies P. This means that T accepts G with probability at least 2/3. In
other words, this means that at least 2

3

(n
q

)
of the subsets of q vertices of G span a graph isomorphic

to one of the members of A. By Lemma 2.3 G has some γ-regular partition of size at least k and
at most T . By construction of I we get that the densities of the regular partition of G differ by at
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most δγ2

50q2 from the densities of one7 of the regularity-instances R ∈ I. Corollary 3.8 implies that
G is δ/q2-close to satisfying one of the regularity-instances of I. Note that adding and/or removing
an edge can decrease the number of induced copies of members of A in G by at most

(n−2
q−2

)
. Thus

adding and/or removing δn2/q2 edges can decrease the number of induced copies of members of A
in G by at most δ n2

q2

(n−2
q−2

) ≤ δ
(n
q

)
. Thus, after these at most δn2/q2 edge modifications we get a

graph that satisfies one of the regularity-instances R ∈ I where at least (2
3 − δ)

(n
q

)
> (1

2 + δ)
(n
q

)
of

the subsets of q vertices of the new graph span a member of A (here we use the assumption that
δ < 1/12). As explained in the previous paragraph, by our choice of k and γ via Corollary 4.9, this
means that

∑
H∈A IC(R,H) ≥ 1/2. By the definition of R this means that R ∈ R, so G is indeed

δ-close to satisfying one of the regularity-instances of R.
Suppose now that a graph G is ε-far from satisfying P. If δ ≥ ε then there is nothing to prove,

so assume that δ < ε. If G is (ε − δ)-close to satisfying a regularity-instance R ∈ R, then by the
definition of R and our choice of k and γ via Corollary 4.9, it is (ε− δ)-close to a graph G′, such that
at least (1

2 − δ)
(n
q

)
> (1

3 + δ)
(n
q

)
of the subsets of q vertices of G′ span an induced copy of a graph

from A. In other words, this means that T accepts G′ with probability at least 1
3 + δ. This means

that G′ cannot be δ-far from satisfying P as we assume that q is enough for T to reject graphs that
are δ-far from satisfying P with probability at least 2/3. However, as G is ε-far from satisfying P
any graph that is (ε− δ)-close to G must be δ-far from satisfying P, a contradiction.

5 Sampling Regular Partitions

The main result of this section asserts (roughly) that for every fixed γ, if we sample a constant
number of vertices from a graph G, then with high probability the graph induced by the sample and
the graph G will have the same set of γ-regular partitions. To formally state this result we introduce
the following definition:

Definition 5.1 (δ-similar regular-partition) An equipartition U = {Ui | 1 ≤ i ≤ k} is δ-similar
to a γ-regular equipartition V = {Vi | 1 ≤ i ≤ k}, of the same order k (where 0 < γ ≤ 1), if:

1. d(Ui, Uj) = d(Vi, Vj)± δ for all i < j.

2. Whenever (Vi, Vj) is γ-regular, (Ui, Uj) is (γ + δ)-regular.

Observe that in the above definition, the two equipartitions V and U may be equipartitions of
different graphs. In what follows, if G = (V,E) is a graph and Q ⊆ V (G), then G[Q] denotes the
subgraph induced by G on Q. Our main result in this section is the following lemma that roughly
asserts that a large enough sample Q from a graph G will be such that G and the graph spanned by
Q are close to satisfying the same regularity instances.

Lemma 5.2 For every k and δ there exists a q = q5.2(k, δ) such that the following holds for every
γ ≥ δ and k′ ≤ k: A sample Q of q vertices from a graph G, satisfies the following with probability
at least 2/3:

7In other words, this follows from the fact that the elements of I form a δγ2

50q2 -net in the `∞-norm.
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1. If G has a γ-regular equipartition V of order k′, then G[Q] has an equipartition U of the same
order which is δ-similar to V.

2. If G[Q] has a γ-regular equipartition U of order at most k′, then G has an equipartition V of
the same order which is δ-similar to U .

We stress that in the above lemma we do not refer to some fixed regular partition of G or G[Q]
but to any possible regular partition of either one of them.

The proof of Lemma 5.2 has two main stages. For the first one we need a weaker result, which
says that a sample of vertices has a regular partition, but with a weaker regularity measure.

Lemma 5.3 ([16]) For every k and δ there exists q = q5.3(k, δ) such that the following holds for
every γ ≥ δ and k′ ≤ k: if a graph G has a γ-regular equipartition V = {V1, . . . , Vk′}, then with
probability at least 2/3, a sample of q vertices will have an equipartition U = {U1, . . . , Uk′} satisfying:

1. d(Ui, Uj) = d(Vi, Vj)± δ for all i < j.

2. Whenever (Vi, Vj) is γ-regular, (Ui, Uj) is 50γ1/5-regular.

For our purposes however, we cannot allow a weaker regularity as in the above lemma. Our main
tool in the proof of Lemma 5.2 is Lemma 5.5 below, which establishes that if two graphs share one
γ-regular equipartition, then they share all the γ′-regular-partitions where γ′ is larger than γ. This
will allow us to strengthen Lemma 5.3 and thus obtain Lemma 5.2. For the statement of this lemma
we need the following definition:

Definition 5.4 ((δ, γ)-similar regular-partitions) Two equipartitions V = {Vi | 1 ≤ i ≤ k} and
U = {Ui | 1 ≤ i ≤ k} of the same order k, are said to be (δ, γ)-similar if:

1. d(Ui, Uj) = d(Vi, Vj)± δ for all i < j.

2. For all but at most γ
(k
2

)
of the pairs i < j, both (Vi, Vj) and (Ui, Uj) are γ-regular.

The following is the main technical lemma of this section. This lemma allows us to infer from the
fact that two graphs are close to satisfying a single common regular partition, that they are close to
satisfying all the regularity-instances (but with a larger error parameter).

Lemma 5.5 For every k and δ there exists ζ = ζ5.5(k, δ) such that the following holds for every
k′ ≤ k: suppose that two graphs G = (V, E) and G = (V , E) have (ζ, ζ)-similar regular-equipartitions
V = {V1, . . . , V`} and V = {V 1, . . . , V `} with ` ≥ 1/ζ. Then, if G has a γ-regular equipartition
A = {A1, . . . , Ak′} then G has an equipartition A = {A1, . . . , Ak′}, which is δ-similar to A.

We turn to prove Lemma 5.5, and then use it to prove Lemma 5.2. But we first state the following
simple fact.

Claim 5.6 Let a1, . . . , a` and b1, . . . , b` satisfy
∑

1≤i≤` ai =
∑

1≤i≤` bi = 1 and 0 ≤ ai, bi ≤ k/`,
where k ≤ `. Then

∑
1≤i≤` aibi ≤ k/`.

Proof: Observe that
∑

1≤i≤` aibi ≤ max1≤i≤`{ai}
∑

1≤i≤` bi ≤ k/`.
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Proof of Lemma 5.5: We consider the case k′ = k as the cases k′ < k are identical and in fact
follow from the case k′ = k by monotonicity. Let A1, . . . , Ak be any equipartition of G. Recall
that ` denotes the order of the equipartition V, which is also the order of V. For every 1 ≤ p ≤ `
and 1 ≤ q ≤ k set AV p,q = V p ∩ Aq and αp,q = |AV p,q|/|V p|. For every 1 ≤ p ≤ ` we partition
Vp arbitrarily into k disjoint subsets AVp,1, . . . , AVp,k in a way that for every 1 ≤ q ≤ k we have
|AVp,q| = αp,q|Vp|. Finally for every 1 ≤ q ≤ k define Aq =

⋃`
p=1 AVp,q. Instead of stating ζ5.5(k, δ)

explicitly, we state along the way different upper bounds on ζ5.5(k, δ) that will depend only on k and
δ. One can then take the minimum of all these values as ζ5.5(k, δ).

Claim 5.7 If (Aq, Aq′) is γ-regular then (Aq, Aq′) is (γ + δ)-regular.

Proof: To simplify the notation we assume that (A1, A2) is γ-regular and prove that (A1, A2) is
(γ + 2δ)-regular. Set η = d(A1, A2). Claim 5.8 below asserts d(A1, A2) = η ± δ, so we need to show
that d(A′1, A′2) = η ± (γ + δ) for every A′1 ⊆ A1 and A′2 ⊆ A2 of sizes (γ + δ)|A1| and (γ + δ)|A2|
respectively. For simplicity we show that d(A′1, A′2) ≤ η+γ+δ, as showing that d(A′1, A′2) ≥ η−γ−δ
is similar. Recall that every set Aq is the union of ` sets AV1,q, . . . , AV`,q. For every 1 ≤ i ≤ ` and
1 ≤ j ≤ ` put AV ′

i,1 = AVi,1 ∩A′1 and AV ′
j,2 = AVj,2 ∩A′2. We can rephrase our goal in terms of the

number of edges as follows: we wish to show that
∑

1≤i,j≤`

e(AV ′
i,1, AV ′

j,2) ≤ (η + γ + δ)|A′1||A′2| = (η + γ + δ)(γ + δ)2|A1||A2|. (1)

Let n denote the number of vertices of G. Observe that every set Vi is of size n/` and every set
Ai is of size n/k. Recall that by assumption all but ζ

(`
2

)
of the pairs 1 ≤ i < j ≤ ` are such that both

(Vi, Vj) and (V i, V j) are ζ-regular. Let us then denote by M the pairs i, j for which both (Vi, Vj)
and (V i, V j) are ζ-regular. To prove (1) we turn to bound the contribution to the LHS (Left Hand
Side) of (1) of three types of pairs of (i, j):

• Pairs (i, j) for which i = j: Observe that the maximum possible number of edges connecting
a pair (AV ′

i,1, AV ′
i,2) is at most

|AV ′
i,1||AV ′

i,2| ≤ |AVi,1||AVi,2| = αi,1αi,2|Vi||Vi| = αi,1αi,2
k

`
|A1|k

`
|A2| ,

where in the last equality we use the fact that the sets Vi have size n/` and the sets Ai have
size n/k. Therefore, the maximum contribution of such pairs is given by |A1||A2|

∑
i

k
` αi,1

k
` αi,2.

By Claim 5.6 we get that |A1||A2|
∑

i
k
` αi,1

k
` αi,2 ≤ k

` |A1||A2| and if we choose a ζ satisfying
` ≥ 1/ζ ≥ 6k/δ3 ≥ 6k/δ(γ + δ)2 we can infer that the contribution of the pairs (i, i) to the
LHS of (1) is at most 1

6δ(γ + δ)2|A1||A2|. Note that the fact that ` ≥ 1/ζ is guaranteed by the
assertion of the lemma.

• Pairs (i, j) for which either |AV ′
i,1| < ζ|Vi| or |AV ′

j,2| < ζ|Vj |: Consider the 1 ≤ i ≤ ` in

(1) for which |AV ′
i,1| < ζ|Vi| = ζn/`. The total number of vertices of G that belong to such

sets is clearly at most ζn, therefore the total number of such vertices in A1 is at most kζ|A1|
(because |A1| = n/k). Similarly, the total number of vertices of A2 which belong to sets |AV ′

j,2|
for which |AV ′

j,2| < ζ|Vj | is at most kζ|A2|. Therefore the contribution of pairs (i, j) to the LHS
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of (1) for which either |AV ′
i,1| < ζ|Vi| or |AV ′

j,2| < ζ|Vj | is at most 2kζ|A1||A2|. If we choose ζ

so that it satisfies ζ ≤ δ3

12k ≤ δ(γ+δ)2

12k , such pairs (i, j) can contribute to the LHS of (1) a total
of at most 1

6δ(γ + δ)2|A1||A2|.

• Pairs (i, j) that do not belong to M: As all but at most ζ
(`
2

)
of the pairs (Vi, Vj) belong

to M (defined above), we may deduce that at most ζn2 edges of G connect pairs of clusters
(Vi, Vj) that are not ζ-regular. As |A1| = |A2| = n/k, this means that the number of edges
connecting A1 and A2 that belong to pairs (Vi, Vj) that are not ζ-regular is at most k2ζ(n/k)2 =
k2ζ|A1||A2|. If we choose ζ so that ζ ≤ 1

6δ3/k2 ≤ 1
6δ(γ + δ)2/k2, such pairs can contribute at

most 1
6δ(γ + δ)2|A1||A2| to the sum in (1).

We have thus accounted for all pairs (i, j) in (1) for which either i = j, (Vi, Vj) is not ζ-regular,
|AV ′

i,1| < ζ|Vi| or |AV ′
j,2| < ζ|Vj |. Specifically, we have shown that they can contribute at most

1
2δ(γ + δ)2|A1||A2| = 1

2δ|A′1||A′2| to the LHS of (1). Therefore, we can now reduce proving (1) to
showing that

∑

(i,j)∈B

e(AV ′
i,1, AV ′

j,2) =
∑

(i,j)∈B

d(AV ′
i,1, AV ′

j,2)|AV ′
i,1||AV ′

j,2| ≤ (η + γ +
1
2
δ)|A′1||A′2| , (2)

where B is the set of pairs (i, j) that satisfy i 6= j, |AV ′
i,1| ≥ ζ|Vi|, |AV ′

j,2| ≥ ζ|Vj | as well as that
(Vi, Vj) and (V i, V j) are ζ-regular. Therefore, all (i, j) ∈ B are such that

d(AV ′
i,1, AV ′

j,2) = d(Vi, Vj)± ζ . (3)

and
d(AV ′

i,1, AV ′
j,2) = d(V i, V j)± ζ . (4)

If we choose ζ so that ζ ≤ 1
6δ we can use (3) to reduce (2) to showing

∑

(i,j)∈B

d(Vi, Vj)|AV ′
i,1||AV ′

j,2| ≤ (η + γ +
1
3
δ)|A′1||A′2| . (5)

As we assume that V and V are (ζ, ζ)-similar we have d(Vi, Vj) = d(V i, V j) ± ζ for every i < j. If
we choose ζ so that ζ ≤ 1

6δ, we can reduce (5) to showing that

∑

(i,j)∈B

d(Vi, Vj)|AV ′
i,1||AV ′

j,2| ≤ (η + γ +
1
6
δ)|A′1||A′2| . (6)

By (4) we can further reduce (6) to showing that
∑

(i,j)∈B

d(AV ′
i,1, AV ′

j,2)|AV ′
i,1||AV ′

j,2| ≤ (η + γ)|A′1||A′2| . (7)

It will be more convenient to prove (7) by deriving the following stronger assertion 8:
∑

1≤i,j≤`

d(AV ′
i,1, AV ′

j,2)|AV ′
i,1||AV ′

j,2| ≤ (η + γ)|A′1||A′2| . (8)

8The assertion is stronger since we are summing over all pairs (i, j) and not only over the pairs in the set B.

19



Put βi,1 = |AV ′
i,1|/|A′1| and βj,2 = |AV ′

j,2|/|A′2|. For every 1 ≤ i ≤ ` let AV
′
i,1 be any subset of AV i,1

of size βi,1|AV i,1|. Similarly, for every 1 ≤ j ≤ ` let AV
′
j,2 be any subset of AV j,2 of size βj,2|AV j,2|.

Put A
′
1 =

⋃
1≤i≤` AV i,1 and A

′
2 =

⋃
1≤j≤` AV j,2 and note that just as |A′1| ≥ γ|A1| and |A′2| ≥ γ|A2|

we also have |A′1| ≥ γ|A1| and |A′2| ≥ γ|A2|. Dividing by |A′1||A′2| we can restate (8) as
∑

1≤i,j≤`

d(AV ′
i,1, AV ′

j,2)βi,1βj,2 ≤ η + γ .

Finally, note that the above holds because
∑

1≤i,j≤`

d(AV ′
i,1, AV ′

j,2)βi,1βj,2 = d(A′1, A′2) ≤ η + γ , (9)

where the inequality follows from the fact that (A1, A2) is by assumption γ-regular, d(A1, A2) = η,
|A′1| ≥ γ|A1| and |A′2| ≥ γ|A2|. This completes the proof of the claim.

Claim 5.8 For all q < q′ we have d(Aq, Aq′) = d(Aq, Aq′)± δ

Proof: The proof is essentially identical to the above proof. Instead of working with two subsets
of A1 and A2 we work with the sets themselves. There is only one place in the proof that needs to
be changed; note that in equation (9) we use the density of a pair of subsets of A1 and A2 in order
to bound the density of the subsets of A1 and A2. To this end we have used the fact that the pair
(A1, A2) is γ-regular. The only change we now have to make is that as we work with the sets A1, A2

and not subsets of them then we also work with the sets A1, A2 and not subsets of them. Since the
density of (A1, A2) is precisely η we do not lose an additional γ in the estimation of d(A1, A2) as we
did in Claim 5.7.

The proof of Lemma 5.5 now follows from the above two claims.

Proof of Lemma 5.2: Set ζ = (ζ5.5(k, δ)/50)5 and ζ ′ = ζ5.5(k, δ) = 50ζ1/5, and note that ζ, ζ ′ ≤
ζ5.5(k, δ). Let V = {V1, . . . , V`} be a ζ-regular partition of G of order ` ≥ 1/ζ. Such an equipartition
of order at most T2.3(1/ζ, ζ) exists by Lemma 2.3. By Lemma 5.3 we get that if we sample a set Q of
at least q5.3(`, ζ) vertices from G then with probability at least 2/3 the graph induced on Q, which we
denote by G[Q], will have an equipartition U = {U1, . . . , U`}, such that d(Vi, Vj) = d(Ui, Uj)± ζ ′ and
such that if (Vi, Vj) is ζ-regular then (Ui, Uj) is ζ ′-regular. This means that with probability at least
2/3, the graph G[Q] is such that G and G[Q] have equipartitions, which are (ζ5.5(k, δ), ζ5.5(k, δ))-
similar. Indeed, as these equipartitions we can take V and U , because ζ ′ = ζ5.5(k, δ) then d(Vi, Vj) =
d(Ui, Uj)± ζ5.5(k, δ). Also, as ζ ≤ ζ ′ = ζ5.5(k, δ), we have for all but at most ζ5.5(k, δ)

(k
2

)
of the pairs

i < j, that both (Vi, Vj) and (Ui, Uj) are ζ5.5(k, δ)-regular.
Thus, Lemma 5.5 implies for any γ-regular partition in G of order at most k, that G[Q] has

an equipartition that is δ-similar to it. Similarly, Lemma 5.5 implies for any γ-regular partition
in G[Q] of size at most k, that G has an equipartition that is δ-similar to it. We can thus set
q5.2(k, δ) = q5.3(`, ζ) in the statement of the lemma because ` and ζ depend only on k and δ.
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6 Testing Regular Partitions and Proof of the Main Result

In this section we apply the results of Sections 3 and 5 to prove Theorem 2. We start by proving the
main technical result of this paper by showing that the property of satisfying a regularity-instance
is testable with a constant number of queries. We then use this result to prove the main result of
this paper.

Proof of Theorem 1: Suppose the regularity-instance R has error parameter γ,
(k
2

)
edge densities

ηi,j and a set of non-regular pairs R. Given G = (V, E) and ε, the algorithm for testing the property
of satisfying R, samples a set of vertices Q, of size q, where q will be chosen later, and accepts G

if and only if the graph spanned by Q is γ4ε
200k2 -close to satisfying R. In what follows we denote by

G[Q] the graph spanned by Q.

Claim 6.1 If G satisfies R, and q ≥ q1(ε, k, γ), then G[Q] is γ4ε
200k2 -close to satisfying R with proba-

bility at least 2/3.

Proof: If G = (V,E) satisfies R, then V has an equipartition into V1, . . . , Vk such that for all
(i, j) 6∈ R the pair (Vi, Vj) is γ-regular. If we take q1(ε, k, γ) = q5.2(k, γ6ε

10000k2 ), then by Lemma 5.2,
with probability at least 2/3 the graph G[Q] will have an equipartition into k sets A1, . . . , Ak, such
that d(Ai, Aj) = ηi,j ± γ6ε

10000k2 for all i < j, and if (Vi, Vj) is γ-regular then (Ai, Aj) is (γ + γ6ε
10000k2 )-

regular. By Corollary 3.8, this means that G[Q] is γ4ε
200k2 -close to satisfying R.

Claim 6.2 If G is ε-far from satisfying R, and q ≥ q2(ε, k, γ), then G[Q] is γ4ε
200k2 -far from satisfying

R with probability at least 2/3.

Proof: We take q2(ε, k, δ) = q5.2(k, γ4ε
200k2 ). By Lemma 5.2 we get that with probability at least 2/3

the graph G[Q] is such that if it has a γ′-regular equipartition of order k, then G has an equipartition
which is γ4ε

200k2 -similar to it. We claim that if this event occurs then G[Q] is γ4ε
200k2 -far from satisfying

R, which is what we want to show. Suppose G[Q] satisfies the above property and assume on the
contrary that it is γ4ε

200k2 -close to satisfying R. Consider the γ4ε
200k2 q2 edge modifications that make

G[Q] satisfy R and consider an equipartition U = {U1, . . . , Uk} of G[Q], which satisfies R after
performing these modifications. As we made at most γ4ε

200k2 q2 edge modifications, we initially had
d(Ui, Uj) = ηi,j ± γ4ε

200 . Consider now any (i, j) 6∈ R. After these modifications (Ui, Uj) must be γ-
regular with density ηi,j . Therefore, after these modifications every pair U ′

i ⊆ Ui, U
′
j ⊆ Uj satisfying

|U ′
i | ≥ γ|Ui| and |U ′

j | ≥ γ|Uj | satisfies d(U ′
i , U

′
j) = ηi,j±γ. Hence, before the modifications every such

pair satisfied d(U ′
i , U

′
j) = ηi,j ± (γ + γ2ε

200). Note that this means that every such pair was originally

(γ + γ2ε
100)-regular. By our assumption on G[Q] this means that G has an equipartition in V1, . . . , Vk

such that d(Vi, Vj) = ηi,j ± γ2ε
50 holds for all i < j, and for all (i, j) 6∈ R the pair (Vi, Vj) is (γ + γ2ε

50 )-
regular. By Corollary 3.8, this means that G is ε-close to satisfying R, contradicting our assumption.

Combining the above two claims we infer that if q = max{q1(ε, k, γ), q2(ε, k, γ)} then with prob-
ability at least 2/3 the algorithm distinguishes between the required two cases. Furthermore, the
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number of queries performed by the algorithm depends only on ε, k and γ, and is thus bounded from
above by a function of ε. This completes the proof of the theorem.

Having established the testability of any given regularity-instance we can prove Theorem 2. The
last tool we need for the proof is the main result of [20] about estimating graph properties.

Theorem 3 ([20]) Suppose that a graph property P is testable. Then for every 0 ≤ ε1 < ε2 ≤ 1
there is a randomized algorithm for distinguishing (with success probability at least 2/3) between
graphs that are ε1-close to satisfying P and graphs that are ε2-far from satisfying it. Furthermore,
the query complexity of the algorithm can be bounded from above by a function of ε1 and ε2, which is
independent of the size of the input.

Proof of Theorem 2: The first direction is given in Lemma 4.1. For the other direction, suppose
that a graph property P is regular-reducible as per Definition 2.6. Let us fix n and ε. Put r = r(1

4ε)
and let R be the corresponding set of regularity instances for δ = 1

4ε as in Definition 2.6. Recall that
Definition 2.6 guarantees that the number and the complexity of the regularity-instances of R are
bounded by a function of δ = 1

4ε. By Theorem 1 for any regularity-instance R ∈ R, the property
of satisfying R is testable. Thus, by Theorem 3 for any such R, we can distinguish graphs that
are 1

4ε-close to satisfying R from those that are 3
4ε-far from satisfying it, while making a number of

queries, which is bounded by a function of ε. In particular, by repeating the algorithm of Theorem
3 an appropriate number of times (that depends only on r = r(1

4ε)), and taking the majority vote,
we get an algorithm for distinguishing between the above two cases, whose query complexity is a
function of ε and r, which succeeds with probability at least 1 − 1

3r . As r itself is bounded by a
function of ε, the number of queries of this algorithm can be bounded by a function of ε only.

We are now ready to describe our tester for P: given a graph G of size n and ε > 0, the algorithm
uses for every R ∈ R the version of Theorem 3 described in the previous paragraph, which succeeds
with probability at least 1 − 1

3r in distinguishing between the case that G is 1
4ε-close to satisfying

R from the case that it is 3
4ε-far from satisfying it. If it finds that G is 1

4ε-close to satisfying some
R ∈ R, then the algorithm accepts, and otherwise it rejects. Observe that as there are at most r
regularity-instances inR, we get by the union-bound that with probability at least 2/3 the subroutine
for estimating how far is G from satisfying some R ∈ R never errs. We now prove that the above
algorithm is indeed a tester for P. Suppose first that G satisfies P. As we set δ = 1

4ε and P is
regular-reducible to R, the graph G must be 1

4ε-close to satisfying some regularity-instance R′ ∈ R.
Suppose now that G is ε-far from satisfying P. Again, as we assume that P is regular-reducible to
R, we conclude that G must be 3

4ε-far from satisfying all of the regularity-instances R ∈ R. As with
probability at least 2/3 the algorithm correctly decides for any R ∈ R if G is 1

4ε-close to satisfying
R or 3

4ε-far from satisfying it, we get that if G satisfies P then with probability at least 2/3 the
algorithm will find that G is 1

4ε-close to satisfying some R ∈ R, while if G is ε-far from satisfying P
then with probability at least 2/3 the algorithm will find that G is 3

4ε-far from all R ∈ R. By the
definition of the algorithm, we get that with probability at least 2/3 it distinguishes between graphs
satisfying P from those that are ε-far from satisfying it. This means that the algorithm is indeed a
tester for P.
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7 Applications of the Main Result

In this section we show that Theorem 2 can be used in order to derive some positive and negative
results on testing graph properties. We would like to stress that all these proofs implicitly apply the
main intuition behind our characterization, which was explained after the statement of Theorem 2,
that a graph property is testable if and only if knowing a regular enough partition of the graph is
sufficient for inferring if a graph is far from satisfying the property. Our first application of Theorem
2 concerns testing for H-freeness. A graph is said to be H-free if it contains no (not necessarily
induced) copy of H. It was implicitly proved in [1] that for any H, the property of being H-free
is testable. The main idea of the proof in [1] is that if G is ε-far from being H-free then a large
enough sample of vertices will contain a copy of H with high probability. Here we derive this result
from Theorem 2 by giving an alternative proof, which checks if the input satisfies some regularity-
instance. For simplicity, we only consider testing triangle-freeness. We briefly mention that an
argument similar to the one we use to test triangle-freeness can be used to test any monotone graph
property. However, to carry out the proof one needs one additional non-trivial argument, which was
proved in [6], so we refrain from including the proof.

Corollary 7.1 Triangle-freeness is testable.

Proof: By Theorem 2 it is enough to show that triangle-freeness is regular-reducible. Fix any
δ > 0 and set γ′ = γ4.6(δ, 3). Define γ = min{γ′, δ}. We define R to be all the regularity-instances
R satisfying the following:

(i) They have regularity parameter γ.

(ii) They have order at least 1/γ and at most T2.3(1/γ, γ).

(iii) Their densities ηi,j are taken from {0, γ, 2γ, . . . , 1}.
(iv) They do not contain three clusters Vi, Vj , Vk such that ηi,j , ηj,k, ηi,k are all positive.

To show that this is a valid reduction (in the sense of Definition 2.6), assume first that G is ε-far
from being triangle-free. Assume G is (ε − δ)-close to satisfying a regularity instance R ∈ R. We
can thus make (ε− δ)n2 edge modifications and get a graph satisfying R. We also remove all edges
inside the sets Vi. As by item (ii) each set has size at most γn ≤ δn we remove less than δn2 edges.
The total number of edges removed is thus less than εn2. By property (iv) of the regularity instances
of R this means that the new graph is triangle-free, which is impossible because we made less than
εn2 edge modifications and G was assumed to be ε-far from being triangle-free.

Assume now that G is triangle-free. By Lemma 2.3 G has a γ-regular equipartition V1, . . . , Vk of
order 1/γ ≤ k ≤ T2.3(1/γ, γ). Note that by our choice of γ′ via Claim 4.6, and because γ ≤ γ′, there
are no i, j, k such that (Vi, Vj), (Vj , Vk), (Vi, Vk) are γ-regular and d(Vi, Vj), d(Vj , Vk), d(Vi, Vk) ≥ δ
because such sets span at least one triangle (in fact, many). As by item (iii) the densities of the
instances in R are taken from {0, γ, 2γ, . . . , 1} we can make at most γn2 ≤ δn2 changes and “round
down” the densities between the sets into a multiple of γ, while maintaining the regularity of the
regular-pairs (we can use Lemma 3.1 here). This means that the new graph satisfies a regularity-
instance R ∈ R, which means that G was δ-close to satisfying R.
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Our second application of Theorem 2 is concerned with testing k-colorability. This property was
first implicitly proved to be testable in [35]. Much better upper bounds were obtained in [27], and
further improved by [5]. As in the case of H-freeness, the main ideas of the proofs in [35, 27, 5] is
that if G is ε-far from being k-colorable then a large enough sample of vertices will not be k-colorable
with high probability. Here we derive this result by applying Theorem 2. Though we derive here
only the testability of k-colorability, simple variants of the argument can be used to show that all
the partition-problems studied in [27] are testable9.

Corollary 7.2 k-colorability is testable.

Proof: By Theorem 2 it is enough to show that k-colorability is regular-reducible. Fix any δ > 0
and define R to be all the regularity-instances R satisfying the following:

(i) They have regularity measure δ

(ii) They have order at least 1/δ and at most T2.3(2k/δ, δ).

(iii) Their densities ηi,j are taken from {0, δ, 2δ, . . . , 1}.
(iv) The following graph T = T (R) is k-colorable: if R has order t then T has t vertices, and

(i, j) ∈ E(T ) iff ηi,j > 0.

To show that this is a valid reduction, assume first that G is ε-far from being k-colorable. Assume
G is (ε − δ)-close to satisfying a regularity instance R ∈ R. We can thus make (ε − δ)n2 edge
modifications and get a graph satisfying R. We also remove all edges inside the sets Vi. As by item
(ii) each set has size at most δn we remove less than δn2 edges. The total number of edges removed
is thus less than εn2. By property (iv) of the regularity instances of R this means that the new
graph is k-colorable, which is impossible because we made less than εn2 edge modifications and G
was assumed to be ε-far from being k-colorable.

Assume now that G is k-colorable and let V1, . . . , Vk be the partition of V (G), which is determined
by a legal k-coloring of G. Break every set Vi into sets Ui,1, . . . , Ui,ji of size δ

2kn each. In case δ
2kn

does not divide |Vi|, put the remaining vertices in a “garbage set” L. Note that the size of L is at
most 1

2δn. By Lemma 2.3, starting from the equipartition into the sets Ui,j , whose order is at most
2k/δ we can get a δ-regular equipartition of G of order at most T2.3(2k/δ, δ). Note that disregarding
the refinement of L the new equipartition must satisfy item (iv) in the definition of R. As by item
(iii) the densities of the instances in R are taken from {0, δ, 2δ, . . . , 1} we can make at most δn2

edge modifications and thus “round down” the densities between the sets into a multiple of δ, while
maintaining the regularity of the regular-pairs (we can use Lemma 3.1 here). This means that the
new graph satisfies a regularity-instance R ∈ R, which means that G was δ-close to satisfying R.

The examples that were discussed above apply Theorem 2 to obtain positive results. Our third
application of Theorem 2 derives a negative result. The main focus of [18] is testing for isomorphism

9An alert reader may note that our proof of Theorem 2 applies the result of [20], which relies on the result of [27].
Thus, in the strict sense it is wrong to say that we infer the result of [27] from ours. However, it is not difficult to see
that the result of [27] also follows from our (self-contained) proof of Lemma 5.2. Also, while k-colorability can actually
be tested with 1-sided error, many other partition problems that were studied in [27] can only be tested with 2-sided
error.
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to a given fixed graph10. It shows that the query complexity of testing for isomorphism grows with
a certain parameter, which measures the “complexity” of the graph. Without going into too much
detail we just mention that under this measure random graphs are complex. Here we prove that
testing for being isomorphic to a graph generated by G(n, 0.5) requires a super-constant number of
queries.

Corollary 7.3 Let I be a graph generated by G(n, 0.5). Then, with probability 1− o(1) the property
of being isomorphic to I is not testable.

Proof (skecth): By Theorem 2 it is enough to show that with probability 1−o(1) the property of
being isomorphic to I is not regular-reducible. Note, that now there is only one value of n to consider
in Definition 2.6 because the property we consider is a property of n-vertex graphs. Consider a graph
generated by G(n, 0.5). Clearly, by Lemma 3.4 the bipartite graph induced on any pair of sets of
vertices of size

√
n has density ≈ 0.5. We claim that if I satisfies this condition then the graph

property PI of being isomorphic to I is not regular-reducible. Suppose it is regular-reducible and
consider a small δ, say δ = 0.01. Let R be the set of regularity-instances, which corresponds to this
value of δ. Let G be a graph isomorphic to I. By Definition 2.6 it must be the case that G is δ-close
to satisfying some R ∈ R. By the properties of I this means that most densities of R must be close
to 0.5. Let k denote the order of R and let ηi,j denote its densities. Consider a random k-partite
graph on sets of vertices V1, . . . , Vk each of size n/k, where the bipartite graph connecting Vi and Vj

is a random bipartite graph with edge density ηi,j . Clearly this graph is δ-close to satisfying R. On
the other hand, it is not difficult to see that as most of the densities ηi,j should be close to 0.5, then
with high probability such a graph must be α-far from being isomorphic to I, for some fixed α > 0,
say α = 0.03. This means that we have a graph that is 0.03-far from satisfying the property and is
yet 0.01-close to satisfying one of the regularity-instances of R. As we chose δ = 0.01, this violates
the second condition of Definition 2.6.

8 Concluding Remarks and Open Problems

The main result of this paper gives a combinatorial characterization of the graph properties, which
can be tested with a constant number of edge queries in the dense graph model, possibly with a
two-sided error. Together with the (near) characterization of [7] of the graph properties that can
be tested with one-sided error, and the result of [20] showing that any testable property is also
estimable, we get a more or less complete answer to many of the qualitative questions on testing
graph properties in the dense model. An intriguing open question is to address the above problems
quantitatively, and specifically to characterize the graph properties that can be tested with query
complexity that is bounded by a polynomial of 1/ε.

While property testing in the dense model is relatively well understood, there are no general
positive or negative results on testing graph properties in the bounded-degree model [29] or the
general density model [33]. In these models the query complexity of the tester usually depends on
the size of the input. It seems interesting and challenging to obtain general results in these models.
One interesting problem is which of the partition problems which were studied in [27] can be tested

10Of course, we refer to isomorphism of un-labeled graphs.
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using a sublinear number of queries. It will also be very interesting to give general positive and
negative results concerning the testing of boolean functions.
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