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Abstract

A paradigm that was successfully applied in the study of both pure and algorithmic problems

in graph theory can be colloquially summarized as stating that any graph is close to being the

disjoint union of expanders. Our goal in this paper is to show that in several of the instantiations

of the above approach, the quantitative bounds that were obtained are essentially best possible.

Three examples of our results are the following:

• A classical result of Lipton, Rose and Tarjan from 1979 states that if F is a hereditary

family of graphs and every graph in F has a vertex separator of size n/(log n)1+o(1), then

every graph in F has O(n) edges. We construct a hereditary family of graphs with vertex

separators of size n/(log n)1−o(1) such that not all graphs in the family have O(n) edges.

• Trevisan and Arora-Barak-Steurer have recently shown that given a graph G, one can

remove only 1% of its edges to obtain a graph in which each connected component has good

expansion properties. We show that in both of these decomposition results, the expansion

properties they guarantee are essentially best possible, even when one is allowed to remove

99% of G’s edges.

• Sudakov and the second author have recently shown that every graph with average degree d

contains an n-vertex subgraph with average degree at least (1−o(1))d and vertex expansion

1/(log n)1+o(1). We show that one cannot guarantee a better vertex expansion even if

allowing the average degree to be O(1).

The above results are obtained as corollaries of a new family of graphs which we construct

in this paper. These graphs have a super-linear number of edges and nearly logarithmic girth,

yet each of their subgraphs has (optimally) poor expansion properties.

1 Introduction

In recent years a certain paradigm has emerged which roughly says that any graph is close to

being a vertex-disjoint union of expanders. Unlike the ε-regular partitions of Szemerédi [29] and

the cut decompositions of Frieze-Kannan [8] which are relevant only for dense graphs (i.e., with

Θ(n2) edges), this paradigm is applicable for graphs of arbitrary density. Generally speaking, its

usefulness stems from the fact that it allows for a divide-and-conquer approach, in essence reducing

a problem on general graphs to the special case of expander graphs.
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For algorithmic problems, this paradigm has been useful, for example, in designing approxi-

mation algorithms related to the Unique Games Conjecture [13], as in the seminal work of Arora-

Barak-Steurer [4] and of Trevisan [30], as well as approximation algorithms for problems such as the

Traveling Salesman Problem [3]. It has also seen applications in property testing algorithms [6, 9],

as well as in data structure design [23]. In graph theory, instantiations of this paradigm include

the theorem of Lipton-Rose-Tarjan [19] on vertex separators in hereditary families, the results of

Linial-Saks [18] and Leighton-Rao [16] on low-diameter decompositions, as well as results in the

field of graph minors [14, 26] and cycle packing [5]. See Section 2 for some further discussion.

We note that in all applications of the regularity lemmas [8, 29] one uses the same notion of

expansion1. On the other hand, when dealing with sparse graphs and applying the above-mentioned

paradigm, each application calls for a different notion of expansion. Our main goal in this paper

is to show that in several of the above-mentioned applications, the different notions of expansion

that were used are quantitatively best possible.

As it turns out, all our results can be deduced from a single construction of graphs whose main

property is that every subgraph has a small edge separator.

Definition 1.1. An edge separator in a graph G is a set of edges whose removal leaves no connected

component with more than 2
3 |V (G)| vertices. The minimum cardinality of an edge separator in G

is denoted sep(G).

We recall the definition of edge expanders. For a graph G = (V,E) and a non-empty subset

A ⊆ V , we denote by ∂G(A) the set of edges of G with precisely one endpoint in A, and by

φG(A) = |∂G(A)|/|A| the edge expansion of A in G. We say that G has edge expansion α if

φG(A) ≥ α for every A ⊆ V with 0 < |A| ≤ |V | /2. In the paper, we will frequently rely (without

an explicit reference) on the following trivial relation between separators and expansion.

Fact 1.2. The edge expansion of every graph G is at most 3 sep(G)/|V (G)|.

Throughout, the girth of a graph G is the minimum length of a cycle in G, and the maximum

degree of G is denoted ∆(G). We write log(·) for log2(·). Our main technical result, stated next,

implies that there exist graphs with a super-linear number of edges, girth (essentially) logarithmic

and whose subgraphs are all either trees or have a small edge separator.

Theorem 1. For any n, k with 2 ≤ k ≤ 1
648 log log n there is an n-vertex graph G = Gn,k satisfying:

i. G has average degree at least k and maximum degree at most 6k.

ii. G has girth at least log n/(6k)2.

iii. Every t-vertex subgraph H of G with t ≥ log n/(6k)2 satisfies

sep(H) ≤ t

log t
· (log log t)2 . (1)

The quantitative estimates in Theorem 1 are, in fact, best possible up to log log factors, and

here we briefly explain why. First, as we discuss in Section 6, any graph satisfying item (iii) has

1In the setting of the regularity lemma, expansion is referred to as being ε-regular.
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average degree at most (log log n)O(1). Second, the girth of any graph of average degree at least 4 is

at most O(log n), which matches item (ii) up to log log n factors. Third, it follows from Theorem 4

below that every graph G has a subgraph H (of roughly the same average degree) with sep(H) the

same as in (1) up to some log log t factors.

Crucially, sep(H) is bounded in (1) only in terms of t, meaning that this small-separator property

is hereditary. Notice that the fact that forest subgraphs are ignored in item (iii) is essential, as any

graph G contains K1,∆(G) (the star with ∆(G) leaves) and sep(K1,∆) ≥ ∆/3. Nevertheless, we still

have the following fact (a proof of which can be deduced from Lemma 2.3 below).

Fact 1.3. Every forest H has a vertex separator of size 1.2 Consequently, sep(H) ≤ ∆(H).

Finally, we mention that the proof of Theorem 1 actually shows that in (1) we can replace the

(log log t)2 term by (log log t)1+o(1), but we opted to use the simpler/cleaner expression.

Let us make a few remarks about the proof of Theorem 1. Constructing graphs satisfying

properties (i) and (ii) of the theorem is of course an easy application of the probabilistic deletion

method. However, random graphs will also have the property that most of their subgraphs will

have excellent expansion properties. Therefore, instead of considering random graphs, we pick a

random subgraph of the boolean hypercube. As it turns out, showing that such a randomly chosen

graph satisfies properties (i) and (ii) still follows from simple combinatorial arguments. Proving

property (iii) is more interesting: to this end we borrow a well-known argument from the theory

of metric embedding, that was first used by Linial, London and Rabinovich [17] in order to prove

that the shortest path metric of a bounded degree n-vertex expander cannot be embedded into `1
with distortion o(log n).

1.1 Small set expansion

Next we describe a strengthening of Theorem 1 which will be important for some of our applications.

Notice that Theorem 1 gives a graph G whose every subgraph H has a large subset (i.e., consisting

of at least 1/3 of its vertices) that does not expand well. One may instead ask for a graph G

that does not contain even small set expanders; that is, a graph G whose every subgraph H has a

small subset (i.e., consisting of o(1)-fraction of the vertices) that does not expand well. The notion

of small set expanders has recently received much attention in theoretical computer science (see,

e.g., [4, 27, 28]).

We prove the following “small set” counterpart of Theorem 1. In fact, we prove the stronger

property that one can nearly partition every subgraph H into small non-expanding subsets.

Theorem 2. Suppose that, for n, k with 2 ≤ k ≤ 1
648 log logn, the graph G satisfies properties

(i),(ii) and (iii) of Theorem 1, and let t ≥ log n/(6k)2 and 1/
√
t ≤ µ ≤ 1/2. For every t-

vertex subgraph H of G there are at least 1/(8µ) mutually disjoint subsets Ai ⊆ V (H) of size

µt/3 ≤ |Ai| ≤ µt satisfying

φH(Ai) ≤
log(1/µ)

log t
· (14 log log t)2 . (2)

2I.e., a single vertex whose removal leaves no connected component with more than 2
3
|V | vertices.
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In words, Theorem 2 gives a graph G whose every (large enough) subgraph H has a weak

expansion profile, meaning that H has subsets with µt vertices and edge expansion at most roughly

log(1/µ)/ log t, where t = |V (H)|. We note that by choosing µ = 1/ log t say, the resulting subsets

have both size o(1) and edge expansion o(1) as t tends to infinity. As in Theorem 1, the quantitative

estimates in Theorem 2 are essentially best possible. Indeed, it follows from Theorem 4 below that

any graph G has a t-vertex subgraph H whose every subset of size µt has edge expansion at least

(log(1/µ)/ log t) · (log log t)−2, which matches (2) up to log log t factors.

The proof of Theorem 2 relies on the hereditary non-expansion properties of the graphs produced

by Theorem 1 stated in item (iii). This allows us to devise a careful process which iteratively

produces smaller and smaller sets within each subgraph H in such a way that the expansion of the

sets does not increase too much.

1.2 Paper overview

In Section 2 we describe six applications of Theorems 1 and 2, showing that many decomposition-

type results that were used in different areas of research are essentially best possible. The proof

of Theorem 1 is given in Section 3 and the proof of Theorem 2 is given in Section 4. We give an

overview of each of the proofs at the beginning of each section. Section 5 contains some deferred

proofs from other sections and Section 6 contains some concluding remarks and open problems.

We note that throughout the paper we use expressions such as (n/ log n)(log log n), by which we of

course mean n
logn · log log n.

2 Applications of Main Results

Henceforth, a vertex separator is a set of vertices whose removal leaves no connected component

with more than 2
3 |V (G)| vertices. The minimum cardinality of a vertex separator in G is denoted

sepV(G). Note that sepV(G) ≤ sep(G), by removing an arbitrary endpoint of each separator edge.

2.1 Edge density of hereditary families with small separators

A family of graphs is said to be hereditary if it is closed under taking induced subgraphs. The

well-known Planar Separator theorem of Lipton-Tarjan [20] asserts that any n-vertex planar graph

has a vertex separator of cardinality at most O(
√
n). This influential result led to many extensions

for other hereditary families of graph (such as minor-free families, see [2]). The notion of vertex

separator in graphs has found numerous applications to problems in graph theory, both pure and

algorithmic (see [25] and the references therein). One of the first applications was given by Lipton,

Rose and Tarjan [19] in their work on the nested dissection method. Intuitively, their result states

that the reason planar graphs (and more generally minor-free graphs) have linearly many edges is

that they have small separators.

Theorem 3 ([19], Theorem 10). For every ε > 0 there is C > 0 for which the following holds. Let F
be a hereditary family of graphs such that every n-vertex graph G ∈ F has sepV(G) ≤ n/(log n)1+ε.

Then every n-vertex graph in F has at most Cn edges.
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We mention that Fox and Pach [7] strengthened Theorem 3 by proving that even separators of

size n/(log n(log log n)1+ε) guarantee3 that every graph in F has O(n) edges.

Using Theorem 1 we next show that the separation requirement in Theorem 3 cannot be im-

proved much beyond n/ log n.

Corollary 2.1. There is a hereditary family of graphs F such that every n-vertex graph G ∈ F
satisfies sepV(G) ≤ 1 + (n/ log n) · (log log n)2, yet there is no C > 0 such that every n-vertex graph

in F has at most Cn edges.

Proof. Put n0 = 222·648 and note that the graphs Gn,log logn/648 in Theorem 1 exist for every n ≥ n0.

Let F be the family of graphs defined as follows;

F = {G : G is an induced subgraph of Gn,log logn/648 for some n ≥ n0} .

Note that F is, by definition, a hereditary family of graphs. By items (ii), (iii) of Theorem 1,

together with Fact 1.3, every n-vertex graph G ∈ F satisfies sepV(G) ≤ 1 + (n/ log n)(log log n)2.

On the other hand, item (i) of Theorem 1 implies that F contains, for every n ≥ n0, an n-vertex

graph with Ω(n log logn) edges. This completes the proof.

2.2 Finding a single vertex-expanding subgraph

For a graph G, a subset S ⊆ V (G) is said to have vertex expansion α if |N(S)| = α |S|, where the

vertex boundary N(S) of S is the set of vertices outside of S that have a neighbor in S. Motivated

by extremal problems related to graph minors, it was shown in [26] that every graph G contains a

subgraph with good vertex expansion properties and almost the same average degree as G.

Theorem 4 ([26], Lemma 1.2). Let 0 < ε ≤ 2−8 and let G be a graph of average degree k. There

is a t-vertex subgraph H of G, with average degree at least (1− ε)k, such that every subset of V (H)

of size µt with 1/t ≤ µ ≤ 1/2 has vertex expansion in H at least ε · log(1/µ)/(4 log t (log log t)2).

We now show that the expansion guarantee in Theorem 4 is tight up to a (log log t)4 factor for

all 1/
√
t ≤ µ ≤ 1/2.

Corollary 2.2. Let G be any graph from Theorem 1. For every t-vertex subgraph H of G, and

every 1/
√
t ≤ µ ≤ 1/2, there is a subset of V (H) of size in [µt/3, µt] that has vertex expansion in

H at most (log(1/µ)/ log t) · (14 log log t)2.

Proof. Let H be a t-vertex subgraph of G, and let 1/
√
t ≤ µ ≤ 1/2. Suppose H contains a

cycle. By item (ii) of Theorem 1, t ≥ log n/(6k)2. Theorem 2 thus implies that H has a

subset of size in [µt/3, µt] that has edge expansion—and therefore vertex expansion—at most

(log(1/µ)/ log t)(14 log log t)2. Otherwise, if H does not contain a cycle, Lemma 2.3 below guar-

entees the existence of a subset of size in [µt/2, µt] that has vertex expansion at most 2/µt ≤
2/
√
t ≤ (14 log log t)2/ log t, as desired. This completes the proof.

Lemma 2.3. Let T be a tree on t vertices. For every 1 ≤ a ≤ t there is a subset S ⊆ V (T ) of size

a/2 ≤ |S| ≤ a that has vertex boundary of size at most 1.

The proof of Lemma 2.3 is deferred to Section 5. We note that the special case of Lemma 2.3

with a = 2t/3 can be used to give a proof of Fact 1.3.

3The result of [7] actually shows that having separators of size n/ logn log log n(log log logn)2 suffices.
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2.3 Decomposing a graph into edge expanders

Trevisan [30], in his work on approximation algorithms for constraint satisfaction problems known

as unique games (see [30, 4] for background), devised a decomposition of any graph into disjoint

expanders. Given this decomposition, Trevisan’s approximation algorithm proceeds to solve the

problem on each connected component, exploiting their expansion properties. We note that we will

revisit this paradigm for solving unique games in Subsection 2.4, where we discuss the well-known

Arora-Barak-Steurer [4] algorithm.

Recall that a graph G = (V,E) has edge expansion α if every subset S ⊆ V with |S| ≤ |V | /2
satisfies |∂(S)| ≥ α |S|, where the edge boundary ∂(S) of S is the set of edges with precisely one

endpoint in S. Trevisan’s decomposition result asserts4 that, given any graph, one can remove few

of its edges in order to partition it into connected components that each have good expansion5.

Theorem 5 ([30], Lemma 10). Let 0 < ε ≤ 1/2. From any n-vertex graph one can remove at most

an ε-fraction of the edges to obtain a graph whose every connected component has edge expansion

at least ε/12 log n.

Using Theorem 1, we show in Corollary 2.5 below that, already for ε = 1/2, the expansion

guarantee in Theorem 5 cannot be improved much beyond 1/ log n. In fact, we show that the

same conclusion holds even when ε = 1 − o(1), that is, even if one is allowed to remove all but a

o(1)-fraction of the edges of the graph! To this end, we will first need the following observation

regarding the graphs Gn,k from Theorem 1.

Claim 2.4. Any subgraph of Gn,k with average degree at least 4 has at least n1/72k2 vertices.

Proof. Let H be a t-vertex subgraph of Gn,k with average degree at least 4. Recall the well-known

fact that the girth of a t-vertex graph of average degree at least 4 is at most 2 log t (in fact,

average degree at least 3 suffices, see [1]). Item (ii) in Theorem 1 thus implies log n/(6k)2 ≤ 2 log t,

completing the proof.

Corollary 2.5. Any subgraph of Gn,k with average degree at least 4 has a connected component

with edge expansion at most (1/ log n)(15k log log n)2.

Proof. Consider a subgraph of Gn,k with average degree at least 4, and note that it has a connected

component H with average degree at least 4. Writing t for the number of vertices of H, Claim 2.4

implies that log t ≥ log n/72k2. It follows from item (iii) in Theorem 1 that the edge expansion of

H is at most (t/ log t)(log log t)2 · (3/t) ≤ (1/ log n)(15k log log n)2.

By Corollary 2.5, even after removing a fraction of 1− 4/k of the edges of Gn,k, the remaining

graph has a connected component with edge expansion at most O((1/ log n)(k log log n)2). So

for example, taking k = 8 gives a bounded-degree graph such that even after removing up to

half of its edges, the remaining graph has a connected component with edge expansion at most

O((1/ log n)(log logn)2). At the other extreme, if k = log log n/648 then even after removing

a (1 − o(1))-fraction of the edges, the remaining graph has a connected component with edge

expansion at most (1/ log n)(log logn)4.

4We note that prior to [30], Goldreich and Ron [9] have implicitly proved a result of the same spirit, whose exact

quantitative properties are somewhat more complicated to state. See also [12]
5Trevisan originally used the notion of conductance; our lower bound applies even for edge expansion.
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2.4 Threshold-rank decomposition

We now describe another example of a decomposition result used in devising approximation algo-

rithms for unique games. While Trevisan’s decomposition, mentioned in the previous subsection,

guarantees that every connected component has good expansion (meaning that its second eigen-

value is small compared to the first), a different decomposition was devised by Arora, Barak and

Steurer [4], which guarantees that every connected component has relatively few eigenvalues larger

than a specified threshold. As noted in [4], this decomposition was the main component in their

breakthrough paper which gave the first subexponential time algorithm for unique games. We now

turn to formally describe the properties of this decomposition.

For a d-regular graph G, denote by rankτ (G) the number (with multiplicities) of eigenvalues λ

of the adjacency matrix of G satisfying |λ| > τd. Let Rn(η, ε) denote the minimum integer such

that for any n-vertex graph G, one can remove at most an ε-fraction of its edges so that each

connected component H of the new graph satisfies rank1−η(H
∗) ≤ Rn(η, ε), where H∗ is obtained

from H by adding self-loops to make it ∆(G)-regular. The decomposition result of [4] shows that

one can remove few of the edges of any given graph, so that each connected component of the new

graph has small threshold rank. This can be formally stated as follows.

Theorem 6 ([27], Theorem 5.6). For every 0 < η, ε ≤ 1 we have

Rn(η, ε) ≤ nO((η/ε2)1/3) .

So for example, for every d-regular n-vertex graph G, one can efficiently remove at most, say,

1% of the edges of G so that for each connected component in the resulting graph, its “regularized”

adjacency matrix has at most nO(η1/3) eigenvalues larger than (1− η)d.

The algorithm of [4] for approximating unique games runs in time exponential in Rn(η, ε).

The bound in Theorem 6 therefore implies a subexponential running time. Note that to get a

polynomial running time it thus suffices to prove the bound Rn(η, ε) ≤ O(log n) for constant η, ε.

In fact, the bound Rn(η, ε) ≤ no(1) already suffices to disprove the Unique Games Conjecture under

the so-called Exponential Time Hypothesis.

Here we prove that the bound on Rn(η, ε) in Theorem 6 is in fact essentially tight. Namely, we

show that one can derive from Theorem 2 a nearly polynomial lower bound on Rn(η, ε).

Corollary 2.6. There is a positive integer n0 such that for every n ≥ n0 and 0 < η ≤ 1 we have

Rn(η, 0.99) ≥ nΩ(η/(log logn)2) .

We note that a proof similar to that of Corollary 2.6 can give roughly the same bound on

Rn(η, ε) even when ε = 1− o(1), that is, even when one is allowed to remove all but a o(1)-fraction

of the graph’s edges. We omit the details. We also note that we can improve the exponent in

Corollary 2.6 to Ω(η/(log log n)1+o(1)), but we opted for the simpler/cleaner bound. See Section 6

for more details on this.

For the proof of Corollary 2.6 we will need the “easy” direction of the higher-order Cheeger

inequality that first appeared in [15] (see Lemma 2.1 there). For completeness, we reproduce the

proof in full details in Section 5.
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Lemma 2.7. Let G = (V,E) be a d-regular (multi-)6graph, and let λ1 ≥ λ2 ≥ · · · ≥ λ|V | be the

eigenvalues of the adjacency matrix of G. Then for every k,

d− λk
2

≤ min
S1,...,Sk

max
1≤i≤k

φG(Si) ,

where the minimum is over all collections of k mutually disjoint non-empty subsets of V .

Proof of Corollary 2.6. Let G = Gn,400 be a graph from Theorem 1. Put r = 1
8n

η/(4000 log logn)2 .

Let H be a subgraph of G with average degree at least 4. We will show that

rank1−η(H
∗) ≥ r . (3)

This would prove Rn(η, 0.99) ≥ r since removing at most a 0.99-fraction of the edges of G leaves a

subgraph of average degree at least 0.01·400 = 4, which therefore must have a connected component

H for which (3) applies.

Writing t = |V (H)|, put µ = 1/tη/(log log t)2 . Claim 2.4 implies that

t ≥ n1/40002 ≥ 16 (4)

assuming n ≥ n0 for an appropriate n0. Note that (4) implies that 1/(8µ) ≥ r, and that we

may assume µ ≤ 1/2, as otherwise r ≤ 1/(8µ) < 1 so (3) trivially holds. Moreover, note that

µ ≥ 1/
√
t, since 1/(log log t)2 ≤ 1/(log log(16))2 ≤ 1/2 by (4). Apply Theorem 2 on H with µ,

using that 1/
√
t ≤ µ ≤ 1/2, as well as the fact that t ≥ log n/(6 · 400)2 by (4) and the assumption

n ≥ n0. We thus obtain r mutually disjoint non-empty subsets of H, each with edge expansion

in H at most (log 1
µ/ log t)(14 log log t)2 < 200η. Let λ1 ≥ λ2 ≥ · · · ≥ λt be the eigenvalues of the

adjacency matrix of H∗ (recall that H∗ is obtained by adding to H sufficiently many self-loops so as

to make it ∆(G)-regular). Note that adding self-loops does not alter the expansion of any subset.

Therefore, Lemma 2.7 implies that ∆(G)− λr < 400η. It follows that for every 1 ≤ i ≤ r we have

λi ≥ λr > ∆(G)− 400η ≥ (1− η)∆(G). This implies (3) and therefore completes the proof.

2.5 Hyperfinite families of graphs

A graph is said to be (ε, q)-hyperfinite if one can remove an ε-fraction of its edges and thus decompose

it into connected components of size at most q each. A family of graphs is said to be hyperfinite

if there is a function q such that for every ε > 0, every graph in the family is (ε, q(ε))-hyperfinite.

Hyperfinite families of graphs have been extensively studied in recent years, mainly because of their

role in the theory of graph limits of sparse graphs (see [21]). Motivated by certain questions related

to the design of property-testing algorithms, it was shown in [6] that a hereditary family of graphs

in which every graph has a small edge separator must be hyperfinite. More precisely, the following

holds.

Theorem 7 ([6], Corollary 3.2). Let F be a hereditary family of graphs such that every n-vertex

graph G ∈ F satisfies sep(G) ≤ n/(log n (log log n)2). Then, F is hyperfinite.

Using Theorem 1 we show that the edge-separation requirement in Theorem 7 cannot be im-

proved much beyond n/ log n.

6By this we mean that we allow self-loops.
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Corollary 2.8. The graphs Gn,8 from Theorem 1 are not (1
2 , n

1/4608)-hyperfinite. In particular,

F8 := {G : G is an induced subgraph of Gn,8 for some n}

is a hereditary family of graphs that is not hyperfinite, despite the fact that every n-vertex graph

G ∈ F8 satisfies sep(G) ≤ (n/ log n)(log log n)2 + 48.

Proof. To see that the first assertion holds, note that after removing at most half of the edges of

Gn,8, we obtain a graph with average degree at least 4. This graph has a connected component

H of average degree at least 4. By Claim 2.4, the number of vertices in H is least n1/4608. As

to the second assertion of the corollary, note that the first assertion clearly means that F8 is not

hyperfinite. Also, note that the fact that sep(G) ≤ max{(n/ log n)(log log n)2, 6 · 8} holds for every

n-vertex G ∈ F8 follows from items (i),(ii) and (iii) of Theorem 1 together with Fact 1.3.

2.6 Locally constructing spanning graphs

Motivated by the growing literature on local algorithms (see Rubinfeld et al. [24] and the references

in [22]), let us consider the problem of constructing a spanning tree of a graph G in a local manner.

By this we mean being able to decide if a given edge of G belongs to the tree in constant time (and

in particular, without constructing the entire tree). It is easy to see that there actually cannot exist

a local algorithm A for constructing a spanning tree. Indeed, if G is a cycle then A must answer

negatively on one edge while if G is a path then A must answer positively on all edges, yet the two

graphs cannot be distinguished without making a linear number of queries. Thus, it is natural to

require that the constructed subgraph is merely sparse.

Formally, an (ε, q)-local sparse spanning graph algorithm makes at most q queries to the incidence-

lists representation7 of the (bounded-degree, connected) input graph G, and provides query access8

to a connected subgraph G′ of G that has fewer than (1 + ε)n edges. The question of which graphs

have a local spanning graph algorithm that uses only a constant number of queries was studied

in [22], where it was shown that the answer is given by the same hereditary notion of expansion

considered in the current paper. A graph is said to be f -non-expanding if every t-vertex subgraph H

has edge expansion at most f(t). It was shown in [22] that if the input graphs are f -non-expanding

with f(x) = Ω(1/(log x (log log x)2)) then a “localized” version of Kruskal’s algorithm constructs a

sparse spanning graph in a constant number of queries. As for the more challenging lower bound

question, the following theorem shows that the above expansion requirement is essentially sharp

(even if the algorithm is allowed to use randomization).

Theorem 8 ([22], Theorem 3). For infinitely many n, there is an f -non-expanding n-vertex graph

G with f(x) = (1/ log x) · (70 log log x)2 such that even if the input graph is guaranteed to be

isomorphic to G, every (1
2 , q)-local sparse spanning graph algorithm satisfies q ≥ Ω(log log n).

The proof of Theorem 8 relies heavily on Theorem 1. It uses Gn,k in order to construct a

3-regular graph that is still non-expanding and of girth Ω(log logn). For that graph, it is shown

that any local sparse spanning graph algorithm must query a number of edges proportional to the

girth.

7Queries are of the form “which is the i-th neighbor of v?”.
8I.e., on input (u, v) ∈ E the algorithm returns whether (u, v) ∈ E(G′), and for any sequence of queries it answers

consistently with the same G′.
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3 Proof of Theorem 1

To construct the graphs Gn,k of Theorem 1 we take an appropriate random subgraph of the Boolean

hypercube. Using standard probabilistic and combinatorial arguments, we show that this random

subgraph satisfies items (i) and (ii) of Theorem 1 (see Subsection 3.1). For the proof of the main

property, item (iii), we use a technique similar to the one Linial, London and Rabinovich [17] used

to prove that any embedding of an expander into `1 has logarithmic distortion. We prove that

every low-degree t-vertex subgraph of the hypercube has edge expansion at most roughly 1/ log t

(see Lemma 3.3). This gives a small cut in the subgraph, which we finally “boost” into a small

balanced cut, or in other words, a small edge separator (see Subsection 3.3).

3.1 Construction

The d-cube, denoted Qd, is the graph with vertex set {0, 1}d where two vertices are adjacent if their

corresponding vectors differ in exactly one coordinate. Notice Qd is a d-regular graph on 2d vertices.

The following gives the construction of Gn,k and the proof of items (i) and (ii) of Theorem 1.

Lemma 3.1. For any d ∈ N and 2 ≤ k ≤ d there is a subgraph Q = Qd,k of the d-cube, on all 2d

vertices, such that:

i. The average degree of Q is at least k.

ii. The maximum degree of Q is at most 3k.

iii. The girth of Q is at least d/(3k)2.

We will need the following upper bound on the number of cycles of a given length in the cube.

Claim 3.2. The number of cycles of length 2` in the d-cube is at most 2d(d`)`.

Proof. We will show that the number of closed walks of length 2`, starting and ending at a given ver-

tex, is at most (d`)`; this would immediately imply the stated bound. We claim that each such closed

walk corresponds to a sequence (x1, . . . , x2`) ∈ [d]2` with the property that |{i ∈ [2`] : xi = t}| is

even for every t ∈ [d]. To see this, recall that each vertex in the graph corresponds to an element of

{0, 1}d. The claim follows by considering, for each edge along a closed walk beginning (and ending)

with a given vertex, the unique index in which the bit “flips”. So all that is left is to give an upper

bound on the number of sequences as above. Observe that all these sequences can be generated

by first partitioning the set of indices {1, . . . , 2`} into ` pairs and then assigning to each pair a

value from {1, . . . , d} (of course, this process will generate some sequences several times). Since the

number of ways one can pair the elements of {1, . . . , 2`} is given by

(2`− 1)!! = (2`− 1)(2`− 3) · · · 3 · 1 ≤ 2``!/2 ≤ 2`(`/2)` = `` ,

we get that the number of sequences is bounded from above by d` · ``.

To prove the existence of a graph as in Lemma 3.1 we apply standard arguments using the

so-called probabilistic “deletion method”.
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Proof of Lemma 3.1. Denote by G′ the random subgraph of the d-cube where each edge is inde-

pendently retained with probability p = 3k/d. Let the random variable X count the number of

edges of G′. Then

E[X] = p · d2d−1 = 3k · 2d−1 . (5)

Set L = d/9k2 and let the random variable Y count the number of cycles of length at most L in

G′. By Claim 3.2,

E[Y ] ≤
L/2∑
`=2

p2`2d(d`)` = 2d
L/2∑
`=2

(p2d`)` = 2d
L/2∑
`=2

(`/L)` ≤ 2d
L/2∑
`=2

(1/2)` ≤ 2d−1 . (6)

Let the random variable Z count the total number of “excess” edges in G′, that is,

Z =
∑

v : deg(v)>3k

(deg(v)− 3k) .

We claim that E[Z] ≤
√

3k · 2d−1. Indeed, for each vertex v the random variable deg(v) follows the

binomial distribution B(d, 3k/d), so E[deg(v)] = 3k. We have E[Z] = 1
2

∑
v E |deg(v)− 3k|, since∑

v |deg(v)− 3k| =
∑

v(3k − deg(v)) + 2Z. By Jensen’s inequality, for each v we have

(E |deg(v)− 3k|)2 ≤ E[(deg(v)− 3k)2] = Var[deg(v)] ≤ 3k ,

implying that

E[Z] =
1

2

∑
v

E |deg(v)− 3k| ≤
√

3k · 2d−1 , (7)

as claimed. Combining (5),(6) and (7) we get

E[X − Y − Z] ≥ (3k − 1−
√

3k) · 2d−1 ≥ k · 2d−1 , (8)

where the last inequality can be easily checked to hold for any k ≥ 2. Let Q be obtained from G′

by removing an arbitrary edge from each cycle of length at most d/9k2, as well as removing, for

each vertex v with deg(v) > 3k, arbitrary deg(v)− 3k adjacent edges. Clearly, Q satisfies the last

two requirements in the statement. Moreover, we have from (8) that the expected average degree

of Q is at least k. The existence of a subgraph of the d-cube as required immediately follows.

3.2 Expansion in the hypercube

In this subsection we prove that large subgraphs of the d-cube are not good edge expanders. Recall

that a graph G = (V,E) is said to have edge expansion α if every subset S ⊆ V with |S| ≤ |V | /2
satisfies |∂(S)| ≥ α |S| (the edge boundary ∂(S) is the set of edges with exactly one vertex in S).

Our goal in this subsection is to prove the following lemma.

Lemma 3.3. Any (not necessarily induced) subgraph of the d-cube with t vertices and average

degree r has edge expansion at most 2r log d/ log(t/2).

We first need the following easy claim, in which the distance between two vertices u, v in a

graph G, denoted δG(u, v), is the length of a shortest path connecting u and v.
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Claim 3.4. For every graph G of maximum degree ∆ > 1, and every t-vertex subset S ⊆ V (G),

the average distance
∑
{u,v}∈(S2)

δG(u, v)/
(
t
2

)
is at least log(t/2)/(2 log ∆).

Proof. Let v ∈ S. We claim that there are at least t/2 vertices in S of distance at least ` =

log(t/2)/ log ∆ from v. Indeed, the number of vertices of distance at most `− 1 from v is at most∑b`−1c
i=0 ∆i < ∆` = t/2. It follows that the average distance is at least `/2.

We are now ready to prove the main result of this subsection.

Proof of Lemma 3.3. Let H = (S,E) be a t-vertex subgraph of the d-cube Qd of average degree

r, and let α denote the edge expansion of H. We need to show that α ≤ 2r log d/ log(t/2). Note

that we may assume α > 0, as otherwise there is nothing to prove. For each vertex v ∈ S,

write (v1, . . . , vd) ∈ {0, 1}d for the corresponding binary vector. Notice δQd
(u, v) =

∑d
i=1 |ui − vi|.

Observe that∑
{u,v}∈E δQd

(u, v)∑
{u,v}∈(S2)

δQd
(u, v)

=

∑d
i=1

∑
{u,v}∈E |ui − vi|∑d

i=1

∑
{u,v}∈(S2)

|ui − vi|
≥ min

i

∑
{u,v}∈E |ui − vi|∑
{u,v}∈(S2)

|ui − vi|
, (9)

with the minimum over all i for which the denominator is nonzero, where we used the ele-

mentary inequality (
∑d

i=1 xi)/(
∑d

i=1 yi) ≥ mini: yi 6=0 xi/yi which holds for all non-negative reals

x1, y1, . . . , xd, yd. Let i ∈ [d] achieve the minimum in (9), and set T = {v ∈ S : vi = 1}. Note that

0 < |T | < |S| and that we can assume 0 < |T | ≤ |S| /2, as otherwise we replace T with S \T . Since

in the right hand side of (9) the numerator is |∂T | and the denominator is |T | |S \ T |, we deduce

that ∑
{u,v}∈E δQd

(u, v)∑
{u,v}∈(S2)

δQd
(u, v)

≥ |∂T |
|T | |S \ T |

≥ min
S′⊆S :

0<|S′|≤|S|/2

|∂S′|
|S′| |S \ S′|

≥ α

|S| − 1
.

Therefore,
1(|S|
2

) ∑
{u,v}∈(S2)

δQd
(u, v) ≤ 2

α |S|
∑
{u,v}∈E

δQd
(u, v) =

2 |E|
α |S|

=
r

α
. (10)

Applying Claim 3.4 with G = Qd and the set S, the left hand side of (10) is at least log(t/2)/2 log d.

The desired bound on α follows.

3.3 Putting it all together

To prove item (iii) of Theorem 1 we will show that the graph G constructed in Lemma 3.1 also has,

in addition to items (i) and (ii) of Theorem 1, the property that every (large enough) subgraph

H has a small edge separator. Towards proving this, we first show that every such H has small

expansion. We consider two cases: (1) H has at most 2d
1/3

vertices and (2) H has at least 2d
1/3

vertices. In the first case we use the fact that high expansion implies the existence of a short cycle

(see Lemma 3.5 below), which contradicts the girth property of G. In the second case, as the

maximum degree of G is small, we use Lemma 3.3 to bound the expansion of the t-vertex subgraph

H by roughly (log d)2/ log t, which in this case is at most roughly (log log t)2/ log t. Finally, seeing
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as the above holds for every subgraph H, we show that it is possible to boost this “hereditary” non-

expansion property of G in order to construct an edge separator in H that is as small as required

in (1) (see Lemma 3.6 below).

To execute the above proof strategy we will need the following two lemmas, whose proofs appear

in Section 5. Recall that we use sep(G) to denote the size of the smallest edge separator in G.

Lemma 3.5. Every connected n-vertex graph with edge expansion α (> 0) and maximum degree

∆ that is not a tree has girth at most 20∆ log(n)/α.

Lemma 3.6. Let G be an n-vertex graph whose every t-vertex subgraph has edge expansion at most

f(t) for every t ≥ 2n/3, where f : [2n/3, n]→ R is decreasing. Then sep(G) ≤ (2n/3)f(2n/3).

Finally, note that the assumption 2 ≤ k ≤ 1
648 log log n in Theorem 1 trivially yields the relation

log n ≥ 22·648, which in particular implies

log n ≥ (log log n)6 . (11)

We now give the proof of our main theorem.

Proof of Theorem 1. First, suppose that n is a power of 2, and write n = 2d. Let G = Qd,2k be

a subgraph of the d-cube as guaranteed by Lemma 3.1. The assertion of Lemma 3.1 implies that

G has average degree at least 2k, maximum degree at most 6k, and girth at least d/(6k)2. So to

complete the proof (for n = 2d) we only need to establish item (iii) of Theorem 1.

For the rest of the proof set t0 = 2
3d/(6k)2 (≥ 256). We will use the following inequalities,

which can be deduced from (11) and the theorem’s assumption that k ≤ log d/648;

d1/3/(6k)3 ≥ 20 , (12)

6k ≤ t0/(3 log t0) . (13)

Put f(x) = (1/ log x)(log log x)2, and note that f(x) is increasing for x ≥ 256.

We first show that every t-vertex subgraph H of G with t ≥ t0 has edge expansion at most

f(t). If H is cycle-free then sep(H) ≤ ∆(G) ≤ 6k ≤ t0/(3 log t0) ≤ t/(3 log t), where in the first

inequality we used Fact 1.3, in the third inequality we used (13) and in the last inequality the

fact that the function x/ lnx is increasing. It follows that the edge expansion of H is at most

(1
3 t/ log t)/(1

3 t) = 1/ log t ≤ f(t), as desired. Thus, we henceforth assume that H contains a cycle.

We next consider two cases. Suppose first that t < 2d
1/3

. Assuming for contradiction that H

has edge expansion at least 1/ log t, Lemma 3.5 implies that H contains a cycle of length at most

20(6k) log2(t) ≤ 20(6k)d2/3 ≤ d/(6k)2, where the last inequality uses (12). This contradicts the

fact that G does not contain a cycle this short, hence we deduce that the edge expansion of H is

at most 1/ log t ≤ f(t), as needed. Suppose now that t ≥ 2d
1/3

. By Lemma 3.3 and the fact that

the average degree of H is at most 6k, the edge expansion of H is at most 24k log d/ log t. Thus,

to prove our claim it suffices to show that
√

24k log d ≤ log log t. This indeed follows from the

theorem’s assumption that k ≤ log d/648, as it implies that√
24k log d ≤ (log d)/3 = log(d1/3) ≤ log log t .
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Having established that every subgraph of G on at least t0 vertices has small edge expansion,

we now wish to show that every t-vertex subgraph H of G with t ≥ d/(6k)2 (= 3t0/2) has a small

edge separator. We apply Lemma 3.6 on the graph H with the function f , noting that, as required

by the lemma, every t′-vertex subgraph of H with t′ ≥ 2t/3 (≥ t0) has edge expansion at most

f(t′), and that f : [t0, t]→ R is decreasing. We deduce that

sep(H) ≤ (2t/3)f(2t/3) ≤ ((2t/3)/ log(2t/3))(log log t)2 ≤ (t/ log t)(log log t)2 ,

as required by item (iii) in Theorem 1. This completes the proof of the theorem for the case n = 2d.

Finally, let us consider the case of an arbitrary n, that is, not necessarily a power of 2. In this

case we set d = dlog ne. Since n > 2d/2, a random n-vertex subgraph of Qd,2k will have, with

positive probability, average degree at least k. Let G be such a graph. Then the maximum degree

of G is still at most 6k, its girth is at least log n/(6k)2, and it is easy to see that every t-vertex

subgraph H of G with t ≥ log n/(6k)2 satisfies sep(H) ≤ (t/ log t)(log log t)2. This completes the

proof.

4 Proof of Theorem 2

In order to prove Theorem 2 we first show that the hereditary nature of item (iii) of Theorem 1

can be used to iteratively find smaller and smaller subsets while controlling their expansion. This

enables us to find a single small subset having small expansion. We note that this special case

of Theorem 2, stated as Claim 4.1 below, already suffices for the application in Corollary 2.2. To

prove Theorem 2 we first iteratively pick sets A1, A2, . . . via Claim 4.1 in such a way that each Ai
has small expansion in the graph obtained by removing A1, . . . , Ai−1 from H. We then complete

the proof by showing that at least half of these sets have small expansion in H itself. For the rest

of this section, G is the graph from Theorem 2 and t0 = log n/(6k)2.

Claim 4.1. For every t-vertex subgraph H of G with t ≥ 1
2 t0, and every 1/

√
t ≤ µ ≤ 2/3, there is

a subset A ⊆ V (H) of size µt/3 ≤ |A| ≤ µt satisfying

φH(A) ≤ log(1/µ)

log t
· (4 log log t)2 . (14)

Proof. Put f(x) = (1/ log x) · (log log x)2. One can check that f(x) is decreasing for x ≥ 256.

Throughout the proof, unless otherwise mentioned, we write φ(·) = φH(·) for the edge expansion

in H, and ∂(·) = ∂H(·) for the edge boundary in H. In order to obtain a subset A ⊆ V (H)

satisfying (14) we will iteratively find smaller and smaller subsets, such that in each step the edge

expansion (in H) of our subset does not increase by much. One can verify that, by the theorem’s

assumption on k and t, we have by (11) the inequality

∆(G) ≤
√
t0/2

log log n
. (15)

Let S ⊆ V (H) with |S| ≥
√
t (≥ 256). We claim that there is a subset S1 ⊆ S of size

1
3 |S| ≤ |S1| ≤ 2

3 |S| such that φ(S1) ≤ φ(S) + 2f(|S|). Before proving this claim, note that the

induced subgraph H[S] satisfies

sep(H[S]) ≤ |S| f(|S|) . (16)
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Indeed, if |S| ≥ t0 this is item (iii) of Theorem 1, while if |S| < t0 we have

sep(H[S]) ≤ ∆(H) ≤
√
t/ log(t0) ≤ |S| f(|S|) ,

where the first inequality follows from item (ii) of Theorem 1 and Fact 1.3, and the second inequality

from (15) and the theorem’s assumption t ≥ 1
2 t0. To prove our claim, consider an edge separator

in H[S]. Namely, let S = S′ ∪ S′′ be a partition of S with |S′| , |S′′| ≤ 2
3 |S| such that the number

of edges between S′ and S′′ in H[S], and thus in H, is sep(H[S]). Consider now the edge boundary

of S′ and S′′ in H. We have ∣∣∂(S′)
∣∣+
∣∣∂(S′′)

∣∣ = |∂(S)|+ 2 sep(H[S]) .

Moving to edge expansion, observe that this means that

min{φ(S′), φ(S′′)} ≤ |∂(S′)|+ |∂(S′′)|
|S′|+ |S′′|

=
|∂(S)|+ 2 sep(H[S])

|S|
≤ φ(S) + 2f(|S|) ,

where in the left inequality we used the elementary inequality (a+ b)/(c+d) ≥ min{a/c, b/d}, and

in the right inequality we used (16). Thus, we can take either S′ or S′′ as the set S1 above, proving

our claim.

Applying our claim with S = S0 := V (H) yields a subset S1 ⊆ S0 of size 1
3 |S0| ≤ |S1| ≤ 2

3 |S0|
satisfying φ(S1) ≤ φ(S0) + 2f(|S0|) = 2f(|S0|), where we used the fact that φ(S0) = 0. Having

picked Si, for some i ≥ 1, we can then pick a new set Si+1 ⊆ Si satisfying 1
3 |Si| ≤ |Si+1| ≤ 2

3 |Si|
and φ(Si+1) ≤ φ(Si) + 2f(|Si|). Let j be the smallest integer such that |Sj | ≤ µt. Note that

|Sj | ≥ µt/3 and that j ≤ dlog3/2(1/µ)e. We get from the above observations that

φ(Sj) ≤
j−1∑
i=0

2f(|Si|) ≤ j · 2f(µt) ≤ 2 log3/2(1/µ) · 2f(
√
t) ≤ log(1/µ)

log t
· 16(log log t)2 ,

where in the second inequality we used the fact that f(x) is decreasing and in the third inequality

we used both bounds in the assumption 1/
√
t ≤ µ ≤ 2/3 (the upper bound is used for the inequality

dxe ≤ x+ 1 ≤ 2x for x ≥ 1). Taking Sj to be the set A in the statement completes the proof.

Proof of Theorem 2. Let H = (V,E) be a t-vertex subgraph with t ≥ t0, and recall 1/
√
t ≤ µ ≤ 1/2.

We construct r := d1/(4µ)e mutually disjoint sets A1, . . . , Ar ⊆ V , each of size in [µt/3, µt], as

follows. Denoting Hi−1 = H[V \
⋃i−1
j=1Aj ] and ti = |V (Hi−1)|, we obtain Ai by applying Claim 4.1

on Hi−1 with µi = µt/ti. To see why we may do so (i.e why we can apply Claim 4.1 this many

times), note that ti ≥ t− (i− 1)µt ≥ t− (r − 1)µt ≥ 3
4 t, hence ti ≥ 1

2 t0 and

1/
√
ti ≤

√
t/ti ≤ µi = µt/ti ≤ 4µ/3 ≤ 2/3 .

It follows that for every 1 ≤ i ≤ r we have

φHi−1(Ai) ≤
log(ti/µt)

log ti
(4 log log ti)

2 ≤ log(1/µ)

log t
(4 log log t)2 , (17)

where in the last inequality we used the fact that the function log(x/a)(4 log log x)2/ log x is in-

creasing for x ≥ a.
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To finish the proof we show that the expansion of at least half of the r subsets Ai is small in H

as well. First, note that

r∑
i=1

|∂H(Ai)| ≤ 2

r∑
i=1

∣∣∂Hi−1(Ai)
∣∣ = 2

r∑
i=1

|Ai| · φHi−1(Ai) ≤ 2r · µt · log(1/µ)

log t
(4 log log t)2 , (18)

where in the first inequality we used the fact that each edge is counted (at most) twice, and in the

last inequality we used (17) and the fact that each Ai is of size at most µt. Dividing both sides

of (18) by µt/3 (which is a lower bound on the size of the sets Ai), we get

r∑
i=1

φH(Ai) ≤
r∑
i=1

|∂H(Ai)|
µt/3

≤ 6r · log(1/µ)

log t
(4 log log t)2 .

Hence, by averaging, at least 1
2r ≥ 1/(8µ) of the sets Ai satisfy

φH(Ai) ≤ 12
log(1/µ)

log t
(4 log log t)2 ≤ log(1/µ)

log t
(14 log log t)2 ,

thus completing the proof.

5 Missing Proofs

5.1 Proof of Lemma 2.3

Proof of Lemma 2.3. Root T at an arbitrary vertex, and start a walk from the root down the tree.

At each step, move to an arbitrary child that has more than a vertices in the subtree rooted at

it, if such a child exists. Clearly, this walk ends at some vertex v. Thus, v has at least a vertices

in its subtree (more if v is not the root), and none of its children have more than a vertices. Let

n1, . . . , nk be the number of vertices in the subtrees rooted at each of the k children of v, meaning∑k
i=1 ni ≥ a and ni ≤ a for every i. Let I ⊆ [k] maximize s(I) :=

∑
i∈I ni under the restriction

that s(I) ≤ a. Then s(I) ≥ a/2, for otherwise aj ≥ a/2 for some j, which implies a/2 ≤ s({j}) ≤ a,

a contradiction. Let S ⊆ V (T ) be the set of all vertices in the subtrees corresponding to I. Then

a/2 ≤ |S| ≤ a and, since the only vertex in the boundary of a subtree is its parent, only v lies in

the boundary of S. This completes the proof.

5.2 Proof of Lemma 3.5

Proof of Lemma 3.5. Let e = uv be an edge in our graph G = (V,E) that lies on a cycle, and let

G′ be obtained from G by removing e. We claim that the edge expansion of G′ is at least α/2.

Indeed, this follows from the fact that for every S ⊆ V we have |∂G′(S)| ≥ |∂G(S)|−1 ≥ |∂G(S)|/2,

where the last inequality uses the fact that |∂G(S)| ≥ 2 since e is not a cut-edge in G.

Put β = α/(2∆) and n′ = bn/2c + 1. For a vertex x ∈ V and a non-negative integer r,

write Bx(r) = {y : δG′(x, y) ≤ r}. We claim that |Bx(r′)| ≥ n′ for every x ∈ V and r′ :=

dlog(n′)/ log(1 + β)e. More generally, we claim that |Bx(r)| ≥ min{(1 + β)r, n′}. We prove this by
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induction on r. For the induction basis we have |Bx(0)| = 1, and for the induction step we have,

provided |Bx(r)| ≤ n/2, that

|Bx(r + 1)| ≥ |Bx(r)|+ |∂G′(Bx(r))|/∆ ≥ (1 + β)|Bx(r)| ≥ (1 + β)r+1 .

Having completed the inductive proof, we in particular deduce for the endpoints of the edge e = uv

above thatBu(r′)∩Bv(r′) 6= ∅, implying that δG′(u, v) ≤ 2r′. Since u and v are adjacent inG but not

in G′, we conclude that G has a cycle of length at most 2r′+1 ≤ 5 log(n)/ log(1+β) ≤ 20∆ log(n)/α,

where the last inequality uses the bound log(1 + β) ≥ β/2 for 0 ≤ β ≤ 1.

5.3 Proof of Lemma 3.6

Proof of Lemma 3.6. Iteratively construct subsets S1, . . . , Sk ⊆ V (G) as follows. To obtain Si,

consider the induced subgraph Gi = G[V \ S(i−1)], where S(i−1) :=
⋃i−1
j=1 Sj , and let Si ⊆ V (Gi)

satisfy |Si| ≤ ni/2 and φGi(Si) ≤ f(ni), where ni = |V (Gi)|. Stop once |S(k)| ≥ n/3. Notice

nk = n− |S(k−1)| and |S(k−1)| ≤ n/3, which implies nk ≥ 2n/3. Therefore,

|S(k)| ≤ |S(k−1)|+ nk/2 = (n+ |S(k−1)|)/2 ≤ 2n/3 .

Put S = S(k). Note that sep(G) ≤ |∂G(S)|, thus it suffices to show φG(S) ≤ f(2n/3). Observe that

every edge in the edge boundary ∂G(S) is a member of some edge boundary ∂Gi(Si). Hence,

|∂G(S)|
|S|

≤
∑k

i=1 |∂Gi(Si)|
|S|

=

k∑
i=1

|Si|
|S|

φGi(Si) ≤ max
1≤i≤k

φGi(Si) ≤ max
1≤i≤k

f(ni) ≤ f(2n/3) ,

where in the last inequality we used the monotonicity of f . This completes the proof.

5.4 Proof of Lemma 2.7

Proof of Lemma 2.7. Put L = dI − A where A is the adjacency matrix of G = (V,E). Note that

the k-th eigenvalue of L is d− λk. By the Courant-Fischer min-max theorem we have

d− λk = min
w1,...,wk

max
06=x∈span{w1,...,wk}

RL(x) , (19)

where the minimum is over all collections of k mutually orthogonal nonzero vectors in R|V |, and

RL(x) = xtLx/xtx is the Rayleigh quotient. Let S1, . . . , Sk ⊆ V be mutually disjoint non-empty

subsets, and denote by 1Si the characteristic {0, 1}-vector of Si. As it is easy to see that xtLy =∑
{u,v}∈E(xu−xv)(yu−yv), we deduce that 1tSi

L1Si
= |∂(Si)|, and that for i 6= j we have 1tSi

L1Sj
=

−e(Si, Sj) where e(Si, Sj) is the number of edges between Si and Sj . Consider now any vector

x ∈ span{1S1 , . . . ,1Sk
} and write x =

∑k
i=1 ci1Si . Then

xtLx =
k∑

i,j=1

cicj · 1tSi
L1Sj =

k∑
i=1

c2
i |∂(Si)| −

∑
i 6=j

cicje(Si, Sj) ≤
k∑
i=1

c2
i |∂(Si)|+

∑
i 6=j

c2
i + c2

j

2
e(Si, Sj)

=
k∑
i=1

c2
i |∂(Si)|+

k∑
i=1

c2
i

∑
j 6=i

e(Si, Sj) ≤ 2
k∑
i=1

c2
i |∂(Si)| .
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The proof now follows since (19) implies

d− λk ≤ max
06=x∈span{1S1

,...,1Sk
}
RL(x) ≤

2
∑k

i=1 c
2
i |∂(Si)|∑k

i=1 c
2
i |Si|

≤ 2 max
1≤i≤k

φG(Si) .

6 Concluding Remarks and Open Problems

• As we mentioned in Section 1, we can replace the (log log t)2 factors in (1) with (log log t)1+o(1).

It would be interesting to know whether the log log t factors can be removed. One way to

obtain this is to improve Lemma 3.3. In this regard, we conjecture the following “higher-order”

isoperimetric property of the hypercube: Among all subgraphs of the d-cube on 2i vertices,

for every i ∈ N at least d1/3 say, the subcubes have the largest normalized9 edge expansion.

(One can also come up with an analogous isoperimetric conjecture for vertex expanders in the

hypercube.) Since a subcube on t = 2i vertices has normalized edge expansion 1/i = 1/ log t,

proving the above conjecture would mean that the additional log d factor in Lemma 3.3 is

unnecessary for t ≥ 2d
1/3

(without the lower bound on t, Lemma 3.3 is tight as witnessed by

K1,d). By the proof of Theorem 1, this would mean that the graphs Gn,k are such that the

log log t terms in (1) and (2) can in fact be replaced by O(k). Note that this is best possible,

as witnessed by the subgraph Gn,k itself.

Proving the above conjecture would essentially close the gaps in the applications mentioned in

Section 2, as k is chosen there to be either constant or grow arbitrarily small with n. For ex-

ample, this would imply that the nΩ(η/(log logn)2) bound on the threshold rank in Corollary 2.6

can be improved to a truly polynomial bound nΩ(η), thus showing that one cannot improve

the decomposition of [4] in order to approximate unique games in truly subexponential time

exp(no(1)).

• It is not hard to see that if every t-vertex subgraph H of a graph G satisfies sep(H) ≤
(t/ log t)(log log t)c then G can have at most O(n(log log n)c+1) edges. (Heuristically speaking,

the upper bound on the number of edges admits a recursion of the form f(n) ≤ 2f(n/2) +

(n/ log n)(log log n)c). We note that one can construct a graph G satisfying this requirement

(i.e., for any given c) using arguments similar to those used to prove Theorem 1, and in this

case the resulting graph would have Ω(n(log log n)c−1) edges. This means that, up to log log n

factors, the graph we construct in Theorem 1 has the maximum possible number of edges.

The situation for vertex separators, as in Theorem 3, is not so clear, so it would be interesting

to understand the maximum number of edges of n-vertex graphs in a hereditary family with

vertex separators of size at most (n/ log n)(log log n)c. Although we can construct such a

family F that contains n-vertex graphs with Ω(n(log log n)c−1) edges, we cannot rule out the

possibility of improving this to (say) n log n.

• Let us mention two problems that seem to be related to the types of problems studied here

but that (unfortunately) we cannot resolve. The first is a nice problem of G. Kalai. Suppose

9I.e., edge expansion divided by the subgraph’s average degree.

18



F is a hereditary family of graphs and that every graph in the family has a vertex separator of

size n/f(n). Then, how fast should f(n) grow so that F has only 2O(n) non-isomorphic graphs

on n vertices? It was shown in [10, 11] that f(n) ≥ log2+ε n suffices while f(n) ≤ log1−ε n

does not. Closing the gap between these bounds is still open.

The second problem is related to a graph decomposition result from a work of Pǎtraşcu

and Thorup [23]. They proved that the edge set of every graph can be decomposed into

b = O(log n) subsets E1, . . . , Eb so that for every 1 ≤ i ≤ b the graph spanned by E1, . . . , Ei
has “edge expansion” 1/ log n, where the notion of edge expansion used here is slightly different

from the (standard) one we used throughout this paper. It would be interesting to decide

whether the parameters in the construction of [23] are optimal.

Acknowledgment: We are grateful to Alex Samorodnitsky for very helpful discussions related to

this work.
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