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Abstract

A common theme in many extremal problems in graph theory is the relation between local and
global properties of graphs. One of the most celebrated results of this type is the Ruzsa-Szemerédi
triangle removal lemma, which states that if a graph is ε-far from being triangle free, then most
subsets of vertices of size C(ε) are not triangle free. Unfortunately, the best known upper bound
on C(ε) is given by a tower-type function, and it is known that C(ε) is not polynomial in ε−1.
The triangle removal lemma has been extended to many other graph properties, and for some of
them the corresponding function C(ε) is polynomial. This raised the natural question, posed by
Goldreich in 2005 and more recently by Alon and Fox, of characterizing the properties for which
one can prove removal lemmas with polynomial bounds.

Our main results in this paper are new sufficient and necessary criteria for guaranteeing that
a graph property admits a removal lemma with a polynomial bound. Although both are simple
combinatorial criteria, they imply almost all prior positive and negative results of this type.
Moreover, our new sufficient conditions allow us to obtain polynomially bounded removal lemmas
for many properties for which the previously known bounds were of tower-type. In particular, we
show that every semi-algebraic graph property admits a polynomially bounded removal lemma.
This confirms a conjecture of Alon.

1 Introduction

The relation between local and global properties of graphs lies at the core of many of the most
well studied problems in extremal graph theory. Perhaps the most natural problem of this type is
whether the fact that a graph is “far” from satisfying a property P implies that it does not satisfy it
locally. All graph properties we will consider in this paper are hereditary (i.e. closed under removal
of vertices). Note that for such properties, an induced subgraph of G that does not satisfy P is a
“witness” to the fact that G itself does not satisfy P. Thus, for such properties the problem can
be phrased as follows: can we deduce from the fact that G is far from satisfying some hereditary
property P that G contains a small subgraph which can witness this fact, and moreover, how many
such small witnesses does G contain?

Let us turn the above abstract problem into the concrete one we will study in this paper. We say
that a graph G on n vertices is ε-far from satisfying a property P if one needs to add/delete at least
εn2 edges in order to turn G into a graph satisfying P. The following is the local-vs-global problem
we will study in this paper.

Definition 1.1. Let P be a hereditary graph property. We say that P is testable if there is a
function fP(ε) : (0, 1)→ N so that for every graph G which is ε-far from satisfying P, a sequence of
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fP(ε) random vertices of G, sampled uniformly and independently, induces a graph which does not
satisfy P with probability at least 2/3. We say that P is easily testable if (the optimal such) fP(ε)
is polynomial in ε−1. If P is not easily testable then it is hard to test.

Let us mention two famous results in extremal graph theory which fall into the above framework.
The first is the celebrated triangle removal lemma of Ruzsa and Szemerédi [38], which is usually
stated as saying that if a graph G is ε-far from being triangle free, then G contains at least n3/f(ε)
triangles. It is easy to see that this statement is equivalent to asserting that the property of being
triangle free is testable per Definition 1.1 with a similar bound. The original proof of the triangle
removal lemma relied on Szemerédi’s regularity lemma [40], which supplied tower-type upper bounds
for f(ε). Due to its intrinsic interest, as well as its relation to other fundamental combinatorial
problems, a lot of effort was put into improving this tower-type bound. Unfortunately, the best
known upper bound, due to Fox [19], is still a tower-type function. At the other direction, it is
known that triangle freeness is not easily testable [38], but the corresponding super polynomial lower
bound on f(ε) is very far from the tower-type upper bound (see e.g. Theorem 4 for a similar bound).

A second classical theorem which falls into the framework of Definition 1.1 is a theorem of Rödl
and Duke [34], which states that if G is ε-far from being 3-colorable then G contains a non 3-colorable
subgraph on f(ε) vertices. Actually, a close inspection of the proof in [34] reveals that it in fact shows
that 3-colorability is testable. Just as in the case of the triangle removal lemma discussed above, the
original proof in [34] relied on the regularity lemma and thus supplied only tower-type upper bounds
for f(ε). However, the situation of this problem changed dramatically when Goldreich, Goldwasser
and Ron [24] obtained a new proof of the Rödl-Duke theorem, which avoided the use of the regularity
lemma and supplied a polynomial upper bound for f(ε), thus showing that 3-colorability is easily
testable. Actually, the authors of [24] proved a more general result, showing that every so called
“partition property” is easily testable.

We now pause for a moment and make two observations regarding Definition 1.1. We first observe
that showing that a hereditary property P is testable per Definition 1.1 is equivalent to proving a
removal lemma for P, that is, to proving that if G is ε-far from satisfying P then G contains at least
nh/gP(ε) induced copies of some graph H 6∈ P on h ≤ hP(ε) vertices. As it turns out, it will be more
convenient to work with Definition 1.1, especially when dealing with hereditary properties that cannot
be characterized by a finite number of forbidden induced subgraphs. The second observation, is that
the notion of testability from Definition 1.1 has an interesting algorithmic implication. Suppose we
want to design an algorithm that will distinguish with some constant probability, say 2/3, between
graphs satisfying P and graphs that are ε-far from satisfying it. An immediate corollary of the fact
that a property is testable, is that one can solve the above relaxed decision problem in time that
depends only on ε and not on the size of the input. Indeed, all the algorithm has to do is sample
fP(ε) vertices and check if the induced subgraph spanned by these vertices satisfies P. Such an
algorithm is called a property tester, hence the name we used in Definition 1.1. This notion of testing
graph properties was introduced by Goldreich, Goldwasser and Ron [24]. Following [24], numerous
other property testing algorithms were designed in various other combinatorial settings.

Given the fact that some hereditary properties are testable, and in light of the algorithmic ap-
plications mentioned in the previous paragraph, it is natural to ask which hereditary properties
are testable. This question was answered by Alon and Shapira [8] who proved that in fact every
hereditary property is testable. This result was later reproved by Lovász and Szegedy [32], and
generalized to the setting of hypergraphs by Rödl and Schacht [35] and by Austin and Tao [12].
Unfortunately, since all these proofs relied on some form of Szemerédi’s regularity lemma [40], the
bounds involved are of tower-type. It was also shown in [10] that there are cases where bounds of
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this type are unavoidable. However, the examples involved rely on ad-hoc constructions of families
of forbidden subgraphs.

It is thus natural to ask which hereditary graph properties are easily testable, or at least which
“natural” hereditary properties are easily testable. In other words, for which properties can we prove
a removal lemma while avoiding the use of the regularity lemma. This problem was raised in 2005
by Goldreich [23] and recently also by Alon and Fox [6]. Our main results in this paper address
this problem by giving very simple yet general combinatorial sufficient and necessary conditions for
a hereditary property to be easily testable. In particular, we obtain polynomially bounded removal
lemmas for many natural graph properties for which it was not previously known how to obtain a
removal lemma without using the regularity lemma.

1.1 The case of finitely many forbidden subgraphs

From this point on, it will be more natural to think of a hereditary property in terms of its forbidden
subgraphs. Given a family of graphs F , let P∗F be the property of being induced F-free, i.e. not
containing an induced copy of each of the graphs of F . When F consists of a single graph F we
will use the notation P∗F . Note that the family of properties P∗F is precisely the family of hereditary
properties.

In this subsection we describe our new results concerning hereditary properties which can be
characterized by forbidding a finite number of induced subgraphs, that is, the properties P∗F with F
being a finite set. We will describe both a sufficient and a necessary condition that a finite family of
graphs needs to satisfy in order to guarantee that P∗F is easily testable, starting with the former.

We say that a graph F is co-bipartite if V (F ) can be partitioned into two cliques, and say that
F is a split graph if V (F ) can be partitioned into two sets, one spanning a clique and the other
spanning an independent set. Our main positive result regarding finite families is the following
simple combinatorial condition, guaranteeing that P∗F is easily testable.

Theorem 1. If F is a finite family of graphs that contains a bipartite graph, a co-bipartite graph
and a split graph then P∗F is easily testable.

We now mention some immediate applications of Theorem 1, starting with known results that
follow as special cases of Theorem 1. Let Pk denote the path on k vertices. Alon and Shapira [7]
proved that P∗P3

is easily testable by relying on the fact that a graph satisfies P∗P3
if and only if it is a

disjoint union of cliques. Observing that P3 is bipartite, co-bipartite and split, Theorem 1 gives the
same result. In the same paper [7], it was shown that for any F other than P2, P3, P4, C4 and their
complements, the property P∗F is not easily testable. The two cases that were left open were P∗P4

and P∗C4
. The case of P∗P4

was settled only very recently by Alon and Fox [6] who used the structural
characterization of induced P4-free graphs in order to show that P∗P4

is easily testable. As in the
case of P3, since P4 is bipartite, co-bipartite and split, Theorem 1 gives the result of Alon and Fox
[6] as a special case. Finally, a famous theorem of Alon [2] states that the property of being (not
necessarily induced) F -free is easily testable if and only if F is bipartite. It is easy to see that the
‘if part’ of this theorem follows immediately from Theorem 1. Indeed, this follows from the simple
observation that being F -free is equivalent to satisfying P∗F , where F consists of all supergraphs of
F on |V (F )| vertices.

Let us turn to derive some new testability results from Theorem 1. It is well known that the
property of being a line graph is equivalent to P∗F , where F is a family of 9 graphs, each having at
most 6 vertices (see [29]). One of these graphs is K1,3, which is both bipartite and split, and another
one is a complete graph on 5 vertices minus a single edge, which is co-bipartite. Hence, Theorem 1
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implies that the property of being a line graph is easily testable. Two other graph properties which
can be shown to be easily testable via Theorem 1 are being a threshold graph and a trivially perfect
graph. Since both properties are equivalent to P∗F for an appropriate finite F , where in both cases
P4 ∈ F (see [26, 27]), we immediately deduce from Theorem 1 that both are easily testable.

We now turn to describe our necessary condition for being easily testable. Recall that our sufficient
condition from Theorem 1 asks F to contain a bipartite graph, a co-bipartite graph and a split graph.
The next theorem shows that having at least one bipartite graph and at least one co-bipartite graph
is a necessary condition.

Theorem 2. Let F be a finite family for which P∗F is easily testable. Then F contains a bipartite
graph and a co-bipartite graph.

As we mentioned above, Alon [2] proved that being F -free is easily testable if and only if F is
bipartite. It is now easy to see that the ‘only if’ part of Alon’s result follows from Theorem 2. As we
mentioned above, Alon and Shapira [7] proved that P∗F is not easily testable for every F other than
P2, P3, P4, C4 and their complements. Again, this result follows as a special case of Theorem 2.

Having given both a necessary and a sufficient condition, it is natural to ask if one of them in fact
characterizes the finite families F for which P∗F is easily testable. Unfortunately, none do. It is known
that being a split graph is equivalent to P∗F where F = {C5, C4, C4} (see [26]). While F does not
satisfy the condition of Theorem 1 (it does not contain a split graph), the property of being a split
graph is easily testable since it is one of the partition properties that were shown to be easily testable
in [24]. Therefore, the sufficient condition in Theorem 1 is not necessary. Showing that the necessary
condition of Theorem 2 is not sufficient is a bit harder, and is stated in the following theorem.

Theorem 3. There is a bipartite F1 and a co-bipartite F2 such that P∗{F1,F2} is not easily testable.

Thus the above theorem also implies that in Theorem 1 we cannot drop the requirement that F
should contain a split graph. The fact that we cannot drop the requirement that F should contain a
bipartite graph follows from [38] where it was (implicitly) proved that triangle-freeness is not easily
testable. By symmetry, the same holds for the co-bipartite graph.

We conclude our discussion on the case of finite forbidden families with the following theorem,
which turns out to be the key step in the proof of Theorem 2. We will comment on the importance
of this theorem in Subsection 1.3.

Theorem 4. For every h ≥ 3 there is ε0 = ε0(h) such that the following holds for every ε < ε0 and
for every non-bipartite graph H on h vertices. For every n ≥ n0(ε) there is a graph on n vertices
which is ε-far from being induced H-free and yet contains at most εΩ(log(1/ε))nh (not necessarily
induced) copies of H.

1.2 The case of infinitely many forbidden subgraphs

We now turn to consider properties P∗F when F is a (possibly) infinite family. We start by introducing
an important feature of a hereditary graph property.

Definition 1.2. Let F be a graph with vertex set V (F ) = {1, . . . , p} and let g : V (F )→ {0, 1}. We
say that a graph G is a g-blowup of F if G admits a vertex partition V (G) = P1 ∪ · · · ∪ Pp with the
following properties.

1. For every 1 ≤ i < j ≤ p, if (i, j) ∈ E(F ) then (Pi, Pj) is a complete bipartite graph, and if
(i, j) /∈ E(F ) then (Pi, Pj) is an empty bipartite graph.
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2. For every 1 ≤ i ≤ p, if g(i) = 1 then Pi is a clique and if g(i) = 0 then Pi is an independent set.

Definition 1.3. We say that a graph property P is closed under blowups if for every graph F which
satisfies P there is a function g : V (F )→ {0, 1} such that every g-blowup of F satisfies P.

Our main result regarding hereditary properties characterized by an infinite family of forbidden
subgraphs F is the following.

Theorem 5. Let F be a graph family such that

1. F contains a bipartite graph, a co-bipartite graph and a split graph.

2. P∗F is closed under blowups.

Then P∗F is easily testable.

We now describe what we consider the most important result of this paper. Let us recall the
definition of a semi-algebraic graph property. A semi-algebraic graph property P is given by an
integer k ≥ 1, a set of real 2k-variate polynomials f1, . . . , ft ∈ R[x1, . . . , x2k] and a Boolean function
Φ : {true, false}t → {true, false}. A graph G satisfies the property P if one can assign a point pv ∈ Rk
to each vertex v ∈ V (G) in such a way that a pair of distinct vertices u, v are adjacent if and only if

Φ
(
f1(pu, pv) ≥ 0, . . . , ft(pu, pv) ≥ 0

)
= true.

In the expression fi(pu, pv), we substitute pu into the first k variables of fi and pv into the last k
variables of fi. In what follows, we call the points pv witnesses1 to the fact that G satisfies P.

Some examples of semi-algebraic graph properties are those that correspond to being an intersec-
tion graph of certain semi-algebraic sets in Rk. For example, a graph is an interval graph if one can
assign an interval in R to each vertex so that u, v are adjacent iff their intervals intersect. Similarly,
a graph is a unit disc graph if it is the intersection graph of unit discs in R2.

The family of semi-algebraic graph properties has been extensively studied by many researchers,
see e.g. [22] and its references. Alon [3] conjectured that every semi-algebraic graph property is
easily testable. As we now show, this conjecture can be easily derived from Theorem 5.

Theorem 6. Every semi-algebraic graph property is easily testable.

Proof. (sketch) Fix a semi-algebraic graph property P. Let F be the family of all graphs which do
not satisfy P. As P is a hereditary property, we have P = P∗F . To prove the theorem, it is enough to
show that P = P∗F satisfies Conditions 1 and 2 in Theorem 5. The fact that F satisfies Condition 1 of
Theorem 5 follows directly from the well known fact that every graph satisfying P has a bounded VC-
dimension (we will give the definition of the VC-dimension of a graph in the detailed proof of Theorem
6, see Subsection 2.2). As for Condition 2, assume F satisfies P, and {pv : v ∈ V (F )} are points

witnessing this fact. Then setting g(v) = 1 if and only if Φ
(
f1(pv, pv) ≥ 0; . . . ; ft(pv, pv) ≥ 0

)
= true,

it is easy to see that every g-blowup of F satisfies P. Indeed, the points witnessing the fact that
a g-blowup of F satisfies P are obtained by taking each of the points pv an appropriate number of
times. �

1Note that a graph G might have many assignments of points witnessing the fact that it satisfies P.
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The reader can find a more detailed proof of Theorem 6 in Subsection 2.2. Returning to the
discussion at the beginning of the paper, observe that an immediate corollary of Theorem 6 is that
for every semi-algebraic graph property P there is c = c(P), so that if G is ε-far from satisfying P
(and ε is small enough), then G contains a subgraph on ε−c vertices which does not satisfy P.

The concept of VC-dimension (implicitly) plays a key role in our proofs of Theorems 1, 5 and 6
(see [11, Chapter 14] for an overview of this concept). In fact, as we (implicitly) show later in the
paper, a hereditary property P satisfies Condition 1 of Theorem 5 (i.e., it forbids a bipartite graph,
a co-bipartite graph and a split graph), if and only if it has bounded VC dimension2, in the sense
that the VC-dimension of any graph satisfying P is bounded from above by some constant depending
only on P. Another aspect of the role played by VC-dimension in our results is the fact that the
main tool we use, i.e. the “conditional” regularity lemma of [5] (stated here as Lemma 2.7), can be
roughly stated as saying that graphs with bounded VC-dimension have small and highly-structured
regular partitions (see [31] for a similar result). The proof of this lemma in [5] uses properties of
VC-dimension.

It is worth mentioning that by now there are several works concerning efficient (i.e. polynomial)
regularity lemmas for special classes of graphs, such as graphs with bounded VC-dimension [5,
31] (which, as mentioned above, play a key role in the present paper); semi-algebraic graphs and
hypergraphs [21, 22, 41] and more generally distal graphs [15, 16, 39]; and graphs excluding an
induced bipartite half-graph [33].

Given Theorem 1, it is natural to ask if Condition 1 in Theorem 5 already guarantees that a
property is easily testable. In light of the above discussion, this is equivalent to the (aesthetically
pleasing) statement that every hereditary property of bounded VC dimension is easily testable. As
our final theorem shows, this is regretfully not the case.

Theorem 7. There is a family of graphs F that contains a bipartite graph, a co-bipartite graph and
a split graph, for which P∗F is not easily testable.

1.3 Some nuggets about the proofs

We start with some comments regarding the proofs of Theorems 1 and 5. One key observation needed
for these proofs is that given a bipartite graph A1, a co-bipartite graph A2, and a split graph A3,
there is a bipartite graph B on vertex sets X,Y , so that no matter which graphs one puts on X
and on Y , one always gets a graph containing an induced copy of either A1, A2 or A3 (see Lemma
2.2). This means that if F satisfies the assumption of Theorem 1 and G satisfies P∗F then G has
no induced copy of any graph obtained by adding edges to the two partition classes of B. If this
is the case, then one can apply a “conditional regularity lemma” of Alon, Fischer and Newman [5]
in order to find a highly structured partition of G (even more structured than the one produced by
the regularity lemma [40]) which is of size only poly(1/ε). This is in sharp contrast to the general
argument of [8] that relied on Szemerédi’s regularity lemma [40] which can only produce partitions of
size Tower(1/ε), see [28]. The proof of Theorem 5 is more involved, mainly due to having to handle
an infinite number of forbidden subgraphs. What usually considerably complicates proofs of this
type is the need to embed multiple vertices into the same cluster of the partition mentioned above.
The difficulty arises from the fact that clusters of the partition are not highly structured (as opposed
to the bipartite graphs between them). However, when dealing with properties satisfying Condition

2What we show (see Lemma 2.2) is that Condition 1 of Theorem 5 implies that every graph G satisfying P has no
induced bipartite copy of some k × k bipartite graph. It is easy to see that this in turn implies that such a G has VC
dimension at most 2k.
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2 of Theorem 5, it is enough to embed at most one vertex into each cluster. This feature is what
makes it possible to prove Theorem 5.

As we mentioned above, the construction described in Theorem 4 is the key step in the proof of
Theorem 2. Let us explain why in Theorem 4 we managed to overcome a difficulty that was not
resolved in previous works. Alon’s result [2] that being F -free is not easily testable for non-bipartite
F relied on a construction of a graph that is ε-far from being F -free yet contains only εc log(1/ε)nv(F )

copies of F . He further asked for which F the property P∗F is easily testable. The reason why the
construction in [2] did not imply that P∗F is hard for every non-bipartite F (or a complement of
one) was that it did not produce a graph that is ε-far from being induced F -free. In fact, in most
cases the graph was induced F -free. So what we do in Theorem 4 is reprove the result of [2] in a
way that simultaneously resolves the open problem raised in that paper. To prove Theorem 4 we
too use a construction based on Behrend’s [13] example of a large set of integers S without 3-term
arithmetic progressions, but with the following twist. First, we take a set S that does not contain
a (non-trivial) solution to any convex3 linear equation with small coefficients. Second, we carefully
label the vertices/clusters in this construction in such a way that any copy of H in the construction
will necessarily contain a monotone cycle, i.e. a cycle whose labels increase in value. This property
guarantees that such a cycle corresponds to a solution of a convex linear equation with integers from
S, but we know that S has no such solution.

1.4 Organization

The rest of the paper is organized as follows. In Section 2 we prove Theorems 1 and 5. We also give
a more detailed proof of Theorem 6 in Subsection 2.2. In Section 3 we prove Theorems 2, 3, 4 and 7.

2 Easily Testable Properties

In this section we prove Theorems 1 and 5. Throughout the section, we assume that n, the number of
vertices of the host graph G, is large enough (as a function of the other parameters, i.e. the property
P and the approximation parameter ε). We note that the minimal n for which our arguments work
is (only) polynomial in 1/ε (where the polynomial depends on P). To keep the presentation clean,
we will often implicitly assume4 that n is divisible by various integers which are bounded from above
by a function of P and ε (which is polynomial in 1/ε). We start with some preliminary definitions.
Let G be a graph on n vertices. For a set X ⊆ V (G), we denote by G[X] the subgraph of G induced
by X. We say that X is homogeneous if it is either a clique or an independent set.

For a pair of disjoint sets X,Y ⊆ V (G), let e(X,Y ) denote the number of edges with one endpoint

in X and one endpoint in Y , and set d(X,Y ) = e(X,Y )
|X||Y | . The number d(X,Y ) is called the density of

the pair (X,Y ). Note that d(X,Y ) = 1 (resp. d(X,Y ) = 0) if and only if the bipartite graph between
X and Y is complete (resp. empty). We say that the pair (X,Y ) is homogeneous if either d(X,Y ) = 1
or d(X,Y ) = 0. For δ ∈ (0, 1), we say that (X,Y ) is δ-homogeneous if either d(X,Y ) ≥ 1 − δ or
d(X,Y ) ≤ δ. In cases where we consider several graphs at the same time, we write dG(X,Y ) to refer

to the density in G. The weight of (X,Y ) is defined as |X||Y |
n2 .

Let U = {U1, . . . , Ur} be a vertex-partition of G, i.e. V (G) = U1 ] · · · ] Ur. We say that U is an
equipartition if ||Ui| − |Uj || ≤ 1 for every 1 ≤ i, j ≤ r. Evidently, if r divides n (which we will assume

3A linear equation is convex if it is of the form a1x1 + . . .+ akxk = (a1 + . . .+ ak)xk+1 with all ai > 0.
4if one wishes to discard this assumption, then it may be necessary to slightly change some of the constants chosen

in the course of the proofs appearing in this section.
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to be the case, as mentioned above) then all parts U1, . . . , Ur have the same size. We say that U is
δ-homogeneous if the sum of weights of non-δ-homogeneous pairs (Ui, Uj), 1 ≤ i 6= j ≤ r, is at most
δ. Note that if all parts in U have the same size then U is δ-homogeneous if and only if the number
of (ordered) non-δ-homogeneous pairs (Ui, Uj) is at most δr2.

We will need the following well-known quantitative version of Ramsey’s theorem.

Claim 2.1 (see e.g. [14]). Every graph on 4k vertices contains a homogeneous set of size k.

Let H = (S ∪ T,E) be a bipartite graph. A completion of H is any graph on V (H) that agrees
with H on the edges between S and T . In other words, a completion of H is any graph obtained
by putting two arbitrary graphs on the sets S and T . We say that H is a bipartite obstruction for a
graph property P if no completion of H satisfies P. The first ingredient in the proofs of Theorems
1 and 5 is the following lemma.

Lemma 2.2. Let F be a graph family. Then P∗F admits a bipartite obstruction if and only if F
contains a bipartite graph, a co-bipartite graph and a split graph.

Proof. We start with the “only if”-direction of the lemma. Let H be a bipartite obstruction for
P∗F with sides S and T . By putting empty graphs on S and T we get a bipartite graph that does
not satisfy P∗F . This bipartite graph must then contain as an induced subgraph some element of F ,
which is evidently also bipartite. This shows that F contains a bipartite graph. Similarly, by putting
complete graphs on S and T (resp. a complete graph on S and an empty graph on T ) we infer that
F contains a co-bipartite (resp. split) graph, as required.

We now prove the “if”-direction of the lemma. Let F1, F2, F3 ∈ F be such that F1 is bipartite,
F2 is co-bipartite and F3 is split, and write V (F1) = P1 ∪ Q1, V (F2) = P2 ∪ Q2, V (F3) = P3 ∪ Q3,
where P1, Q1, P3 are independent sets and P2, Q2, Q3 are cliques. Put f := v(F1) + v(F2) + 2v(F3),
and let h be some large integer, to be chosen later. Let H = (S ∪ T,E) be a random bipartite graph
with |S| = |T | = h; that is, for each s ∈ S, t ∈ T , the edge (s, t) is included in H with probability 1

2 ,
independently. We will show that with positive probability, H is a bipartite obstruction for F , thus
proving the lemma. Let us set

r :=

⌊
h− 4f

f

⌋
.

An (f, r)-family is a 2r-tuple (S1, ..., Sr;T1, ..., Tr) such that S1, ..., Sr (resp. T1, ..., Tr) are pairwise-
disjoint subsets of S (resp. T ) of size f each. The number of ways to choose an (f, r)-family is exactly(

h!

(f !)r(h− fr)!

)2

≤ h2h.

We need the following definition. Let F and H be graphs and let V (F ) = P ∪Q and V (H) = S∪T
be vertex-partitions. An induced bipartite copy of F [P,Q] in H[S, T ] is an injection ϕ : V (F )→ V (H)
such that ϕ(P ) ⊆ S, ϕ(Q) ⊆ T and for every p ∈ P and q ∈ Q we have (p, q) ∈ E(F ) if and only if
(ϕ(p), ϕ(q)) ∈ E(H).

For an (f, r)-family Q = (S1, ..., Sr;T1, ..., Tr) and for (i, j) ∈ [r]2, let AQ(i, j) be the event that
H[Si, Tj ] contains induced bipartite copies of F1[P1, Q1], F2[P2, Q2], F3[P3, Q3] and F3[Q3, P3]. We
claim that for every completion H ′ of H, if Si and Tj are homogeneous sets in H ′ and AQ(i, j)
happened, then H ′ is not induced F-free (and hence does not satisfy P∗F ). Indeed, if Si, Tj are
independent sets (in H ′) then H ′[Si ∪Tj ] contains an induced copy of F1; if Si, Tj are cliques (in H ′)
then H ′[Si ∪Tj ] contains an induced copy of F2; and if Si is a clique and Tj is an independent set or
vice versa, then H ′[Si ∪ Tj ] contains an induced copy of F3.
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Now let A be the event that for every (f, r)-family Q, there is a pair (i, j) ∈ [r]2 for which AQ(i, j)
happened. We now show that if A happened then H is a bipartite obstruction for F . We will then
show that A happens with positive probability. Let H ′ be a completion of H. By repeatedly applying
Claim 2.1, we extract from S pairwise-disjoint homogeneous sets S1, S2, . . . , Sr of size f each. This
is possible due to our choice of r. Similarly, we extract from T pairwise-disjoint homogeneous sets
T1, T2, . . . , Tr of size f each. Consider the (f, r)-family Q = (S1, ..., Sr;T1, ..., Tr). Since A happened,
there is (i, j) ∈ [r]2 for which AQ(i, j) happened. Since Si and Tj are homogeneous in H ′, we get
that H ′ does not satisfy P∗F , as required.

So it remains to show that P[A] > 0. Let Q = (S1, ..., Sr;T1, ..., Tr) be an (f, r)-family. Since
|Si| = |Tj | = f = v(F1) + v(F2) + 2v(F3), it is possible to put a bipartite graph on (Si, Tj) that will
contain induced bipartite copies of F1[P1, Q1], F2[P2, Q2], F3[P3, Q3] and F3[Q3, P3]. This implies
that P [AQ(i, j)] ≥ 2−f

2
. Since the events {AQ(i, j) : i, j ∈ [r]} are independent, the probability that

AQ(i, j) did not happen for any (i, j) ∈ [r]2 is at most
(
1 − 2−f

2)r2 ≤ e−2−f
2
r2 < h−2h, with the

rightmost inequality holding provided that we choose h to be large enough (see our choice of r).
Recall that there are at most h2h ways to choose an (f, r)-family Q. By the union bound over all
(f, r)-families, we get P[Ac] < 1, as required. This completes the proof. �

An induced bipartite copy of a bipartite graph H = (S ∪ T,E) in a graph G is an injection
ϕ : V (H) → V (G) such that for every s ∈ S and t ∈ T we have (s, t) ∈ E(H) if and only if
(ϕ(s), ϕ(t)) ∈ E(G). Notice that there is no restriction on the subgraphs of G induced by ϕ(S) or
by ϕ(T ) (in other words, the definition only “cares” about the edges between ϕ(S) and ϕ(T )).

The following lemma is the main tool used in the proofs of Theorems 1 and 5. It is worth
noting that the idea of taking a regular partition and a refinement thereof (with a better measure of
regularity) was first introduced in [4]. This approach, tailored to regularity lemmas with polynomial
bounds, was also applied in [20, 22].

Lemma 2.3. There are functions ρ2.3 : N × (0, 1) → (0, 1) and ζ2.3 : N2 × (0, 1)2 → (0, 1) such
that5 ρ2.3(h, δ) = poly(δ), ζ2.3(h,m, δ, γ) = poly(δ, γ), and the following holds for every pair of
integers h,m ≥ 1, for every γ, δ ∈ (0, 1) and for every h × h bipartite graph H. Every graph G
on n ≥ n0(h,m, δ, γ) = poly(1/δ, 1/γ) vertices either contains at least ζ2.3(h,m, δ, γ)n2h induced
bipartite copies of H or satisfies the following. There is an equipartition U = {U1, ..., Ur} of G with
δ−1 ≤ r ≤ ρ2.3(h, δ)−1 parts, and for each 1 ≤ i ≤ r there is a set Wi ⊆ Ui and pairwise-disjoint sets
Wi,1, . . . ,Wi,m ⊆Wi satisfying

1. For all but at most δr2 of the pairs 1 ≤ i < j ≤ r, it holds that (Ui, Uj) is δ-homogeneous and
|d(Wi,Wj)− d(Ui, Uj)| ≤ 1

4 .

2. For every 1 ≤ i < j ≤ r, (Wi,Wj) is γ-homogeneous and |d(Wi,s,Wj,t) − d(Wi,Wj)| ≤ γ for
every 1 ≤ s, t ≤ m.

3. For every 1 ≤ i ≤ r, either d(Wi,s,Wi,t) ≥ 1− γ for every 1 ≤ s < t ≤ m or d(Wi,s,Wi,t) ≤ γ
for every 1 ≤ s < t ≤ m.

4. |Wi,s| ≥ n · ζ2.3(h,m, δ, γ) for every 1 ≤ i ≤ r and 1 ≤ s ≤ m.

5By ρ2.3(h, δ) = poly(δ) we mean that ρ2.3(h, δ) is at least polynomial in δ. The particular polynomial may (and
usually will) depend on h, but we omit this from the notation because in what follows, h will depend only on the
property P (and not on ε). Similarly, ζ2.3(h,m, δ, γ) = poly(δ, γ) means that ζ2.3(h,m, δ, γ) is (at least) polynomial in
δ, γ, where the polynomial may depend on h,m.
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The last tool we need in the proofs of Theorems 1 and 5 is the following counting lemma.

Lemma 2.4. Let F be a graph, say with vertex-set V (F ) = {1, . . . , `}, and let λ ∈ (0, 1). Let
W1, ...,W` be pairwise-disjoint vertex sets in an n-vertex graph G such that

1. For every 1 ≤ i < j ≤ `, if (i, j) ∈ E(F ) then d(Wi,Wj) ≥ 1 − 1
2`2

and if (i, j) /∈ E(F ) then
d(Wi,Wj) ≤ 1

2`2
.

2. |Wi| ≥ λn for every 1 ≤ i ≤ `.

Then with probability at least 2
3 , a random sequence of 12`/λ vertices of G, sampled uniformly and

independently, contains an induced copy of F .

Proof. For each 1 ≤ i ≤ `, sample a vertex wi ∈Wi uniformly at random. For every 1 ≤ i < j ≤ `,
the assumption of the lemma gives that with probability at least 1 − 1

2`2
, if (i, j) ∈ E(F ) then

(wi, wj) ∈ E(G) and if (i, j) /∈ E(F ) then (wi, wj) /∈ E(G). By the union bound over all pairs

1 ≤ i < j ≤ ` we get that with probability at least 1 −
(
`
2

)
/2`2 ≥ 3

4 , the set {w1, . . . , w`} spans an
induced copy of F in which wi plays the role of i.

Now let u1, . . . , us ∈ V (G) be a random sequence of vertices, sampled uniformly and indepen-
dently, where s = 12`/λ. Let A be the event that U := {u1, . . . , us} contains a vertex of Wi

for every 1 ≤ i ≤ `. What we proved in the previous paragraph implies that conditioned on A
happening, G[U ] contains an induced copy of F with probability at least 3

4 . Hence, to finish the
proof it is enough to show that P[Ac] ≤ 1

12 . For 1 ≤ i ≤ `, the probability that U ∩ Wi = ∅ is(
1− |Wi|

n

)s
≤ (1 − λ)s ≤ e−λs ≤ 1

12` . Here we used the assumption |Wi| ≥ λn and our choice of s.

By the union bound over all 1 ≤ i ≤ ` we get that P[Ac] ≤ 1
12 , as required. �

We are now ready to prove Theorems 1 and 5.

Proof of Theorem 1. Our goal is to prove that P∗F is testable per Definition 1.1 with fP(ε) =
poly(1/ε). By Lemma 2.2, P∗F has a bipartite obstruction H. We can assume (by adding additional
vertices if needed) that the two sides of H are of the same size, which we denote by h. We set
m := maxF∈F v(F ). Given ε < 1

2 , set

ζ := ζ2.3

(
h,m,

ε

3
,

1

4m2

)
,

noting that ζ = poly(ε) (as h and m depend only on P). Let G be an n-vertex graph which is ε-far
from being induced F-free. If G contains at least ζn2h induced bipartite copies of H, Then a random
sequence of 2h = |V (H)| vertices of G (sampled uniformly and independently) spans an induced
bipartite copy of H with probability at least ζ. Hence, a random sequence of 4h · ζ−1 = poly(1/ε)
vertices of G contains an induced bipartite copy of H with probability at least

1− (1− ζ)1/ζ ≥ 1− e−2 ≥ 2

3
.

Since H is a bipartite obstruction for P∗F , every graph which contains an induced bipartite copy of
H does not satisfy P∗F . So we see that the assertion of the theorem holds in the case that G contains
at least ζn2h induced bipartite copies of H

Suppose from now on that G contains less than ζn2h induced bipartite copies of H. We apply
Lemma 2.3 to G with parameters δ = ε

3 , γ = 1
4m2 and m as defined above, to get an equipartition
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U = {U1, ..., Ur}, sets Wi ⊆ Ui and pairwise-disjoint sets Wi,1, . . . ,Wi,m ⊆ Wi with the properties
stated in the lemma.

Let G′ be the graph obtained from G by making the following changes.

(a) For every 1 ≤ i < j ≤ r, if d(Wi,Wj) ≥ 1 − 1
4m2 then turn (Ui, Uj) into a complete bipartite

graph, and if d(Wi,Wj) ≤ 1
4m2 then turn (Ui, Uj) into an empty bipartite graph. By Item 2 in

Lemma 2.3, one of these options holds.

(b) For every 1 ≤ i ≤ r, if d(Wi,s,Wi,t) ≥ 1− 1
4m2 (resp. d(Wi,s,Wi,t) ≤ 1

4m2 ) for every 1 ≤ s < t ≤ m,
then turn Ui into a clique (resp. an independent set). By Item 3 in Lemma 2.3, one of these
options holds.

We claim that the number of edge-changes made in items (a)-(b) is less than εn2. To prove
this, we define H to be the set of pairs 1 ≤ i < j ≤ r for which (Ui, Uj) is ε

3 -homogeneous and
|d(Wi,Wj)−d(Ui, Uj)| ≤ 1

4 . Observe that if (i, j) ∈ H then at most ε
3 |Ui||Uj | edge-changes were made

in the bipartite graph (Ui, Uj) in Item (a) above; indeed, in the case that d(Wi,Wj) ≥ 1− 1
4m2 ≥ 3

4
we have d(Ui, Uj) ≥ 1

2 and hence actually d(Ui, Uj) ≥ 1 − ε
3 ; and the case that d(Wi,Wj) ≤ 1

4m2

is symmetrical. By Item 1 in Lemma 2.3, the number of pairs 1 ≤ i < j ≤ r not belonging
to H is at most ε

3r
2. It follows that the overall number of changes made in Item (a) is at most

|H| · ε3 ·
(
n
r

)2
+ ε

3r
2 ·
(
n
r

)2 ≤ 2ε
3 n

2. As for item (b), the number of edge-changes made there is at most

r
(
n/r
2

)
< n2

r ≤
ε
3n

2, where in the last inequality we used the fact that r ≥ 3
ε , which is guaranteed by

Lemma 2.3. In conclusion, the number of edge-changes made when turning G into G′ is less than εn2.

Since G is ε-far from being induced F-free, G′ must contain an induced copy of some F ∈ F .
Suppose without loss of generality that U1, . . . , Up are the parts of U which contain vertices of this
copy, and let Xi be the set of vertices of this copy which lie in Ui (for 1 ≤ i ≤ p). From the
definition of G′ it follows that the sets X1, . . . , Xp and the bipartite graphs (Xi, Xj), 1 ≤ i < j ≤ p,
are homogeneous. Note that by our choice of m we clearly have ` := v(F ) ≤ m, and in particular
|Xi| ≤ m for every 1 ≤ i ≤ p.

We now show that the sets Wi,s, where 1 ≤ i ≤ p and 1 ≤ s ≤ |Xi|, satisfy Condition 1 of
Lemma 2.4 (with respect to F ) in the graph G. First, for every 1 ≤ i ≤ p, if Xi is a clique
(resp. an independent set) then G′[Ui] is a clique (resp. an independent set), which implies that
dG(Wi,s,Wi,t) ≥ 1 − 1

4m2 ≥ 1 − 1
2`2

(resp. dG(Wi,s,Wi,t) ≤ 1
4m2 ≤ 1

2`2
) for every 1 ≤ s < t ≤ m

(see Item (b) above). Second, let 1 ≤ i < j ≤ p. If (Xi, Xj) is a complete bipartite graph then
dG′(Ui, Uj) = 1 and hence dG(Wi,Wj) ≥ 1 − 1

4m2 (by Item (a) above). Now Item 2 in Lemma
2.3 implies that dG(Wi,s,Wj,t) ≥ dG(Wi,Wj) − 1

4m2 ≥ 1 − 1
2m2 ≥ 1 − 1

2`2
for every 1 ≤ s, t ≤ m.

Similarly, if (Xi, Xj) is an empty bipartite graph then dG′(Ui, Uj) = 0 and hence dG(Wi,Wj) ≤ 1
4m2 .

This implies that dG(Wi,s,Wj,t) ≤ dG(Wi,Wj) + 1
4m2 ≤ 1

2m2 ≤ 1
2`2

for every 1 ≤ s, t ≤ m
We now apply Lemma 2.4 to the graph F , the sets Wi,s (where 1 ≤ i ≤ p and 1 ≤ s ≤ |Xi|) and

λ = ζ (noting that |Wi,s| ≥ ζn for every i, s, as guaranteed by Item 4 of Lemma 2.3). By Lemma
2.4, a sample of 12`

ζ ≤
12m
ζ = poly(1/ε) vertices from G contains an induced copy of F (and hence

does not satisfy P∗F ) with probability at least 2
3 . This completes the proof of the theorem. �

Proof of Theorem 5. By Lemma 2.2, P∗F has a bipartite obstruction H. We may and will assume
that both sides of H have the same size, h (as otherwise we can just add vertices to one of the sides).
Let ε < 1

2 , and set

γ :=
1

2
· ρ2.3

(
h,
ε

3

)2
,
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and
ζ := ζ2.3

(
h, 1,

ε

3
, γ
)
.

Note that γ = poly(ε) and hence also ζ = poly(ε).

Let G be an n-vertex graph which is ε-far from satisfying P∗F . If G contains at least ζn2h

induced bipartite copies of H, then, just as in the proof of Theorem 1, a random sequence of
4h · ζ−1 = poly(1/ε) vertices of G (sampled uniformly and independently) contains an induced
bipartite copy of H, and hence does not satisfy P∗F , with probability at least 2

3 . Thus, in this case
the required result holds.

Suppose, then, that G contains less than ζn2h induced bipartite copies of H. We apply Lemma 2.3
to G with parameters δ = ε

3 , γ defined as above and m = 1, to get an equipartition U = {U1, ..., Ur}
and sets Wi ⊆ Ui with the properties stated in the lemma.

Define a graph F on [r] as follows. For 1 ≤ i < j ≤ r, if d(Wi,Wj) ≥ 1− γ then (i, j) ∈ E(F ) and
if d(Wi,Wj) ≤ γ then (i, j) /∈ E(F ) (by Item 2 of Lemma 2.3, one of these options must hold). We
will show that F does not satisfy P∗F . Let us first complete the proof based on this fact. By Lemma
2.3 we have v(F ) = r ≤ ρ2.3(h, ε3)−1 = poly(1/ε) and hence γ ≤ 1

2r2
. So by the definition of F , the

sets W1, . . . ,Wr satisfy condition 1 of Lemma 2.4. By Item 4 of Lemma 2.3 we have |Wi| ≥ ζn for
every 1 ≤ i ≤ r. So Lemma 2.4 with λ = ζ implies that a sample of 12r/ζ = poly(1/ε) vertices of
G, sampled uniformly at random and independently, contains an induced copy of F , and hence does
not satisfy P∗F , with probability at least 2

3 .

It thus remains to show that F does not satisfy P∗F . Assume, by contradiction, that F satisfies
P∗F . Since P∗F is closed under blowups (recall Definition 1.3), there is a function g : V (F ) → {0, 1}
such that every g-blowup of F satisfies P∗F . Now let G′ be the graph obtained from G by making
the following changes.

(a) For every 1 ≤ i < j ≤ r, if (i, j) ∈ E(F ) then turn (Ui, Uj) into a complete bipartite graph and
if (i, j) /∈ E(F ) then turn (Ui, Uj) into an empty bipartite graph.

(b) For every 1 ≤ i ≤ r, if g(i) = 1 then turn Ui into a clique and if g(i) = 0 then turn Ui into an
independent set.

Since G′ is a g-blowup of F (see Definition 1.2), G′ satisfies P∗F . We now show that the number of
edge-changes made in Items (a)-(b) is less than εn2, which will stand in contradiction to the fact
that G is ε-far from satisfying P∗F .

The definitions of F and G′ imply the following: for every 1 ≤ i < j ≤ r, if the bipartite graph
(Ui, Uj) is complete (resp. empty) in G′ then dG(Wi,Wj) ≥ 1 − γ (resp. dG(Wi,Wj) ≤ γ). As in
the proof of Theorem 1, let H be the set of pairs 1 ≤ i < j ≤ r such that (Ui, Uj) is ε

3 -homogeneous
(in G) and such that |dG(Wi,Wj) − dG(Ui, Uj)| ≤ 1

4 . Observe that if (i, j) ∈ H then the number
of edge-changes made in the bipartite graph (Ui, Uj) is at most ε

3 |Ui||Uj |. Indeed, let (i, j) ∈ H
and suppose first that (Ui, Uj) is a complete bipartite graph in G′. Then dG(Wi,Wj) ≥ 1 − γ ≥ 3

4 ,
implying that dG(Ui, Uj) ≥ dG(Wi,Wj)− 1

4 ≥
1
2 . Hence actually dG(Ui, Uj) ≥ 1− ε

3 . The case that
(Ui, Uj) is an empty bipartite graph in G′ is symmetrical.

By Item 1 in Lemma 2.3, there are at most ε
3r

2 pairs 1 ≤ i < j ≤ r which are not in H. It follows

that the overall number of edge-changes made in Item (a) is at most |H| · ε3 ·
(
n
r

)2
+ ε

3r
2 ·
(
n
r

)2 ≤ 2ε
3 n

2.

As for item (b), the number of edge-changes made there is at most r
(
n/r
2

)
< n2

r ≤
ε
3n

2, where in the
last inequality we used the fact that r ≥ 3

ε (as guaranteed by Lemma 2.3). Thus, the overall number
of edge-changes made in Items (a)-(b) is less than εn2, as required. �
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2.1 Proof of Lemma 2.3

In this subsection we prove Lemma 2.3. This lemma is proved using a “conditional regularity lemma”
due to Alon, Fischer and Newman [5]. In order to state this result we first need some additional
definitions. Let A be an n×n matrix with 0/1 entries whose rows and columns are indexed by 1, ..., n.
For two sets R,C ⊆ [n], the block R×C is the submatrix of A whose rows are the elements of R and
whose columns are the elements of C. The density of the block R× C, denoted by d(R× C), is the
fraction of 1’s in the block. For δ ∈ (0, 1), we say that R×C is δ-homogeneous if either d(R×C) ≥ 1−δ
or d(R×C) ≤ δ. The weight of R×C is |R||C|

n2 . A partition of A is a pair (R, C), where R and C are
partitions of [n]. We think of R as a partition of the rows of A, and of C as a partition of the columns
of A. We say that (R, C) is δ-homogeneous if the sum of weights of non-δ-homogeneous blocks R×C,
where R ∈ R and C ∈ C, is at most δ. In the case that A is the adjacency matrix of a graph G, these
definitions are analogous to the definitions given in the beginning of Section 2. Indeed, every pair of
disjoint sets X,Y ⊆ V (G) = [n] satisfies d(X,Y ) = d(X × Y ) (where the quantity on the left-hand
side is the edge density in the bipartite graph with sides X,Y , and the quantity on the right-hand
side is the density of the block X × Y in A). Moreover, if P is a partition of [n] such that (P,P) is
a δ-homogeneous partition of A, then6 P is a δ-homogeneous partition of G.

A partition (R′, C′) is a refinement of a partition (R, C) if every block of R′ × C′ is contained in
some block of R× C. We will need the following two lemmas.

Lemma 2.5. Let δ ∈ (0, 1). If (R, C) is a δ2

2 -homogeneous partition of an n × n matrix A, then
every refinement of (R, C) is a δ-homogeneous partition of A.

Proof. Let (R′, C′) be a refinement of (R, C). Let N be the set of non-δ-homogeneous blocks of
(R′, C′). Our goal is to show that the sum of weights of blocks R′ × C ′ ∈ N is at most δ. Let N1

(resp. N2) be the set of blocks R′ × C ′ ∈ N that are contained in a δ2

2 -homogeneous (resp. non-
δ2

2 -homogeneous) block of (R, C). Since (R, C) is a δ2

2 -homogeneous partition, the sum of weights of

blocks R′×C ′ ∈ N2 is at most δ2

2 . Since N = N1 ∪N2 and δ
2 + δ2

2 ≤ δ, it is enough to show that the

sum of weights of blocks R′ × C ′ ∈ N1 is at most δ
2 .

Let R × C be a δ2

2 -homogeneous block of (R, C) and suppose without loss of generality that

d(R× C) ≤ δ2

2 (the case that d(R× C) ≥ 1− δ2

2 is symmetrical). Let R′1, . . . , R
′
k (resp. C ′1, . . . , C

′
`)

be the parts of R′ (resp. C′) which are contained in R (resp. C). By averaging we have

d(R× C) =

k∑
i=1

∑̀
j=1

|R′i||C ′j |
|R||C|

· d(R′i × C ′j).

By Markov’s inequality, the total weight of blocks R′i×C ′j for which d(R′i, C
′
j) > δ is less than δ

2 ·
|R||C|
n2 .

In conclusion, for every δ2

2 -homogeneous block R×C of (R, C) it holds that the total weight of blocks

R′ ×C ′ ∈ N1 contained in R×C is less than δ
2 ·
|R||C|
n2 . By summing over all δ2

2 -homogeneous blocks

of (R, C) we get that the total weight of blocks R′ × C ′ ∈ N1 is less than δ
2 , as required. �

Lemma 2.6. Let A be an n×n matrix, let δ ∈ (0, 1), let P0 be an equipartition of [n], and let (R, C)
be a δ2

8 -homogeneous partition of A. Then there is an equipartition U of [n] such that (U ,U) is a
δ-homogeneous partition of A, and such that U refines P0 and has r := d4/δe · |P0| · |R| · |C| parts.

6The other direction is not necessarily true, because the definition of a δ-homogeneous partition of a matrix takes
into account the “diagonal” blocks X ×X, while the definition of a δ-homogeneous partition of a graph does not.
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Proof. Let S be the common refinement ofR, C and P0, i.e. S = {R∩C∩P : R ∈ R, C ∈ C, P ∈ P0}.
Partition every S ∈ S into equal parts of size n

r and an additional part of size less than n
r . Denote

the resulting partition by T . For each P ∈ P0, let ZP be the union of all additional parts contained
in P , and note that |ZP | < |R| · |C| · nr . Set Z =

⋃
P∈P0

ZP , noting that |Z| ≤ |P0| · |R| · |C| · nr ≤
δn
4 .

As (T , T ) is a refinement of (R, C) and (R, C) is a δ2

8 -homogeneous partition of A, Lemma 2.5 (with
δ
2 in place of δ) implies that (T , T ) is a δ

2 -homogeneous partition of A.

Let U be the equipartition obtained from T by partitioning each of the sets ZP (P ∈ P0) into
parts of size n

r . It is clear that U refines P0 and has r parts. We claim that (U ,U) is a δ-homogeneous
partition of A. Observe that if X×Y is a non-δ-homogeneous block of (U ,U), then either X×Y is a
non-δ-homogeneous block of (T , T ), or one of the sets X,Y is contained in Z. Since |Z| ≤ δn

4 , the sum

of weights of blocks X × Y for which X or Y is contained in Z is at most 2|Z|n
n2 ≤ δ

2 . Combining this

with the fact that (T , T ) is δ
2 -homogeneous, we get that (U ,U) is δ-homogeneous, as required. �

Let B be a 0/1-valued h×h matrix. A copy of B in a matrix A is a sequence of rows r1 < · · · < rh
and a sequence of columns c1 < · · · < ch such that Ari,cj = Bi,j for every 1 ≤ i, j ≤ h. We are now
ready to state the Alon-Fischer-Newman Regularity Lemma.

Lemma 2.7 (Alon-Fischer-Newman [5]). There is a constant c0 such that the following holds for
every integer h ≥ 1 and δ ∈ (0, 1). For every 0/1-valued matrix A of size n × n with n > (h/δ)c0h,
either A has a δ-homogeneous partition (R, C) with |R|, |C| ≤ (h/δ)c0h, or for every 0/1-valued h×h
matrix B, A contains at least (δ/h)c0h

2

n2h copies of B.

The next lemma is an application of Lemma 2.7 to adjacency matrices of graphs. We assume that
the vertex set of the graph G is [n].

Lemma 2.8. There is a function ρ2.8 : N × (0, 1) → (0, 1) such that ρ2.8(h, δ) = poly(δ), and such
that for every integer h ≥ 1, for every h×h bipartite graph H = (S∪T,E) and for every δ ∈ (0, 1), the
following holds: let G be a graph on n ≥ n0 (h, δ) = poly(1/δ) vertices and let P0 be an equipartition
of V (G) = [n]. Then G either contains at least ρ2.8(h, δ)n2h induced bipartite copies of H or admits
a δ-homogeneous equipartition U which refines P0 and has at most |P0| · ρ2.8(h, δ)−1 parts.

Proof. We prove the lemma with ρ = ρ2.8(h, δ) := ( δ
2

8h)3c0h2 (where c0 is from Lemma 2.7). Let
A = A(G) be the adjacency matrix of G. Let B be the bipartite adjacency matrix of H; that is, B
is an h × h matrix, indexed by S × T , in which Bs,t = 1 if (s, t) ∈ E(H) and Bs,t = 0 otherwise.

Suppose first that A contains at least ( δ
2

8h)c0h
2
n2h copies of B. Observe that a copy of B which

does not intersect the main diagonal of A corresponds to an induced bipartite copy of H in G. The
number of h× h submatrices of A which intersect its main diagonal is O(n2h−1). Thus, G contains

at least ( δ
2

8h)c0h
2
n2h −O(n2h−1) ≥ ( δ

2

8h)2c0h2n2h ≥ ρn2h induced bipartite copies of H, as required.

Now suppose that A contains less than ( δ
2

8h)c0h
2
n2h copies of B. By Lemma 2.7, applied with

approximation parameter δ2

8 , A admits a δ2

8 -homogeneous partition (R, C) with |R| , |C| ≤ (8h
δ2

)c0h.
By Lemma 2.6, there is an equipartition U of [n] which refines P0, has

d4/δe · |P0| · |R| · |C| ≤ 8δ−1|P0| ·
(

8h

δ2

)2c0h

≤ |P0| ·
(

8h

δ2

)3c0h

≤ |P0| · ρ−1

parts, and satisfies that (U ,U) is a δ-homogeneous partition of A. This implies that U is a δ-
homogeneous partition of G. The lemma follows. �
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The following lemma is a “conditional” variant of a well-known corollary of Szemerédi’s regularity
lemma (see e.g. [4]).

Lemma 2.9. There is a function ζ2.9 : N2×(0, 1)→ (0, 1) such that ζ2.9(h,m, γ) = poly(γ), and such
that the following holds for every h,m ≥ 1, for every h×h bipartite graph H, and for every γ ∈ (0, 1).
Every graph G on n ≥ n0(h,m, γ) = poly(1/γ) vertices either contains at least ζ2.9(h,m, γ)n2h

induced bipartite copies of H or there are pairwise-disjoint subsets W1, . . . ,Wm ⊆ V (G) with the
following properties:

1. Either d(Wi,Wj) ≥ 1− γ for every 1 ≤ i < j ≤ m, or d(Wi,Wj) ≤ γ for every 1 ≤ i < j ≤ m.

2. |Wi| ≥ n · ζ2.9(h,m, γ) for every 1 ≤ i ≤ m.

Proof. Set δ := min{4−m−1, γ}. We prove the lemma with ζ = ζ2.9(h,m, γ) := 4−m−1 · ρ2.8(h, δ),
where ρ2.8 is from Lemma 2.8. We assume that G contains less than ζn2h (and hence also less
than ρ2.8(h, δ)n2h) induced bipartite copies of H and prove that the other alternative in the lemma
holds. Let P0 be an arbitrary equipartition of V (G) into 4m+1 parts. Apply Lemma 2.8 with δ as
defined above, to obtain a δ-homogeneous equipartition W of G which refines P0 and has at most
|P0| · ρ2.8(h, δ)−1 = 4m+1 · ρ2.8(h, δ)−1 = ζ−1 parts. Then every W ∈ W satisfies |W | ≥ ζn.

Set w := |W|, noting that w ≥ 4m+1 because W refines P0. Define an auxiliary graph J on the
set W in which (W,W ′) is an edge if and only if the pair (W,W ′) is δ-homogeneous. Since W is a
δ-homogeneous partition, we have

e(J) ≥
(
w

2

)
− δw2 ≥

(
w

2

)
− 4−m−1w2 >

(
1− 1

4m − 1

)
w2

2
.

By Turán’s Theorem (see e.g. [14]), there is a subsetW ′ ⊆ W of size |W ′| = 4m which spans a clique
in J . Then for every W,W ′ ∈ W ′, the pair (W,W ′) is δ-homogeneous and hence also γ-homogeneous.
Define a new graph on W ′ as follows: for W,W ′ ∈ W ′, put an edge between W and W ′ if and only
if d(W,W ′) ≥ 1 − γ (the other option being that d(W,W ′) ≤ γ). By Ramsey’s theorem (see Claim
2.1), this graph contains a homogeneous set of size m, which we denote by {W1, . . . ,Wm}. Then we
have either d(Wi,Wj) ≥ 1 − γ for every 1 ≤ i < j ≤ m, or d(Wi,Wj) ≤ γ for every 1 ≤ i < j ≤ m,
depending on whether {W1, . . . ,Wm} is a clique or an independent set. This completes the proof. �

We are now (almost) ready to prove Lemma 2.3. The last ingredient we will need is the following
simple claim, whose proof is straightforward and thus omitted.

Claim 2.10. Let γ, η ∈ (0, 1), let X,Y be disjoint vertex-sets and let X ′ ⊆ X, Y ′ ⊆ Y be such that
|X ′| ≥ (η/γ)1/2|X| and |Y ′| ≥ (η/γ)1/2|Y |. If (X,Y ) is η-homogeneous then |d(X ′, Y ′)−d(X,Y )| ≤ γ.

Proof of Lemma 2.3. Put

ρ :=
δ

2
· ρ2.8

(
h,
δ

5

)
,

η := min
{
ρ4, γ · ζ2.9(h,m, γ)2

}
,

ρ1 := ρ · ρ2.8(h, η),

ζ := min
{
ρ, ζ2.9(h,m, γ) · ρ2h

1 , (η/γ)1/2 · ρ1

}
,
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where ρ2.8 is from Lemma 2.8 and ζ2.9 is from Lemma 2.9. We prove the lemma with ρ2.3(h, δ) := ρ
and ζ2.3(h,m, δ, γ) := ζ. It is easy to check (using the guarantees of Lemmas 2.8 and 2.9) that ρ is
polynomial in δ, and that ζ is polynomial in δ and γ, as required.

We assume that G contains less than ζn2h induced bipartite copies of H and prove that the other
alternative in the statement of the lemma holds. Since ζ ≤ ρ ≤ ρ2.8(h, δ5), G contains less than

ρ2.8(h, δ5)n2h induced bipartite copies of H. Let P0 be an arbitrary equipartition of V (G) into d1/δe
parts. By Lemma 2.8 with approximation parameter δ

5 , there is a δ
5 -homogeneous equipartition

U = {U1, . . . , Ur} of G which refines P0, and satisfies

|U| = r ≤ |P0| · ρ2.8

(
h,
δ

5

)−1

≤ 2

δ
· ρ2.8

(
h,
δ

5

)−1

= ρ−1 = ρ2.3(h, δ)−1.

Note also that r ≥ δ−1, as U is a refinement of P0.

Since ζ ≤ ρ1 ≤ ρ2.8(h, η), our assumption in the beginning of the proof implies that G contains less
than ρ2.8(h, η)n2h induced bipartite copies of H. Thus, by Lemma 2.8 with approximation parameter
η and with P0 = U , G admits an η-homogeneous equipartition W that refines U and has at most
|W| ≤ |U| ·ρ2.8(h, η)−1 ≤ ρ−1 ·ρ2.8(h, η)−1 = ρ−1

1 parts. Hence, for every W ∈ W we have |W | ≥ ρ1n.

For each 1 ≤ i ≤ r define Wi = {W ∈ W : W ⊆ Ui}. Sample a part Wi ∈ Wi uniformly at
random. Let A1 be the event that all pairs (Wi,Wj) are η-homogeneous. By using the fact that
W is η-homogeneous, we get that for every 1 ≤ i < j ≤ r, the probability that (Wi,Wj) is not
η-homogeneous is at most

η|W|2

(|W|/|U|)2
= η|U|2 = ηr2 ≤ ηρ−2 ≤ ρ2.

Thus, by the union bound over all
(
r
2

)
< 1

2ρ2
pairs 1 ≤ i < j ≤ r, we get that P [A1] > 1

2 .

A pair 1 ≤ i < j ≤ r is called good if (Ui, Uj) is δ
5 -homogeneous and |d(Wi,Wj)− d(Ui, Uj)| ≤ 1

4 ;
otherwise (i, j) is called bad. Let A2 be the event that there are at most δr2 bad pairs. Note that
if A2 happened then Item 1 of the lemma is satisfied. We claim that P[A2] > 1

2 . To this end, note

that if (Ui, Uj) is δ
5 -homogeneous and |d(Wi,Wj)− d(Ui, Uj)| > 1

4 , then either d(Ui, Uj) ≥ 1− δ
5 and

d(Wi,Wj) <
3
4 , or d(Ui, Uj) ≤ δ

5 and d(Wi,Wj) >
1
4 ; in either case, the probability that this happens

is less than δ/5
1/4 = 4δ

5 . It follows that the expected number of pairs 1 ≤ i < j ≤ r for which (Ui, Uj) is
δ
5 -homogeneous but |d(Wi,Wj) − d(Ui, Uj)| > 1

4 , is less than 4δ
5

(
r
2

)
< 2δ

5 r
2. By Markov’s inequality,

the probability that there are more than 4δ
5 r

2 such pairs is smaller than 1
2 . Now, since all but at

most δ
5r

2 of the pairs (Ui, Uj) are δ
5 -homogeneous, our assertion that P[A2] > 1

2 follows. Thus, we
proved that P[Ai] > 1

2 for both i = 1, 2. This implies that P[A1 ∩ A2] > 0. From now on we fix a
choice of W1, . . . ,Wr for which both A1 and A2 happened.

Let 1 ≤ i ≤ r, and observe that G[Wi] contains less than ζ2.9(h,m, γ) · |Wi|2h induced bipartite
copies of H. Indeed, this follows from the fact that |Wi| ≥ ρ1n, the fact that ζ ≤ ζ2.9(h,m, γ) · ρ2h

1 ,
and our assumption that G contains less than ζn2h induced bipartite copies of H. So by Lemma 2.9,
applied to the graph G[Wi], there are pairwise-disjoint sets Wi,1, . . . ,Wi,m ⊆Wi such that

|Wi,s| ≥ ζ2.9(h,m, γ) · |Wi| ≥ (η/γ)1/2 · |Wi| ≥ (η/γ)1/2 · ρ1n ≥ ζn

for every 1 ≤ s ≤ m (where in the second inequality we used our choice of η), and such that either
d(Wi,s,Wi,t) ≥ 1 − γ for every 1 ≤ s < t ≤ m or d(Wi,s,Wi,t) ≤ γ for every 1 ≤ s < t ≤ m. This
establishes Item 3-4 of the lemma. Item 1 is guaranteed by our choice of W1, . . . ,Wr (i.e. by the
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assumption that A2 happened). It thus remains to establish Item 2. The fact that all pairs (Wi,Wj)
are γ-homogeneous follows from our assumption that A1 happened and the fact that η ≤ γ. Now
let 1 ≤ i < j ≤ r and 1 ≤ s, t ≤ m. Note that (Wi,Wj) is η-homogeneous (as A1 happened), and
that |Wi,s| ≥ (η/γ)1/2 · |Wi| and |Wj,t| ≥ (η/γ)1/2 · |Wj |. So by Claim 2.10 with X = Wi, Y = Wj ,
X ′ = Wi,s and Y ′ = Wj,t, we have |d(Wi,s,Wj,t)− d(Wi,Wj)| ≤ γ, as required. �

2.2 Detailed Proof of Theorem 6

Let P be a semi-algebraic graph property defined by polynomials f1, . . . , ft ∈ R[x1, . . . , x2k] and a
boolean function Φ : {true, false}t → {true, false}. Let F be the family of all graphs which do not
satisfy P. As P is a hereditary property, we have P = P∗F . To prove the theorem, we only need to
show that Conditions 1-2 of Theorem 5 are satisfied.

We start with Condition 1. The VC-dimension of a binary matrix A is the maximal integer d ≥ 0
for which there is a d × 2d submatrix B of A, such that the set of columns of B is the set of all
2d binary vectors of length d. The VC-dimension of a graph is defined as the VC-dimension of its
adjacency matrix. It is known7 that for every semi-algebraic graph property P there is8 d = d(P)
such that every graph which satisfies P has VC-dimension strictly less than d. Now let B be a d×2d

binary matrix whose columns are all 2d binary vectors of length d. Let H be the bipartite graph
with sides X = {x1, . . . , xd} and Y = {y1, . . . , y2d} such that (xi, yj) ∈ E(H) if and only if Bi,j = 1.
It is easy to see that no matter which graphs one puts on X and on Y (without changing the edges
between X and Y ), the resulting graph on X ∪ Y will not satisfy P since its VC-dimension will be
at least d = d(P). This means that H is a bipartite obstruction for P, which implies (via Lemma
2.2) that F contains a bipartite graph, a co-bipartite graph and a split graph, as required.

As for Condition 2, let F be a graph on V (F ) = [p] which satisfies P, and let x1, . . . , xp ∈ Rk be
witnesses to the fact that F satisfies P. That is, for every 1 ≤ i 6= j ≤ p we have (i, j) ∈ E(F ) if

and only if Φ
(
f1(xi, xj) ≥ 0; . . . ; ft(xi, xj) ≥ 0

)
= true. We define a function g : V (F ) → {0, 1} as

follows: g(i) = 1 if

Φ
(
f1(xi, xi) ≥ 0; . . . ; ft(xi, xi) ≥ 0

)
= true

and g(i) = 0 otherwise. We now show that every g-blowup of F satisfies P. Let G be a g-blowup
of F with a vertex partition V (G) = P1 ∪ · · · ∪ Pp (as in Definition 1.2). Then for every 1 ≤ i ≤ p,
we simply assign the point xi to every vertex of Pi. From the definition of a g-blowup and from our
choice of g, it follows that for every 1 ≤ i, j ≤ p and for every pair of distinct vertices vi ∈ Pi, vj ∈ Pj
we have that (vi, vj) ∈ E(G) if and only if Φ

(
f1(xi, xj) ≥ 0; . . . ; ft(xi, xj) ≥ 0

)
= true. Thus we

have shown that P is closed under blowups, completing the deduction of Theorem 6 from Theorem 5.

3 Hard to Test Properties

This section is organized as follows. In Subsection 3.1 we describe a variant of the well-known Ruzsa-
Szemerédi construction which we use in the proofs of Theorems 2, 3 and 4. We then prove Theorem 3
in Subsection 3.2. In Subsection 3.3 we introduce some definitions that are needed in order to handle
graph families (and not just individual graphs), leading to the proof of Theorem 2 in Subsection
3.4. The main step in the proof of Theorem 2 is Theorem 8 (see Subsection 3.4), which also implies
Theorem 4. Finally, in Subsection 3.5 we prove Theorem 7.

7This follows from Warren’s theorem on sign patterns of systems of polynomials, see for example [1].
8In fact, d can be bounded from above by a function of k,t, and the degrees of the polynomials f1, . . . , ft.

17



In some of the proofs we use the following simple claim.

Claim 3.1. For every pair of integers m ≥ 1 and h ≥ 2 there is a collection S ⊆ [m]h of size at least
m2/h2 such that every two h-tuples in S have at most one identical entry.

Proof. We construct the collection S greedily: we start with an empty set, add an arbitrary element
of [m]h to it, discard all h-tuples that coincide in more than one entry with the h-tuple we added
and repeat. At the beginning, all mh of the h-tuples in [m]h are potential elements of S. At each
step we discard at most

(
h
2

)
mh−2 tuples. Therefore, at the end of the process we have a collection of

size at least
mh

1 +
(
h
2

)
mh−2

≥ mh

h2mh−2
=
m2

h2
,

as required. �

3.1 The Construction of the Graph R

We start with the following lemma, which plays a key role in our constructions.

Lemma 3.2. For every k ≥ 2 there is α = α(k) such that for every integer m there is a set S ⊆ [m],
|S| ≥ m

eα
√
logm

, with the following property: Let 2 ≤ ` ≤ k and let a1, ..., a` ≥ 1 be integers satisfying
a1 + · · ·+ a` ≤ k. Then the only solutions to the equation

a1s1 + a2s2 + · · ·+ a`s` = (a1 + · · ·+ a`)s`+1

with s1, ..., s`+1 ∈ S are the trivial ones, i.e. s1 = s2 = · · · = s` = s`+1.

Lemma 3.2 is a variant of Behrend’s construction [13] of a large subset of [m] without a 3-term
arithmetic progression (note that the case k = ` = 2 and a1 = a2 = 1 exactly corresponds to a
3-term arithmetic progression). It is easy to show (see e.g. [37] and [2]) that the same exact proof
actually works for any fixed convex equation, and that moreover, it works “simultaneously” for all
convex equations (for fixed k), thus establishing the above lemma. We therefore omit its proof.

The following lemma is our variant of the Ruzsa-Szemerédi construction (see [38]), and is the key
ingredient in the proofs of Theorems 2, 3 and 4.

Lemma 3.3. For every h ≥ 3 there are δ0 = δ0(h) and β = β(h) such that for every δ < δ0 there is
a graph R = R(h, δ) with a vertex-partition V (R) = V1 ] · · · ] Vh, such that the following holds.

1. |V (R)| ≥ (1/δ)β log(1/δ).

2. E(R) is the union of at least δ|V (R)|2 pairwise edge-disjoint h-cliques, each of the form
{v1, . . . , vh} with vi ∈ Vi (1 ≤ i ≤ h).

3. For every 3 ≤ t ≤ h and for every sequence 1 ≤ i1 < i2 · · · < it ≤ h, R contains at most
|V (R)|2 (not necessarily induced) cycles of the form vi1vi2 . . . vitvi1 with vij ∈ Vij (1 ≤ j ≤ t).

Proof. Let 0 < δ < δ0 (for δ0 = δ0(h) to be chosen later), and let m be the largest integer satisfying

δ ≤ 1

(h+ 1)4eα
√

logm
(1)
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where α = α(h− 1) is from Lemma 3.2. It is easy to check that

m ≥ eα
−2 log2

(
1

δ(h+1)4

)
≥ (1/δ)β log(1/δ) , (2)

where the second inequality holds provided that we choose β = β(h) to be small enough, and provided
that δ is sufficiently small with respect to h (we choose δ0 accordingly).

Let S ⊆ [m] be the set obtained by applying Lemma 3.2 with k = h − 1. For each j = 1, . . . , h
set Vj = {1, 2, ..., jm}. With a slight abuse of notation, we think of V1, ..., Vh as disjoint sets. The

vertex-set of R is V (R) = V1]· · ·]Vh. By (2) we have |V (R)| =
(
h+1

2

)
m ≥ (1/δ)β log(1/δ), as required.

We now specify the edges of R. For every x ∈ [m] and s ∈ S, set

A(x, s) := {x, x+ s, x+ 2s, . . . , x+ (h− 1)s},

and put a clique on A(x, s), in which x + (j − 1)s is taken from Vj for every j = 1, . . . , h. Note
that for every (x, s), (x′, s′) ∈ [m] × S, if (x, s) 6= (x′, s′) then |A(x, s) ∩A(x′, s′)| ≤ 1. Indeed, if
|A(x, s) ∩A(x′, s′)| ≥ 2 then there are 0 ≤ i < j ≤ h−1 for which x+is = x′+is′ and x+js = x′+js′.
Solving this system of equations yields (x, s) = (x′, s′), as required. So the cliques that we defined
are edge-disjoint, as required in Item 2 of the lemma. By the lower bound on |S| in Lemma 3.2, and
by (1), the number of these cliques is

m · |S| ≥ m2

eα
√

logm
≥ δ(h+ 1)4m2 ≥ δ|V (R)|2 .

To finish the proof, it remains to establish Item 3. Fix any t ≥ 3 and any sequence of indices
1 ≤ i1 < i2 · · · < it ≤ h. We will show that for every cycle of the form vi1vi2 . . . vitvi1 with vij ∈ Vij
there are x ∈ [m] and s ∈ S such that vi1 , vi2 , . . . , vit ∈ A(x, s). This will show that the cycles of
this form are pair-disjoint9, implying that there are at most |V (R)|2 such cycles.

Let vi1vi2 . . . vitvi1 be a cycle in R with vij ∈ Vij for every 1 ≤ j ≤ t. By the construction of R,
for every j = 1, . . . , t there is (xj , sj) ∈ [m]× S such that {vij , vij+1} ⊆ A(xj , sj), with indices taken
modulo t. This means that

vij+1 − vij = (ij+1 − ij)sj (3)

for every 1 ≤ j ≤ t− 1, and also that vit − vi1 = (it − i1)st. Setting aj := ij+1 − ij for 1 ≤ j ≤ t− 1,
we see that

a1s1 + a2s2 + · · ·+ at−1st−1 = (a1 + · · ·+ at−1)st.

Since S was chosen via Lemma 3.2, we must have s1 = s2 = · · · = st. Hence, by (3) we have that
vij = vi1 + (ij − i1)s1 for every 1 ≤ j ≤ t. By the definition of A(x1, s1) and by the fact that
vi1 ∈ A(x1, s1), we get that vi1 , vi2 , . . . , vit ∈ A(x1, s1) = · · · = A(xt, st), as required. �

3.2 Proof of Theorem 3

Let M be the complement of the 7-vertex graph with vertex-set {1, 2, 3, 4, 5, 6, 7} and edge-set
{{1, 2}, {3, 4}, {5, 6}}. It is easy to see that M is co-bipartite. We will prove Theorem 3 with
F1 = C8 (the cycle on 8 vertices) and F2 = M . We need the following lemma, which we prove later.

Lemma 3.4. Let G be a graph admitting a vertex partition V (G) = X1 ∪ · · · ∪X8 such that

9Two subgraphs are pair disjoint if they share at most one vertex.
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• X1, X3, X5, X7 are cliques and X2, X4, X6, X8 are independent sets.

• The only edges between the parts X1, . . . , X8 are between consecutive parts; that is, for every
1 ≤ i 6= j ≤ 8, we have E(Xi, Xj) = ∅ unless |i− j| ≡ ±1 (mod 8).

Then the following holds.

1. Every induced copy of C8 in G is of the form x1x2...x8x1, where xi ∈ Xi.

2. G is induced M -free.

Proof of Theorem 3. Set F1 = C8 and F2 = M . We will show that for every sufficiently small
ε > 0 and for every n ≥ n0(ε) there is a graph G on n vertices which is ε-far from being induced
{F1, F2}-free yet contains at most10 εΩ(log 1/ε)nv(Fi) induced copies of Fi for both i = 1, 2. This will
imply that P∗{F1,F2} is not easily testable.

Let ε ∈
(
0, δ0(8)

64

)
, where δ0(8) is from Lemma 3.3. Let R = R(8, 64ε) be the graph obtained

by applying Lemma 3.3. Recall that V (R) = V1 ] · · · ] V8, and put r = |V (R)|. For simplicity of
presentation, we assume that n is divisible by r. We define a graph G on an n

r -blowup of R; that is,
we replace each vertex v ∈ V (R) with a vertex-set B(v) of size n

r , where the sets (B(v) : v ∈ V (R))
are pairwise-disjoint. Put B(Vi) :=

⋃
v∈Vi B(vi) for 1 ≤ i ≤ 8. The edges of G are defined as

follows: B(V1), B(V3), B(V5), B(V7) are cliques and B(V2), B(V4), B(V6), B(V8) are independent sets.
To define the edges between the sets B(V1), . . . , B(V8), recall that by Lemma 3.3, R contains a
collection H of at least 64εr2 pairwise edge-disjoint cliques, each of the form {v1, . . . , v8} with vi ∈ Vi.
For each such clique {v1, . . . , v8} ∈ H we put a blowup of C8 on the sets B(v1), . . . , B(v8); namely,
for each (x1, . . . , x8) ∈ B(vi) × · · · × B(v8), x1x2 . . . x8x1 is an induced 8-cycle in G. Notice that
G satisfies the assumptions of Lemma 3.4 with Xi = B(Vi). Thus, G is induced M -free, and every
induced copy of C8 in G is of the form x1x2 . . . x8x1 with xi ∈ B(Vi). Let x1x2 . . . x8x1 be an
induced copy of C8 in G and let vi ∈ Vi be such that xi ∈ B(vi). From the construction of G it
follows that v1v2 . . . v8v1 is a (not necessarily induced) cycle in R. By Item 3 in Lemma 3.3 (with
parameters t = 8 and ij = j for 1 ≤ j ≤ 8), the number of such cycles is at most r2. We conclude
that G contains at most r2 (n/r)8 ≤ n8/r induced copies of C8. By Item 1 in Lemma 3.3 we have
r ≥ ( 1

64ε)
β log(1/64ε) ≥ (1

ε )Ω(log 1/ε) (where β = β(8) is from Lemma 3.3). Therefore, the number of

induced copies of C8 in G is at most εΩ(log 1/ε)n8, as required.

To finish the proof, we show that G contains εn2 pair-disjoint induced copies of C8, which will
imply that G is ε-far from being induced {C8,M}-free. By Claim 3.1 and the construction of G, for
every clique {v1, . . . , v8} ∈ H there is a collection Sv1,...,v8 of at least (n/8r)2 pair-disjoint induced
copies of C8 of the form (x1, . . . , x8) ∈ B(vi)× · · · ×B(v8). Since the cliques in H are pair-disjoint,
copies of C8 that come from different cliques are pair-disjoint. In other words, for every pair of

distinct {v(1)
1 , . . . , v

(1)
8 }, {v

(2)
1 , . . . , v

(2)
8 } ∈ H and for every (x

(i)
1 , . . . , x

(i)
8 ) ∈ S

v
(i)
1 ,...,v

(i)
8

(for i = 1, 2), it

holds that |{x(1)
1 , . . . , x

(1)
8 } ∩ {x

(2)
1 , . . . , x

(2)
8 }| ≤ 1. We thus conclude that S :=

⋃
{v1,...,v8}∈H Sv1,...,v8

is a collection of at least |H| · (n/8r)2 ≥ 64εr2 (n/8r)2 = εn2 pair-disjoint induced copies of C8 in G
(where in the first inequality we used the fact that |H| ≥ 64εr2). This completes the proof. �

Proof of Lemma 3.4. We start by proving Item 1. Let C = x1x2...x8x1 be an induced copy of C8

in G. Our goal is to show that |C ∩ Xi| = 1 for every 1 ≤ i ≤ 8. First, assume by contradiction,
that |C ∩Xi| ≥ 2 for some i ∈ {1, 3, 5, 7}, say i = 1 (without loss of generality). Since X1 is a clique,

10In fact, G will be induced F2-free.
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there must be some j ∈ {1, ..., 8} for which xj , xj+1 ∈ X1 (with indices taken modulo 8). We assume,
without loss of generality, that j = 1, i.e. that x1, x2 ∈ X1. Note that |C ∩ X1| < 3, as otherwise
C would contain a triangle. So we see that C ∩ X1 = {x1, x2}. As (x2, x3), (x1, x8) ∈ E(G) but
x3, x8 /∈ X1, we must have x3, x8 ∈ X2∪X8. First we consider the case that x3 and x8 are in the same
part, say x3, x8 ∈ X2. Then x4, x7 ∈ X3 because (x4, x3), (x7, x8) ∈ E(G), X2 is an independent set
and x4, x7 /∈ X1. Since X3 is a clique, we get that (x4, x7) ∈ E(G), in contradiction to the fact that
C is an induced cycle. Now we consider the case that x3 and x8 are in different parts, say x3 ∈ X2,
x8 ∈ X8. The path P = x3x4...x8 cannot go through X1, and hence it must contain at least one
vertex from each of the seven parts X2, ..., X8. But this is impossible as P consists of 6 vertices.

In the previous paragraph we showed that |C ∩Xi| ≤ 1 for every i ∈ {1, 3, 5, 7}. Define the sets
Xodd := X1 ∪ X3 ∪ X5 ∪ X7 and Xeven := X2 ∪ X4 ∪ X6 ∪ X8. Since Xeven is an independent set
and α(C8) = 4, we have |C ∩Xeven| ≤ 4. Thus |C ∩Xodd| ≥ 4, implying that |C ∩Xi| = 1 for every
i ∈ {1, 3, 5, 7}. In order to finish the proof (of Item 1) it is enough to show that |C ∩Xi| ≥ 1 for each
i ∈ {2, 4, 6, 8}. Suppose, by contradiction, that C ∩Xi = ∅ for some i ∈ {2, 4, 6, 8}, say i = 2. Let
j, k ∈ {1, . . . , 8} be such that xj ∈ X1 and xk ∈ X3. In the cycle C there is a path between xj and
xk with at most 5 vertices (including xj and xk). This path cannot intersect X2, so it must contain
at least one vertex from each of the seven parts X1, X3, X4, ..., X8, which is impossible.

We now prove Item 2. Suppose by contradiction that Y ⊆ V (G) spans an induced copy of M . As
before, define Xodd = X1 ∪X3 ∪X5 ∪X7 and Xeven = X2 ∪X4 ∪X6 ∪X8, and notice that Xeven is
an independent set and that Xodd is a disjoint union of cliques and hence induced P3-free (where P3

is the path with 3 vertices). It is easy to check that every set of 5 vertices of M contains an induced
copy of P3. We conclude that |Y ∩Xodd| ≤ 4. Moreover, |Y ∩Xeven| ≤ 2 because α(M) = 2. All in
all we get that |Y | ≤ 6 < 7 = |V (M)|, a contradiction. �

3.3 Homomorphisms and Cores

Recall that a homomorphism from a graph G1 to a graph G2 is a map f : V (G1)→ V (G2) such that
for every u, v ∈ V (G1), if (u, v) ∈ E(G1) then (f(u), f(v)) ∈ E(G2). We write G1 ≤hom G2, and say
that G1 is homomorphic to G2, if there is a homomorphism from G1 to G2. Notice that the relation
≤hom is transitive. For a graph G, the core of G, denoted C(G), is an induced subgraph of G to
which there is11 a homomorphism from G, and which has the smallest number of vertices among all
such induced subgraphs of G. We say that a graph G is a core if C(G) = G. Observe that the core
of any graph is a core, and that every homomorphism from a core to itself is an isomorphism. It is
now easy to check that for every pair of cores C1, C2, if C1 ≤hom C2 and C2 ≤hom C1 then C1 and C2

are isomorphic. This in turn implies that the core of a graph is defined uniquely, up to isomorphism.
We refer the reader to [30] for detailed proofs of these claims, as well as an overview of the topic of
graph homomorphisms and cores.

Let F be a finite family of graphs and consider the set C = C(F) = {C(F ) : F ∈ F}. As we
explained above, (C,≤hom) is a poset in the following sense: for every C1, C2 ∈ C, if C2 ≤hom C1 and
C1 ≤hom C2 then C1 and C2 are isomorphic. Namely, ≤hom is a partial order on the set of equivalence
classes of C under the equivalence relation of graph isomorphism. Let K(F) be a minimal element of
the poset (C,≤hom), i.e. K(F) is an (arbitrary) element of an (arbitrary) minimal equivalence class.
The minimality of K(F) implies that for every C ∈ C, if there is a homomorphism from C to K(F)
(namely if C ≤hom K(F)) then C is isomorphic to K(F). The key property of the graph K(F) is

11We note that our definition of a core is a bit different (but equivalent) to the usual definition of a core, see e.g.
[30]. We chose to use this definition because it will be more convenient in later sections.
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described in the following proposition.

Proposition 3.5. For every F ∈ F and for every homomorphism f : F → K(F) there is a set
X ⊆ V (F ) such that f |X is an isomorphism onto K(F).

Proof. Let C = C(F ). Since f |V (C) is a homomorphism from C to K(F), and since K(F) is
minimal, we have that C is isomorphic to K(F). By the property of a core, every homomorphism
from K(F) to itself (and hence also from C to K(F)) is an isomorphism. So the assertion of the
proposition holds with X = V (C). �

3.4 Proof of Theorems 2 and 4

Theorems 2 and 4 follow easily from the following theorem.

Theorem 8. For every h ≥ 3 there is ε0 = ε0(h) such that the following holds for every ε < ε0 and
for every non-bipartite graph H on h vertices. Let K be the core of H. For every n ≥ n0(ε) there is
a graph on n vertices with the following properties.

1. G is homomorphic to K.

2. G is ε-far from being induced-H-free.

3. G contains at most εΩ(log(1/ε))nk (not necessarily induced) copies of K, where k = |V (K)|.

Proof. Fix a homomorphism ϕ : H → K. SinceH is not bipartite, and since the homomorphic image
of a non-bipartite graph is itself non-bipartite, we get that K is not bipartite, and hence contains
an odd cycle. Label the vertices of K by a1, . . . , ak so that a1a2 . . . ata1 is an odd cycle. Define
Hi = ϕ−1(ai) for i = 1, . . . , k. Label the vertices of H by 1, . . . , h so that for each 1 ≤ i < j ≤ k, the
labels of the vertices in Hi are smaller than the labels of the vertices in Hj .

Let ε > 0. We will assume that ε is small enough where needed (in other words, we will choose
ε0(h) implicitly). Assuming that ε < δ0(h)/h2 (where δ0(h) is from Lemma 3.3), let R = R(h, h2ε)
be the graph from Lemma 3.3. Recall that V (R) = V1 ] · · · ] Vh, and put r := |V (R)|.

We now define a graph S on V (R) as follows. By Item 2 of Lemma 3.3, R contains a collection H
of at least εh2r2 pair-disjoint h-cliques, each of the form {v1, . . . , vh} with vi ∈ Vi (1 ≤ i ≤ h). For
every {v1, . . . , vh} ∈ H, we let S[{v1, . . . , vh}] span an induced copy of H in which vi plays the role
of i for every i ∈ [h] = V (H). The resulting graph is S. It is clear from the definition that H is a
collection of pair-disjoint induced copies of H in S.

Let n be a large integer which we assume, for simplicity of presentation, to be divisible by
r = |V (S)|. Let G be the n

r -blowup of S; that is, G is the graph obtained by replacing each vertex
v ∈ V (S) with an independent set B(v) of size n

r (where distinct vertices are replaced by disjoint
sets), replacing edges with complete bipartite graphs and replacing non-edges with empty bipartite
graphs. Clearly |V (G)| = n. For 1 ≤ i ≤ h put B(Vi) :=

⋃
v∈Vi B(v). Observe that the map which

sends
⋃
i∈Hj B(Vi) to aj for every 1 ≤ j ≤ k, is a homomorphism from G to K. This establishes

Item 1 in the statement of the theorem.

As we already showed, H is a collection of at least εh2r2 pair-disjoint induced copies of H in S.
We call these copies the base copies of H. For every base copy {v1, . . . , vh} ∈ H, Claim 3.1 gives a
collection of at least (n/rh)2 pair-disjoint induced copies of H in G, each of the form {x1, . . . , xh}
with xi ∈ B(vi). We say that these copies are derived from {v1, . . . , vh}. Since the base copies are
pair-disjoint, two copies which are derived from different base copies are also pair-disjoint. Thus, G
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contains a collection of at least |H| · (n/rh)2 ≥ εh2r2 · (n/rh)2 = εn2 pair-disjoint induced copies of
H. This shows that G is ε-far from being induced H-free.

To finish the proof it remains to show that G contains at most εΩ(log(1/ε))nk copies of K. To this
end, we now show that copies of K in G must be of a special form, which will allow us to bound
their number. The details follow. Consider a copy of K in G. For each j = 1, . . . , k, let Uj ⊆ V (G)
be the set of vertices of this copy that are contained in

⋃
i∈Hj B(Vi). Notice that the map that sends

Uj to aj (for each j = 1, . . . , k) is a homomorphism from K to itself. By the property of a core (see
Subsection 3.3), this map is an isomorphism. Thus, |Uj | = 1 for every 1 ≤ j ≤ k. Write Uj = {uj},
and note that for each 1 ≤ i < j ≤ k we have (ui, uj) ∈ E(G) if and only if (ai, aj) ∈ E(K). Now the
fact that a1a2 . . . ata1 is a cycle in K implies that u1, . . . , ut, u1 is a cycle in G. For each 1 ≤ j ≤ k, let
ij ∈ Hj be such that uj ∈ B(Vij ) and let vij ∈ Vij be such that uj ∈ B(vij ). Then i1 < i2 < · · · < it
due to the way we labeled the vertices of H. Moreover vi1vi2 . . . vitvi1 is a cycle in S because G is a
blowup of S. Finally, it follows from the definition of S that vi1vi2 . . . vitvi1 must be a cycle in R.

We thus proved that every copy of K in G contains vertices u1, . . . , ut with the following prop-
erty: there is an increasing sequence 1 ≤ i1 < i2 < · · · < it ≤ h and vertices vij ∈ Vij (for
1 ≤ j ≤ t) such that uj ∈ B(vij ) and such that vi1vi2 . . . vitvi1 is a cycle in R. For every in-
creasing sequence (i1, i2, . . . , it), Lemma 3.3 states that R contains at most r2 cycles of the form
vi1vi2 . . . vitvi1 with vij ∈ Vij . Therefore, the number of copies of K in G that correspond to a spe-

cific increasing sequence is at most r2 (n/r)t nk−t ≤ nk/r (here we used the obvious fact that t ≥ 3).
By taking the union bound over all

(
h
t

)
increasing sequences (i1, i2, . . . , it) and using the inequality

r ≥ (1/h2ε)β(h) log(1/h2ε) ≥ (1/ε)Ω(log 1/ε) (which is guaranteed by Item 1 of Lemma 3.3), we get that
the number of copies of K in G is at most

(
h
t

)
nk/r ≤ εΩ(log 1/ε)nk. This completes the proof. �

Proof of Theorem 4. By Theorem 8, for every sufficiently small ε > 0 and for every n ≥ n0(ε)
there is a graph G on n vertices which is ε-far from being induced H-free yet contains at most
εΩ(log 1/ε)nk (not necessarily induced) copies of K, the core of H. As K is a subgraph of H, G
contains at most εΩ(log 1/ε)nk · nh−k = εΩ(log 1/ε)nh (not necessarily induced) copies of H. �

Proof of Theorem 2. Write F = {F1, . . . , F`}. By symmetry (with respect to graph complementa-
tion), it is enough to prove that there is 1 ≤ i ≤ ` for which Fi is bipartite. Assume, by contradiction,
that Fi is not bipartite for every 1 ≤ i ≤ `. We will show that for every sufficiently small ε > 0 and
for every n ≥ n0(ε), there is a graph G which is ε-far from being induced F-free and yet contains
at most εΩ(log 1/ε)nv(Fi) copies of Fi for every 1 ≤ i ≤ ` (where the implicit constant in the exponent
depends only on F). This will imply that P∗F is not easily testable, a contradiction.

Let K = K(F) be the graph defined in Subsection 3.3. Let us assume, without loss of generality,
that K is the core of F1. We claim that the graph G, obtained by applying Theorem 8 to H = F1

(and K), satisfies our requirements. Clearly, G is ε-far from being induced F-free because it is ε-far
from being induced F1-free.

By Theorem 8, there is a homomorphism g : G → K. Let 1 ≤ i ≤ ` and consider an embedding
f : Fi → G of Fi into G. Then g ◦ f is a homomorphism from Fi to K. By Proposition 3.5,
there is a set X ⊆ V (Fi) such that (g ◦ f)|V (X) is an isomorphism onto K. This means that
f(V (Fi)) ⊆ V (G) contains a copy of K. We conclude that every copy of Fi in G contains a copy of
K. By Theorem 8, G contains at most εΩ(log 1/ε)nk copies of K. It follows that G contains at most
εΩ(log 1/ε)nk · nv(Fi)−k = εΩ(log 1/ε)nv(Fi) copies of Fi, as required. �
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3.5 Proof of Theorem 7

Let K be a graph with vertex set [k]. We say that a graph F is a blowup of K if F admits a
vertex-partition V (F ) = X1 ∪ · · · ∪ Xk such that X1, . . . , Xk are independent sets and for every
1 ≤ i < j ≤ k, if (i, j) ∈ E(K) then (Xi, Xj) is a complete bipartite graph and if (i, j) /∈ E(K) then
(Xi, Xj) is an empty bipartite graph. We say that F is the s-blowup of K if |X1| = · · · = |Xk| = s.

Throughout this subsection, Cm denotes the cycle of length m. In the proof of Theorem 7 we use
the following simple proposition, whose proof appears at the end of this subsection.

Proposition 3.6. Let k be an odd integer and let G be a blowup of Ck. Then G is induced C6-free
and (not necessarily induced) C`-free for every odd 3 ≤ ` < k.

Recall the definition of a graph homomorphism from Subsection 3.3. We will use the simple fact
that C2`+1 has a homomorphism into C2k+1 if and only if ` ≥ k (this fact accounts for the second
part of Proposition 3.6). For the proof of Theorem 7 we need the following lemma from [9].

Lemma 3.7. [9] Let K be a graph on k vertices, let F be a graph on f vertices which has a
homomorphism into K and let G be the n

k -blowup of K where n ≥ n0(f). Then G is 1
2k2

-far from
being (not necessarily induced) F -free.

For a graph F , denote by SG(F ) the set of supergraphs of F (namely, the set of all graphs on V (F )
obtained from F by adding edges). Note that being (not necessarily induced) F -free is equivalent to
being induced SG(F )-free. We are now ready to prove Theorem 7.

Proof of Theorem 7. Define a sequence {ai}i≥1 as follows: set a1 = 3 and ai+1 = 22(ai+2)2 + 1.
Note that ai is odd for every i ≥ 1. We prove the theorem with the graph family

F = {C6} ∪
⋃
i≥1

SG
(
Cai
)
.

Since a1 = 3 we have C3 ∈ F . Note that C6 is a bipartite graph and that C3 is both a co-bipartite
graph and a split graph. For i ≥ 1 put εi = 1

2(ai+2)2
. We will show that fP∗F (εi) ≥ 21/εi for every

i ≥ 1 (recall Definition 1.1), which implies that P∗F is not easily testable.

Let i ≥ 1 and put k = ai + 2 and f = ai+1. Since ai is odd and ai ≥ 3, we have that k is odd
and k ≥ 5. Fix n ≥ n0(f) which is divisible by k (where n0(f) is from Lemma 3.7), and let G be the
n
k -blowup of Ck. By our choice of εi and k we have εi = 1

2k2
. Since Cf has a homomorphism into

Ck, Lemma 3.7 implies that G is εi-far from being Cf -free and hence is εi-far from being induced
SG(Cf )-free. As SG(Cf ) ⊆ F , we conclude that G is εi-far from being induced F-free.

Proposition 3.6 implies that G is induced C6-free and that for every odd 3 ≤ ` < k, G is C`-free
and hence induced SG(C`)-free. By the definition of F , if F ∈ F is an induced subgraph of G then
|V (F )| ≥ ai+1 > 22(ai+2)2 = 21/εi . Here we used the definition of the sequence {ai}i≥1 and our choice
of εi. We conclude that every set Q ⊆ V (G) of size less than 21/εi is induced F-free, implying that
fP∗F (εi) ≥ 21/εi , as required. �

We remark that using essentialy the same proof as above, we could have proven the following
strengthening of Theorem 7. For every function g : (0, 1/2) → N there is a graph family F that
contains a bipartite graph, a co-bipartite graph and a split graph, and there is a decreasing sequence
{εi}i≥1 with εi → 0 such that fP∗F (εi) > g(εi) for every i ≥ 1.
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Proof of Proposition 3.6. As G is a blow-up of Ck, it has a partition V (G) = X1 ∪ · · · ∪Xk into
independent sets such that (Xi, Xj) is a complete bipartite graph if |i − j| ≡ ±1 (mod k) and an
empty bipartite graph otherwise. For the first part of the proposition, assume, by contradiction,
that there is Z ⊆ V (G) such that G[Z] is isomorphic to C6. Since C6 is not a subgraph of Ck, there
must be 1 ≤ i ≤ k such that |Z ∩Xi| ≥ 2. Assume without loss of generality that there are distinct
u, v ∈ Z ∩ X1. By the structure of C6, there are distinct x, y ∈ Z such that (u, x), (u, y) ∈ E(G).
Then x, y ∈ X2 ∪Xk, implying that (v, x), (v, y) ∈ E(G). Thus, uxvy is a 4-cycle, in contradiction
to the fact that G[Z] is isomorphic to C6.

For the second part of the proposition, simply observe that every subgraph of G with less than k
vertices is bipartite. �

Added note: After posting this paper online, we learned that a statement similar to Lemma 2.2
was proved in [31].
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