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Abstract

Let H be a k-uniform hypergraph whose vertices are the integers 1, . . . , N . We say that H

contains a monotone path of length n if there are x1 < x2 < · · · < xn+k−1 so that H contains

all n edges of the form {xi, xi+1, . . . , xi+k−1}. Let Nk(q, n) be the smallest integer N so that

every q-coloring of the edges of the complete k-uniform hypergraph on N vertices contains a

monochromatic monotone path of length n. While the study of Nk(q, n) for specific values of k

and q goes back (implicitly) to the seminal 1935 paper of Erdős and Szekeres, the problem of

bounding Nk(q, n) for arbitrary k and q was studied by Fox, Pach, Sudakov and Suk.

Our main contribution here is a novel approach for bounding the Ramsey-type numbers

Nk(q, n), based on establishing a surprisingly tight connection between them and the enumer-

ative problem of counting high-dimensional integer partitions. Some of the concrete results we

obtain using this approach are the following:

• We show that for every fixed q we have N3(q, n) = 2Θ(nq−1), thus resolving an open problem

raised by Fox et al.

• We show that for every k ≥ 3, Nk(2, n) = 2·
·2

(2−o(1))n

where the height of the tower is

k − 2, thus resolving an open problem raised by Eliáš and Matoušek.

• We give a new pigeonhole proof of the Erdős-Szekeres Theorem on cups-vs-caps, similar to

Seidenberg’s proof of the Erdős-Szekeres Lemma on increasing/decreasing subsequences.

1 Introduction

1.1 Some historical background

It would not be an exaggeration to state that modern Extremal Combinatorics, and Ramsey Theory

in particular, stemmed from the seminal 1935 paper of Erdős and Szekeres [9]. Besides establishing
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explicit bounds for graph and hypergraph Ramsey numbers, they also proved two of the most well-

known results in Combinatorics, which have become known as the Erdős-Szekeres Lemma (ESL)

and the Erdős-Szekeres Theorem (EST). Let f(a, b) be the smallest integer so that every sequence

of f(a, b) distinct real numbers contains either an increasing sequence of length a or a decreasing

sequence of length b. Then ESL states that

f(n, n) ≤ (n− 1)2 + 1 .

Let g(a, b) be the smallest integer so that every set of g(a, b) points in the plane in general position,

all with distinct x-coordinates, contains either a points p1, . . . , pa with increasing x-coordinate so

that the slopes of the segments (p1, p2), (p2, p3) . . . , (pa−1, pa) are increasing, or b such points so

that the slopes of these segments are decreasing. Then EST states that

g(n, n) ≤
(

2n− 4

n− 2

)
+ 1 . (1)

We note that EST implies that for any integer n there is an integer N(n) so that every set of

N(n) points in general position in the plane contains n points in convex position. Specifically, it

shows that N(n) ≤
(

2n−4
n−2

)
+ 1. The fact that N(n) is finite was later labelled the “Happy Ending

Theorem”.

The original proof in [9] of ESL was based on establishing the recurrence relation f(n+1, n+1) ≤
f(n, n) + 2n − 1. By now, there are several proofs of ESL. In fact, Steele [27] has collected 7 of

these proofs, and dubbed the following pigeonhole-type proof by Seidenberg [23] as “the slickest

and most systematic”. Assign to each real number x in the sequence two labels x+, x− where we

take x+ to be the length of the longest increasing sequence ending at x, and x− to be the length

of the longest decreasing sequence ending at x. Now, it is easy to see that for every pair of reals

x, y in the sequence we have (x+, x−) 6= (y+, y−). Hence, if there is neither an increasing nor a

decreasing sequence of length n then there can be no more than (n− 1)2 numbers in the sequence.

The same idea shows that f(a, b) ≤ (a− 1)(b− 1) + 1, and it is easy to see that this bound is tight.

The original proof in [9] of EST was based on establishing the recurrence relation g(a+1, b+1) ≤
g(a, b + 1) + g(a + 1, b) − 1. To the best of our knowledge, this is the only known proof of this

classic result.1 As part of our investigation here we will establish a new pigeonhole-type proof of

EST, similar in spirit to Seidenberg’s proof [23] of ESL we sketched in the previous paragraph. We

have to admit that we did not set out to try and find a new proof of EST. Our goal was actually to

bound Ramsey numbers of certain generalizations of EST, and the new proof is just a byproduct.

1.2 High-dimensional integer partitions

The notion of integer partitions is without doubt the most well-studied notion in discrete mathe-

matics, and goes back (at least) to Euler. We will be very brief here and just define the notions

1We stress that here we are referring to bounding g(a, b). The bound on N(n) has been slightly improved (see [20]

for a survey). Interestingly, all improvements rely on clever applications of g(a, b).

2



1 2 3 4 5 6 7

1

2

3

4

5

6

7

(a) A line partition and the

lattice path along its bound-

ary.

(b) A plane partition. Note that the

stacks are “flushed into the corner”.

Figure 1: Partitions

that are relevant to the results of this paper (see [2] for more background on this subject). A

decreasing sequence of nonnegative integers a1 ≥ a2 ≥ . . . will be called a line partition. One

can visualize a line partition as a 2-dimensional sequence of stacks of height ai each (essentially,

a Young diagram, see Figure 1a). A matrix A of nonnegative integers so that Ai,j ≥ Ai+1,j and

Ai,j ≥ Ai,j+1 for all possible i, j will be called a plane partition. One can visualize a plane partition

in 3-dimensions as a plane consisting of stacks, where at location (i, j) we have a stack of height

Ai,j (see Figure 1b). The notion of a plane partition was introduced by MacMahon in 1897 [16] as

a 2-dimensional analogue of integer partitions2 and has been extensively studied ever since. More

generally, one defines a d-dimensional partition as a d-dimensional (hyper)matrix A of nonnegative

integers so that the matrix is decreasing in each line, that is, Ai1,...,it,...,id ≥ Ai1,...,it+1,...,id for every

possible i1, . . . , id and 1 ≤ t ≤ d.

Let Pd(n) be the number of n× · · ·×n d-dimensional partitions with entries from {0, 1, . . . , n}.
Note that when d = 1 (that is, line partitions n ≥ a1 ≥ . . . ≥ an ≥ 0) we can think of such an

integer partition as a lattice path in Z2 starting at (0, n) and ending at (n, 0) where in each step

the path moves either down or to the right (see Figure 1a). It is thus clear that

P1(n) =

(
2n

n

)
. (2)

Computing P2(n) appears to be much harder. Luckily, a celebrated result of MacMahon [17] states

that

P2(n) =
∏

1≤i,j,k≤n

i+ j + k − 1

i+ j + k − 2
. (3)

2Recall that if n = a1 + . . . + ak then the standard way to write this partition is as a decreasing sequence

a1 ≥ a2 ≥ . . ., that is, what we call here a line partition.
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We refer the reader to [25] for more background and references on the rich history and current

research on plane partitions. We also recommend Chapter 5 of [1] for an ingenious proof of (3)

using the Lindström-Gessel-Viennot Lemma.

Unfortunately, there is no known closed formula for Pd(n) even for d = 3 (see, e.g., [3]). The

same is true even for the more well-studied variant of the problem, which considers the number of

partitions with a given sum of entries; in fact, even establishing a generating function for three-

dimensional partitions, usually referred to as solid partitions, is an outstanding open problem in

enumerative combinatorics which goes back to MacMahon. See [21] and [25] for some background on

this open problem. However, observe that each line in a d-dimensional partition is a line partition.

Since a d-dimensional partition is composed of nd−1 line partitions, we can derive from (2) the

crude bound

Pd(n) ≤
(

2n

n

)nd−1

≤ 22nd
. (4)

1.3 Erdős-Szekeres generalized

One cannot but suspect that there is some abstract combinatorial phenomenon behind ESL and

EST. Indeed, ESL is a special case of Dilworth’s Theorem [7] (or actually, its dual, which is due to

Mirsky [19]). As to EST, Chvátal and Komlós [5] obtained a combinatorial lemma generalizing it

in terms of paths in edge weighted tournaments. Very recently, Fox, Pach, Sudakov and Suk [10]

suggested the following elegant framework for studying such problems, which nicely puts both ESL

and EST under a single roof.

Let Kk
N denote the complete k-uniform hypergraph on a set of N vertices, that is, the collection

of subsets of size k of the N vertices. For our purposes here it will be useful to think of the vertices

as being ordered and thus name them 1, . . . , N . For a sequence of vertices x1 < x2 < · · · < xn+k−1

we say that the edges

{x1, . . . , xk}, {x2, . . . , xk+1}, . . . , {xn, . . . , xn+k−1}

form a monotone path, and we refer to the number of edges as its length (so the path above is of

length n).3 Note that henceforth, whenever we will be talking about an edge {x1, . . . , xk} we will

implicitly assume that x1 < · · · < xk.

Let Nk(q, n) be the smallest integer N so that every coloring of the edges of Kk
N using q

colors contains a monochromatic monotone path of length n. Recalling ESL, it is easy to see that

f(n + 1, n + 1) ≤ N2(2, n) (notice N2(q, n) measures length with respect to edges), and that the

proof of ESL we sketched earlier implies N2(q, n) ≤ nq + 1. It is also easy to see that

g(n+ 2, n+ 2) ≤ N3(2, n) , (5)

3We note that Fox et al. [10] measured the length of a path using the number of vertices. As it turns out, in our

proofs it will be much more natural to use the number of edges as the measure of length.
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and that one can prove N3(2, n) ≤
(

2n
n

)
+ 1 by applying the recursive argument (mentioned above)

that was used by Erdős and Szekeres [9] to prove EST (1). Hence, one can prove both ESL and

EST in the framework of studying Nk(q, n).

The question of bounding N3(q, n) for q ≥ 3 was raised by Fox et al. [10], motivated (partially)

by certain geometric generalizations of EST (see [10] for the exact details). One of their main

results was that

2(n/q)q−1 ≤ N3(q, n) ≤ nnq−1
. (6)

The main problem they left open was whether the correct exponent log2N3(q, n) is of order nq−1.

1.4 Our results

Our main result in this paper establishes a surprisingly close connection between the problem

of bounding the Ramsey numbers N3(q, n) defined above, and the problem of enumerating high-

dimensional integer partitions we discussed in the previous subsection.

Theorem 1. For every q ≥ 2 and n ≥ 2 we have

N3(q, n) = Pq−1(n) + 1 .

Recall that by (4) we have Pq−1(n) ≤ 22nq−1
. Hence, Theorem 1 resolves the problem of Fox et

al. [10] mentioned above by establishing that for every fixed q we have N3(q, n) = 2Θ(nq−1). Also,

we get via MacMahon’s formula (3) an exact bound for N3(3, n), and from the long history of

unsuccessful attempts to precisely compute P3(n) we learn that it is probably hopeless to compute

N3(4, n) exactly. In fact, as we shall see later on in the paper, Theorem 1 also implies that it is

unlikely to expect a closed formula even for N3(q, 2), namely the case of the two-edge path! (see

Section 4)

Notice that Theorem 1, together with the observations we have made in (2) and (5), implies

EST (1). We note that our initial approach for resolving the problem raised in [10] was to adapt the

recursive approach of Erdős and Szekeres for proving EST (1) (as sketched in the previous section)

to the general setting of q ≥ 3. It appears that this approach cannot be generalized, mainly because

attempts to come up with a recursion for Pq−1(n) have failed. So in some sense, our new proof of

EST came out of the need to find a proof that can be generalized to more than 2 colors.

To prove the upper bound in Theorem 1 we will use a pigeonhole type argument, similar to

Seidenberg’s proof [23] of ESL which we sketched above. To this end we will map every vertex of

the hypergraph to a (q − 1)-dimensional partition and argue that this mapping must be injective.

To prove the lower bound, we will show a surprising way by which one can think of (q − 1)-

dimensional partitions as vertices of a hypergraph, and then use certain relations between these

partitions/vertices in order to define an explicit q-coloring of the complete 3-uniform hypergraph

without long monochromatic monotone paths.
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Note that the bounds on N3(q, n) we get from Theorem 1 by combining (4) and the lower

bound in (6) are 2(n/q)q−1 ≤ N3(q, n) ≤ 22nq−1
. It is thus natural to ask if one can use the precise

description of N3(q, n) of Theorem 1 in order to tighten the dependence on q in the exponent of

N3(q, n). To this end we first prove the following.

Theorem 2. For every d ≥ 1 and n ≥ 1 we have

Pd(n) ≥ 2
2
3
nd/
√
d+1 .

Observe that from the above (and Theorem 1) we immediately get an exponential improvement

over the lower bound of Fox et al. [10] (stated in (6)) in terms of the dependence of N3(q, n) on q.

The following corollary thus summarizes our bounds for N3(q, n).

Corollary 1. For every q ≥ 2 and n ≥ 2 we have

2
2
3
nq−1/

√
q ≤ N3(q, n) ≤ 22nq−1

.

As we discuss in the concluding remarks, it seems reasonable to conjecture that the lower bound

gives the correct exponent, and that N3(q, n) = 2Θ(nq−1/
√
q).

1.5 Higher uniformity

Given the characterization of N3(q, n) in terms of enumerating integer partitions, it is natural to

ask if a similar characterization can be proved for Nk(q, n) for arbitrary k ≥ 3. As we show in

Section 3 the answer is positive, but since the objects involved in this characterization are (slightly)

complicated to define, we refrain from stating the results in this section and refer the reader to the

statement of Theorem 5 in Section 3. Let us instead describe some immediate corollaries of this

characterization.

Let tk(x) be a tower of exponents of height k−1 with x at the top. So t1(x) = x and t3(x) = 22x .

Since we know that N3(q, n) ≤ 2O(nq−1), it seems natural to suspect that Nk(q, n) ≤ tk−1(O(nq−1)).

Indeed, Fox et al. [10] show how to convert a bound of the form N3(q, n) ≤ 2cn
q−1

(which we

obtain in Theorem 1) into the more general bound Nk(q, n) ≤ tk−1(c′nq−1) (where c, c′ are absolute

constants). Here, we apply the main idea behind the proof of Theorem 1 to give a very short and

direct proof of the following bound, improving the one from [10], which relates Nk(q, n) to N3(q, n).

Theorem 3. For every k ≥ 3, q ≥ 2, and n ≥ 2 we have

Nk(q, n) ≤ tk−2(N3(q, n)) .

This implies, by the upper bound in Corollary 1, that Nk(q, n) ≤ tk−1(2nq−1) for k ≥ 3, as

desired. We note that using our enumerative characterization of Nk(q, n) we can actually get a

better upper bound than the one stated above; see the discussion in Section 4.
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While we can prove Theorem 3 directly, and without using our characterization for Nk(q, n),

it appears that to prove a matching lower bound does require this enumerative characterization.

Specifically, we have the following.

Theorem 4. There is an absolute constant n0 so that for every k ≥ 3, q ≥ 2 and n ≥ n0 we have

Nk(q, n) ≥ tk−2(N3(q, n)/3nq) .

The above result improves upon a lower bound of [10], but more importantly, matches (up to

lower order terms) the upper bound of Theorem 3. One application of the above tight bounds is

the following. Eliáš and Matoušek [8] have recently introduced another framework for studying

generalizations of both ESL and EST in terms of the kth derivative of the function passing through

a set of points. Motivated by the relation between their framework and the one introduced in [10],

they asked if for every k ≥ 3 one has Nk(2, n) = tk−1(Θ(n)). By combining Theorems 3 and 4

together with our bounds on N3(2, n) we get the following sharp (and positive) answer.

Corollary 2. For every k ≥ 3 we have

Nk(2, n) = tk−1((2− o(1))n) ,

where the o(1) term goes to 0 as n→∞.

In fact, we may deduce the following, summarizing our bounds for general q.

Corollary 3. For every k ≥ 3, q ≥ 2, and sufficiently large n we have

tk−1(nq−1/2
√
q) ≤ Nk(q, n) ≤ tk−1(2nq−1) .

Organization: The rest of the paper is organized as follows. In Section 2 we mainly focus on

3-uniform hypergraphs. We first give a new proof of EST by showing that N3(2, n) ≤ P1(n) + 1.

We will then move on to prove the more general bound N3(q, n) ≤ Pq−1(n) + 1. The proof of the

general bound will turn out to be almost identical to the proof of the case q = 2. Next we will

prove the lower bound of Theorem 1, thus completing the characterization of N3(q, n). Since the

proof of Theorem 3 (giving an upper bound on our Ramsey number for k-uniform hypergraphs) is

so similar to the proof of Theorem 1, we will also give this proof in Section 2. We will end Section 2

with the proof of Theorem 2.

In Section 3 we consider k-uniform hypergraphs. We will start with proving a theorem analogous

to Theorem 1, giving a characterization of Nk(q, n) in terms of enumerating higher-order variants of

Pq−1(n). We will then show how one can derive the lower bound in Theorem 4 from this character-

ization. In Section 4 we give some concluding remarks and open problems; among other things, we

discuss how the problem of estimating the Ramsey-type numbers N3(q, k), or equivalently, estimat-

ing the number of d-dimensional integer partitions Pd(n), naturally leads to a problem of estimating

the number of independent sets in graphs, a well-studied problem in enumerative combinatorics.
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2 New Bounds for 3-Uniform Hypergraphs

We write [n] for {1, . . . , n}. For x, y ∈ [n]d we denote x � y when xi ≤ yi for all 1 ≤ i ≤ d. A set

S ⊆ [n]d is a down-set if s ∈ S implies x ∈ S for all x � s. We will frequently use the following

simple observation stating that any down-set can be viewed as a d− 1-dimensional partition. This

is best explained by Figures 1a and 1b, but we include the formal proof for completeness.

Observation 2.1. The number of down-sets S ⊆ [n]d is Pd−1(n).

Proof. We injectively map every down-set S ⊆ [n]d to a (d − 1)-dimensional integer partition as

follows. For every 1 ≤ i1, . . . , id−1 ≤ n let Ai1,...,id−1
= max{s : (i1, . . . , id−1, s) ∈ S} (where by

convention, maximum over an empty set is 0). Then clearly 0 ≤ Ai1,...,id−1
≤ n and, since S is a

down-set, it easily follows that Ai1,...,it,...,id−1
≥ Ai1,...,it+1,...,id−1

for every possible 1 ≤ t ≤ d− 1. In

other words, the (hyper)matrix A is a (d − 1)-dimensional n × · · · × n partition with entries from

{0, 1, . . . , n}. Furthermore, one can easily verify that this defines a bijection.

2.1 A new proof of the Erdős-Szekeres Theorem

Proof. Fix a black/white coloring of the edges of K3
N that has no monochromatic monotone path

of length n. We need to show that N ≤ P1(n). For every pair of vertices u < v denote C(uv) :=

(1 + nb, 1 + nw) where nb is the length (i.e., number of edges) of the longest black monotone path

ending with {u, v}, and nw is defined in a similar way only with respect to white monotone paths.

Notice that C(uv) ∈ [n]2. Define

D(v) = {x ∈ [n]2 : x � C(uv) for some u < v} ,

and note that D(v) is (by definition) a down-set in [n]2. It thus follows from Observation 2.1 (and

the pigeonhole principle) that it is enough to show that D(u) 6= D(v) for every pair of vertices.

So suppose to the contrary that u < v and D(u) = D(v). By definition, C(uv) ∈ D(v), and thus

C(uv) ∈ D(u). Hence, (again, by definition) there is a vertex t < u such that C(uv) � C(tu).

However, if the edge {t, u, v} is colored black then we can extend the longest black monotone path

ending at {t, u} to a longer one ending at {u, v}, and similarly if {t, u, v} is colored white. In either

case we have C(uv) 6� C(tu)—a contradiction.

2.2 Proof of Theorem 1

We begin by generalizing our proof of EST to any number of colors. In fact, the two proofs are

nearly identical, and so we will be concise here.

Lemma 2.2. N3(q, n) ≤ Pq−1(n) + 1.
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Proof. Fix a q-coloring of the edges of K3
N that has no monochromatic monotone path of length

n. We need to show that N ≤ Pq−1(n). For every pair of vertices u < v denote C(uv) :=

(1 +n1, . . . , 1 +nq) where ni is the length of the longest color-i monotone path ending with {u, v}.
Notice that C(u, v) ∈ [n]q. Define D(v) = {x ∈ [n]q : x � C(uv) for some u < v}. Since D(v) is

a down-set in [n]q, it follows from Observation 2.1 that it suffices to show that D(u) 6= D(v) for

every pair of vertices. So suppose to the contrary that u < v and D(u) = D(v). By definition,

C(uv) ∈ D(v), and thus C(uv) ∈ D(u). Hence, (again, by definition) there is a vertex t < u such

that C(uv) � C(tu). However, the longest monochromatic monotone path ending at {t, u} that

has the same color as the edge {t, u, v} can be extended to a longer one ending at {u, v}, implying

C(uv) 6� C(tu)—a contradiction.

We now turn to prove the lower bound of Theorem 1, namely, that N3(q, n) > Pq−1(n). We

first focus on the case of q = 2 colors, which would simplify the notation we need. Recall that

in our proof of EST we assigned to each vertex a down-set, or equivalently, a line partition. It

therefore seems natural to do a similar thing here, and so in order to define a 2-coloring of the

edges of the complete 3-uniform hypergraph, we identify each vertex with a distinct line partition.

Of course, we now need to define a total order on the vertex set, so we order the line partitions (i.e.,

vertices) lexicographically. To be more precise: for two line partitions A 6= B, A = (a1, . . . , an), B =

(b1, . . . , bn), denote δ(A,B) the smallest i for which ai 6= bi; then A is lexicographically smaller

than B, denoted AlB, if aδ(A,B) < bδ(A,B).
4

Our proof will follow by defining a certain coloring and showing that, roughly, if we look at

the δ-value of consecutive line partitions in a monochromatic monotone path, it is either strictly

increasing, or else the δth element of the line partitions along the path is strictly increasing. Since

this clearly cannot go on for long, any monochromatic monotone path would have to be short.

Lemma 2.3. N3(2, n) > P1(n).

Proof. Put N = P1(n), and identify each vertex of K3
N with a distinct line partition of length n

with entries from {0, 1, . . . , n}, where the different line partition are ordered lexicographically. We

need to color the edges so that there is no monochromatic monotone path of length n. Given an

edge whose vertices are (identified with) the three line partitions A l B l C, we color it black if

δ(B,C) > δ(A,B), and otherwise white.

We claim that the following holds for any monochromatic monotone path on ` + 2 vertices

(i.e., of length `): denoting B l C its last two vertices, if all edges of the path are black then

δ(B,C) > `, and if all edges of the path are white then Cδ(B,C) > `. This would imply that there

is no monochromatic monotone path of length n, as required.

We prove our claim by induction on `, noting that for the base case ` = 0 both conditions

trivially hold. Consider a path of length ` ≥ 1, whose last three vertices are AlBlC, and denote

4So for example, (5, 4, 3, 2, 1) l (5, 5, 3, 0, 0).

9



δ = δ(B,C), δ′ = δ(A,B). By the definition of our coloring, if the path is black then δ > δ′ ≥ `.

Otherwise, δ ≤ δ′ and so Cδ > Bδ ≥ Bδ′ ≥ `, which holds since BlC, and since B is decreasing.

To generalize the above lower bound to any number of colors, we first need to define a total

ordering on partitions of any given dimension. For two d-dimensional partitions A 6= B, denote

δ(A,B) the lexicographically smallest (i1, . . . , id) ∈ [n]d such that Ai1,...,id 6= Bi1,...,id . We consider

A to be smaller than B, denoted AlB, if Aδ(A,B) < Bδ(A,B).
5

Lemma 2.4. N3(q, n) > Pq−1(n).

Proof. Put d = q − 1, N = Pd(n), and identify each vertex of K3
N with a distinct n × · · · × n

d-dimensional partition with entries from {0, 1, . . . , n}. Further, order the vertex set using the

above defined l. We need to color the edges with the colors {1, 2, . . . , d + 1} so that there is no

monochromatic monotone path of length n. For every three d-dimensional partition AlB lC, if

there is an 1 ≤ i ≤ d satisfying (δ(B,C))i > (δ(A,B))i we color {A,B,C} by i (if there are several

such i we choose one arbitrarily); if there is no such i, we color the edge by d+ 1.

We claim that the following holds for any monochromatic monotone path on ` + 2 vertices

(i.e., of length `): denoting B l C its last two vertices and denoting δ(B,C) = (δ1, . . . , δd), if all

edges of the path are colored by 1 ≤ i ≤ d then δi > `, and if all edges of the path are colored

by d + 1 then Cδ1,...,δd > `. This would imply that there is no monochromatic monotone path

of length n. We prove our claim by induction on `, noting that for the base case ` = 0 both

conditions trivially hold. Consider a path of length ` ≥ 1 whose last three vertices are AlB lC,

and denote (δ1, . . . , δd) = δ(B,C), (δ′1, . . . , δ
′
d) = δ(A,B). By the definition of our coloring, if

the path is colored by 1 ≤ i ≤ d then δi > δ′i ≥ `; otherwise, (δ1, . . . , δd) � (δ′1, . . . , δ
′
d) and so

Cδ1,...,δd > Bδ1,...,δd ≥ Bδ′1,...,δ′d ≥ `, which holds since B lC, and since B is decreasing in each line.

This completes the proof.

Proof of Theorem 1. It follows immediately from Lemma 2.2 and Lemma 2.4 that N3(q, n) =

Pq−1(n) + 1.

Let us briefly mention the implications of the above arguments to a natural extension of N3(q, n).

Let N3(q, n1, . . . , nq) be the smallest integer N so that every coloring of the edges of K3
N using q

colors contains a color-i monotone path of length ni, in at least one of the colors 1 ≤ i ≤ q. One

can modify both the upper and lower bound proofs above in a straightforward manner to show that

N3(q, n1, . . . , nq) = Pq−1(n1, . . . , nq) + 1, where Pd(n1, . . . , nd, n) is the number of d-dimensional

n1 × · · · × nd (hyper)matrices with entries from {0, 1, . . . , n} that decrease in each line. One can

easily generalize the argument proving (2) to show P1(a, b) =
(
a+b
a

)
, which implies the known result

N3(2, a, b) =
(
a+b
a

)
+ 1. As for the next case, MacMahon [17] proved a result which is in fact more

5Notice this is the lexicographic ordering if we were to ”flatten” the d-dimensional partitions into line partitions.

Thus, l is clearly a total order (it is transitive, and for every A 6= B either AlB or else B lA).
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general than the one stated in (3), namely, P2(a, b, c) =
∏a
i=1

∏b
j=1

∏c
k=1

i+j+k−1
i+j+k−2 , which gives an

exact bound for N3(3, a, b, c).

2.3 Proof of Theorem 3

It will be more convenient to prove the following stronger bound for every k ≥ 4:

Nk(q, n) ≤ Nk−2(N3(q, n)− 1, 2) . (7)

Proof. Fix a q-coloring of the edges of Kk
N that has no monochromatic monotone path of length n.

We need to show that N < Nk−2(N3(q, n)− 1, 2). For any k − 1 vertices x1 < · · · < xk−1 denote

C(x1, . . . , xk−1) := (1 + n1, . . . , 1 + nq) where ni is the length of the longest color-i monotone

path ending with {x1, . . . , xk−1}, and notice that C(x1, . . . , xk−1) ∈ [n]q. For any k − 2 vertices

x2 < · · · < xk−1 we define

D(x2, . . . , xk−1) = {y ∈ [n]q : y � C(x1, x2, . . . , xk−1) for some x1 < x2} ,

which is of course a down-set in [n]q.

Now, we define a coloring of the complete (k − 2)-uniform hypergraph Kk−2
N (on the same

vertex set) by letting the color of an edge {x1, . . . , xk−2} be D(x1, . . . , xk−2). We claim that

there is no monochromatic monotone path of length 2 in our coloring of Kk−2
N . Indeed, sup-

pose for contradiction that {x1, . . . , xk−2} and {x2, . . . , xk−1} receive the same color, that is,

D(x1, . . . , xk−2) = D(x2, . . . , xk−1). By definition, C(x1, . . . , xk−1) ∈ D(x2, . . . , xk−1), and so

by our assumption, C(x1, . . . , xk−1) ∈ D(x1, . . . , xk−2). Hence, (again, by definition) there is a

vertex x < x1 such that C(x1, . . . , xk−1) � C(x, x1, . . . , xk−2). However, in the (given) coloring

of Kk
N , the longest monochromatic monotone path ending at {x, x1, . . . , xk−2} that has the same

color as the edge {x, x1, . . . , xk−1} can be extended to a longer one ending at {x1, . . . , xk−1}, so

C(x1, . . . , xk−1) 6� C(x, x1, . . . , xk−2)—a contradiction.

We conclude that in our coloring of Kk−2
N there is no monochromatic monotone path of two

edges. Therefore it must be the case that N < Nk−2(c, 2) where c is the number of colors we used.

Since each D(x1, . . . , xk−2) is a down-set in [n]q, Observation 2.1 implies c ≤ Pq−1(n), and since

Theorem 1 tells us that Pq−1(n) = N3(q, n)− 1 the proof is complete.

Having completed the proof of (7), let us prove that it implies the (weaker) bound Nk(q, n) ≤
tk−2(N3(q, n)) stated in Theorem 3. We proceed by induction on k, noting that when k = 3 there

is nothing to prove, and that the case k = 4 follows from (7) and the fact that N2(q, 2) ≤ 2q + 1

(see the discussion preceding (5)). For the induction step, assuming k ≥ 5, we have from (7)

that Nk(q, n) ≤ Nk−2(q′, 2), where q′ = N3(q, n), and by the induction hypothesis, Nk−2(q′, 2) ≤
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tk−4(N3(q′, 2)). Applying the upper bound in Corollary 1 we deduce that

Nk(q, n) ≤ tk−4(N3(q′, 2))

≤ tk−3(2 · 2q′−1)

= tk−2(q′)

= tk−2(N3(q, n)) ,

as needed.

2.4 An improved lower bound for Pd(n)

Recall that by Observation 2.1, Pd−1(n) is the number of down-sets in [n]d. Here it will be convenient

to use the notion dual to that of a down-set. A set A ⊆ [n]d is an antichain if a ∈ A implies x /∈ A
for all x � a. In this section (and later on as well) it will be useful to refer to the following simple

observation.

Observation 2.5. The number of antichains A ⊆ [n]d is Pd−1(n).

Proof. Observe that retaining only the ≺-maximal elements of a down-set yields a unique antichain.

Moreover, every antichain can clearly be obtained from a down-set in this manner. Hence down-sets

are in bijection with antichains, and from Observation 2.1 we deduce that the number of antichains

in [n]d is exactly Pd−1(n).

We will use the antichain characterization of Observation 2.5 in order to prove a lower bound on

Pd(n). First, we need a simple lemma. For any d ≤ k ≤ dn let Sn(k, d) be the number of solutions

to the equation x1 + · · ·+ xd = k with xi ∈ [n] for every 1 ≤ i ≤ d. Notice that S2(k, d) are simply

the binomial coefficients (specifically, S2(k, d) =
(
d

k−d
)
). The numbers Sn(k, d) (which were already

studied by Euler) satisfy many of the properties of binomial coefficients, e.g., symmetry about the

middle Sn(k, d) = Sn(dn− k, d). In particular, it is known that maxk Sn(k, d) =: Md,n is achieved

at the middle, that is, at k = d(n+ 1)/2 (this already follows from the work of de Bruijn et al. [4]).

We remark that it can be shown (using a version of the central limit theorem, see [18]) that when

d tends to infinity,

Md,n =

√
6

π(n2 − 1)d
· nd(1 + od(1))

(
≈
√

6

π
· n

d−1

√
d

)
.

However, we will need to estimate Md,n for any d, and so we prove the following easy lower bound.

Lemma 2.6. For every d ≥ 1 and n ≥ 1 we have

Md,n = max
k

Sn(k, d) ≥ 2

3
· n

d−1

√
d
.
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Proof. Let x1, . . . , xd be randomly (independently and uniformly) chosen from [n], and set X = x1+

· · ·+xd. Notice that the expectation of X is µ := d(n+1)/2, and its variance is σ2 := d(n2−1)/12 ≤
dn2/12. By Chebyschev’s Inequality, for λ > 0 to be chosen later, Pr

(
|X − µ| ≥ λσ

)
≤ λ−2. Put

α = 1− λ−2. Since Pr(X = k) = Sn(k, d)/nd, we have

bµ+λσc∑
k=dµ−λσe

Sn(k, d) ≥ αnd .

Using the pigeonhole principle, we can bound from below the largest Sn(k, d) in the range above,

which is Md,n, by

αnd

2λσ
≥
√

3α

λ
· n

d−1

√
d
.

Choosing λ =
√

3 so as to maximize α/λ yields the desired bound.

We now use Lemma 2.6 above to deduce a lower bound on Pd−1(n).

Proof of Theorem 2. We show that

Pd−1(n) ≥ 2Md,n , (8)

which, by Lemma 2.6, would complete the proof. For x = (x1, . . . , xd) ∈ [n]d write |x| =
∑d

i=1 xi,

and note that Sn(k, d) is the number of x satisfying |x| = k. Let d ≤ k ≤ dn, and let A ⊆ [n]d

be a set whose every member a satisfies |a| = k. Then A is an antichain since every x � a, where

a ∈ A and x 6= a, must satisfy |x| < |a| = k, implying that x /∈ A. It follows that the number of

antichains in [n]d is at least 2Sn(k,d). Taking k so as to maximize Sn(k, d) shows that the number

of antichains in [n]d is at least 2Md,n . Observation 2.5 now proves (8), as needed.

3 General Hypergraphs

Our goal in this section is to give an enumerative characterization of Nk(q, n) analogous to the one

we have previously obtained for N3(q, n) in Theorem 1. We will show that just as the numbers

N3(q, n) are closely related to high-dimensional integer partitions, the numbers Nk(q, n) are closely

related to what can naturally be thought of as higher-order analogues of partitions. For simplicity

of presentation, we will focus on higher-order line partitions, which we would use to characterize

Nk(2, n). The characterization for Nk(q, n) is obtained by exactly the same arguments.

To state our characterization we will need to restate Observation 2.1 in a language that will

be somewhat easier to generalize. So for what follows, let us set P2[n] = [n]2, and let P3[n]

denote the family of line partitions as defined in Section 1 (so
∣∣P3[n]

∣∣ = P1(n)). Recall that by

Observation 2.1, line partitions are in bijection with down-sets in [n]2; put in other words, every

line partition F ∈ P3[n] is a subset of P2[n] with the property that if x ∈ F then so is every x′ � x.

Now, to make the above easier to generalize, we think of any x = (x1, x2) ∈ [n]2 as a multiset (with
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Figure 2: A line partition contained in another.

xi−1 being the multiplicity of the ith element). Accordingly, we henceforth use the notation x′ ⊆ x
instead of x′ � x.6

We define P4[n] in a similar manner, so that the members of P4[n] are down-sets in P3[n]; that

is, each F ∈ P4[n] is a collection of line partitions (i.e., elements of P3[n]) with the property that

if a line partition L belongs to F then so do all line partitions L′ ⊆ L. Note that the way we have

redefined line partitions in the previous paragraph allows us to talk about one line partition being

a subset of another. For the sake of clarity the reader can check Figure 2 which depicts inclusion

of two line partitions; furthermore, see Section 4 for a detailed discussion about P4[n].

In general, we inductively define Pk[n], whose members are the down-sets in Pk−1[n], as follows.

Definition 3.1. Let P2[n] = [n]2 and suppose we have already defined Pk−1[n]. A set F ⊆ Pk−1[n]

is in Pk[n] if S ∈ F implies S′ ∈ F for any S′ ⊆ S.

We denote the cardinality of Pk[n] by ρk(n). In what follows, we will sometimes refer to the

members of Pk[n] as line partitions of order k. We obviously have ρk(n) ≤ 2ρk−1(n) for any k ≥ 3,

and in particular, ρ4(n) ≤ 2(2nn ) ≤ 222n . Summarizing, we have

ρ2(n) = n2, ρ3(n) =

(
2n

n

)
, ρk(n) ≤ tk−1(2n)

for any k ≥ 3. Our characterization of Nk(2, n) is thus the following.

Theorem 5. For every k ≥ 2 and n ≥ 2 we have

Nk(2, n) = ρk(n) + 1 .

Note that Theorem 5 subsumes both ESL and EST (as well as our main result in Theorem 1

when q = 2; see (10) at the end of this section for arbitrary q). The proof of Theorem 5 follows

immediately from Lemmas 3.2 and 3.4 stated below.

6For consistency, one can instead think of x as a (standard) set, say by using the “unary representation”: Letting

A,B be two disjoint ordered sets of cardinality n, we may represent x as the subset of A ∪ B consisting of the first

x1 members of A and the first x2 members of B.
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Lemma 3.2. Nk(2, n) ≤ ρk(n) + 1.

Proof. Fix a 2-coloring of the edges of Kk
N that has no monochromatic monotone path of length

n. We need to show that N ≤ ρk(n). We begin with some definitions. For every k − 1 vertices

x1 < · · · < xk−1 denote D(x1, . . . , xk−1) := (1+nb, 1+nw) where nb is the length of the longest black

monotone path ending with {x1, . . . , xk−1}, and nw is defined in a similar way only with respect to

white monotone paths. Notice that D(x1, . . . , xk−1) ∈ P2[n]. For any r ∈ {k − 2, k − 1, . . . , 1} and

any r vertices xk−r < · · · < xk−1 we recursively define

D(xk−r, . . . , xk−1) = {S ∈ Pk−r[n] : S ⊆ D(x, xk−r, . . . , xk−1) for some x < xk−r} .

Since for r = k − 1 we have D(xk−r, . . . , xk−1) ∈ P2[n], from Definition 3.1 we immediately have

that D(xk−r, . . . , xk−1) ∈ Pk−r+1[n]. In particular, it holds that D(v) ∈ Pk[n]. Hence to complete

the proof it suffices to show that D(u) 6= D(v) for every pair of vertices.

We first prove that for any 2 ≤ r ≤ k − 1 and any r vertices xk−r < · · · < xk−1,

D(x, xk−1) ⊆ D(xk−r,x) ⇒ ∃x < xk−r s.t. D(xk−r,x, xk−1) ⊆ D(x, xk−r,x) , (9)

where x is short for xk−r+1, . . . , xk−2. By definition, D(xk−r,x, xk−1) ∈ D(x, xk−1). Therefore, the

assumption that D(x, xk−1) ⊆ D(xk−r,x) implies D(xk−r,x, xk−1) ∈ D(xk−r,x). Hence, (again,

by definition) there is some vertex x < xk−r such that D(xk−r,x, xk−1) ⊆ D(x, xk−r,x), as desired.

By iteratively applying (9) we deduce the following. Suppose there are two vertices u < v such

that D(u) = D(v). Note that the case r = 2 of (9) is satisfied, namely, D(v) ⊆ D(u), where we

put xk−1 = v, xk−2 = u. Therefore, the conclusion in (9) for the case r = k − 1 must hold as well.

That is, there are k vertices x0 < · · · < xk−3 < u < v such that D(x1, . . . , u, v) ⊆ D(x0, . . . , u)

(∈ [n]2). However, the longest monochromatic monotone path ending at {x0, . . . , u} that has the

same color as the edge {x0, . . . , u, v} can be extended to a longer one ending at {x1, . . . , u, v},
implying D(x1, . . . , u, v) 6⊆ D(x0, . . . , u)—a contradiction. This completes the proof.

Before giving the lower bound on Nk(2, n) matching our upper bound, we first give a short proof

for the case of graphs, that is, for the fact that N2(2, n) ≥ n2 + 1, which would be suggestive of

the generalization we plan to make. In other words, we give a black/white coloring of the complete

graph on n2 vertices that has no monochromatic monotone path of length n. First, identify each

of the n2 vertices with a distinct pair of integers (x, y) ∈ [n]2, and order the pairs (i.e., vertices)

lexicographically. For an edge whose vertices are identified with the pairs (x1, y1) and (x2, y2),

where (x1, y1) is lexicographically smaller than (x2, y2), color it black if x1 < x2; otherwise, color

it white if y1 < y2. Crucially, observe that the lexicographic ordering ensures that every edge is

indeed colored by either black or white. Under this coloring, it is clear that any monochromatic

monotone path is of length at most n − 1, or equivalently, has at most n vertices, simply because

the pairs along the path are strictly increasing either in the first or in the second coordinate.
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Let us give the necessary definitions we will need in order to prove the lower bound on Nk(2, n)

stated in Lemma 3.4 below. We begin by extending the lexicographic ordering of pairs of nonneg-

ative integers (which are line partitions of order 2) to partitions of arbitrary order. Assuming we

have already defined lexicographic ordering for line partitions of order k−1, we say that an order-k

line partition F is lexicographically smaller than an order-k line partition F ′, denoted FlF ′, if the

lexicographically first element on which they differ (that is, the lexicographically first member of

the symmetric difference F4F ′) is in F ′.7 (This ordering in fact coincides with the one preceding

the proof of Lemma 2.3 that we used for the k = 3 case.)

Furthermore, when two order-k line partition F ,F ′ satisfy F + F ′ we denote δ(F ,F ′) the

lexicographically first element that F ′ contains and F does not (that is, the lexicographically first

member of F ′ \ F).8 Note that δ(F ,F ′) is a line partition of order k − 1; that is, if F ,F ′ ∈ Pk[n]

then δ(F ,F ′) ∈ Pk−1[n].

Claim 3.3. For any sequence of order-k line partitions F1 + F2 + · · · + Ft we have δ(F1,F2) +
δ(F2,F3) + · · · + δ(Ft−1,Ft).

Proof. It suffices to show that for any three order-k line partitions F1 + F2 + F3 we have

δ(F1,F2) + δ(F2,F3). By definition, δ(F1,F2) ∈ F2 and δ(F2,F3) /∈ F2. Since F2 is closed

under taking subsets, it cannot be the case that δ(F2,F3) ⊆ δ(F1,F2).

Lemma 3.4. Nk(2, n) > ρk(n).

Proof. Put N = ρk(n), and identify the vertex set of Kk
N with Pk[n], ordered lexicographically.

We need to color the edges so that there is no monochromatic monotone path of length n. Let

e = {F1, . . . ,Fk} be an edge, and note that since the Fi’s are lexicographically ordered F1l· · ·lFk
it follows that F1 6⊇ · · · 6⊇ Fk. By Claim 3.3 we have δ(F1,F2) + · · · + δ(Fk−1,Fk), and observe

that we may apply Claim 3.3 again, this time on the sequence of δ’s, which is a sequence of k − 1

line partitions of order k − 1. By applying Claim 3.3 i times in a similar fashion we obtain a

sequence of k − i line partitions in Pk−i[n]. In particular, after i = k − 2 applications we obtain

two pairs (x1, y1) =: δ∗(F1, . . . ,Fk−1) and (x2, y2) =: δ∗(F2, . . . ,Fk) that belong to P2[n] (= [n]2)

and satisfy (x1, y1) 6⊇ (x2, y2). We color the edge e black if x1 < x2; otherwise, we necessarily have

y1 < y2, and we color e white.

Observe that a monochromatic monotone path of length ` determines a sequence of `+ 1 pairs

from [n]2 (namely, if the path is on the vertices F1 l · · ·lF`+k−1 then it determines the `+ 1 pairs

δ∗(F1, . . . ,Fk−1), δ∗(F2, . . . ,Fk), . . . , δ∗(F`+1, . . . ,F`+k−1)). Moreover, these pairs strictly increase

either in the first or in the second coordinate. We deduce that `+ 1 ≤ n, completing the proof.

7The reader may find it useful here to think of an order-k line partition as a 0/1-vector indexed by order-

(k− 1) line partitions that are ordered lexicographically. Now, F is lexicographically smaller than F ′ precisely when

0 = FS < F ′S = 1 where S is the first index in which the two vectors differ.
8In the vector terminology mentioned earlier, δ(F ,F ′) is the first index S such that 0 = FS < F ′S = 1.
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Having completed the proof of Theorem 5 we finally mention that all the above can be extended

in a straightforward manner to any number q > 2 of colors, so as to determine Nk(q, n). Setting

P2
d [n] = [n]d, we define Pkd [n] so that its members are the down-sets in Pk−1

d [n], similarly to what

we did before. Denoting ρk,d(n) =
∣∣Pkd [n]

∣∣, we of course have ρ3,d(n) = Pd−1(n), and since for any

k ≥ 3, ρk,d(n) ≤ 2ρk−1,d(n), we have ρk,d(n) ≤ tk−2(Pd−1(n)). By following the proofs in this section

essentially line by line, and replacing [n]2 with [n]q, one obtains the characterization

Nk(q, n) = ρk,q(n) + 1 . (10)

We now use the above characterization to deduce a recursive lower bound on Nk(q, n).

Lemma 3.5. For every k ≥ 4, q ≥ 2, and n ≥ 2 we have

Nk(q, n) ≥ 2Nk−1(q,n)/Nk−2(q,n) .

Proof. We show that for every k ≥ 4, d ≥ 2, and n ≥ 2, we have ρk,d(n) ≥ 2(ρk−1,d(n)+1)/(ρk−2,d(n)+1),

from which the proof immediately follows using (10). Let Li be the collection of sets S ∈ Pk−1
d [n]

of cardinality9 i, where 0 ≤ i ≤ ρk−2,d(n), and denote `i = |Li|. We claim that any collec-

tion {S1, . . . , St} ⊆ Li determines a distinct F ∈ Pkd [n], from which we immediately deduce that

ρk,d(n) ≥ 2`i for any i. To see that the claim holds, observe that given such a collection, the set

F = {S ∈ P k−1
d [n] : S ⊆ Sj for some j} is (by definition) an element of Pkd [n], and furthermore,

since S1, . . . , St all belong to Li, none of them is a subset of the other, so they are the maximal

elements of F (and thus a set F ′ determined by any other such collection necessarily has a different

subset of maximal elements, implying F 6= F ′).
Now, take i so as to maximize `i. Since ρk−1,d(n) =

∑ρk−2,d(n)
j=0 `j , we have the inequality

`i ≥ ρk−1,d(n)/(ρk−2,d(n) + 1), and in fact, this inequality is clearly strict. The inequality in the

statement now easily follows.

We will show that Theorem 4 follows by iteratively applying Lemma 3.5. First, we need a

simple lemma concerning differences of towers. We henceforth write log() for log2().

Lemma 3.6. For any k ≥ 2 and positive reals a ≥ b + 1, a ≥ 3, we have tk(a) − tk(b) ≥
tk(a− 2−(k−2)).

Proof. We proceed by induction on k. For the base case k = 2 we have 2a− 2b ≥ 2a− 2a−1 = 2a−1,

as needed. Now, observe that it follows from the standard estimate 1 − p ≥ e−2p, applicable for

any 0 ≤ p ≤ 1
2 , that for every pair of positive reals x ≥ 2y we have x− y = x(1− y/x) ≥ xe−2y/x.

So for every x ≥ 2y > 0 we have

log(x− y) ≥ log x− 2 log(e)y/x ≥ log x− 3y/x . (11)

9Recall that the members in S ∈ Pk−1
d [n] are elements from Pk−2

d [n].
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Denote by log(i)() the i ≥ 1 times iterated log() (so, e.g., log(2)(x) = log log(x)). For the induction

step, which is equivalent to log(k−1)(tk(a)− tk(b)) ≥ a− 2−(k−2), we have

log(k−1)(tk(a)− tk(b)) = log log(k−2)(tk−1(2a)− tk−1(2b))

≥ log(2a − 2−(k−3))

≥ a− 3 · 2−(k−3)/2a

≥ a− 1

2
· 2−(k−3) ,

where the first inequality follows from the induction hypothesis, the second inequality from (11),

and the third inequality from the assumption that a ≥ 3. The proof follows.

Proof of Theorem 4. The case k = 4 follows immediately from Theorem 4 and the fact that

N2(q, n) ≤ nq + 1 (see the discussion preceding (5)). We prove by induction on k ≥ 5 that

Nk(q, n) ≥ tk−2(N3(q,n)
2nq −

∑k−6
i=0 2−i), from which the result clearly follows. We assume throughout

the proof that n is larger than some absolute constant (i.e., independent of q, k). For the base case

k = 5 we get

logN5(q, n) ≥ N4(q, n)/N3(q, n)

≥ 2N3(q,n)/(nq+1)/N3(q, n)

≥ 2N3(q,n)/2nq
,

where the first and second inequalities rely on Lemma 3.5, and the last inequality is due to the fact

that

log2N3(q, n) = on(N3(q, n)/nq) (12)

uniformly for all n larger than some absolute constant (i.e., independently of q; this easily follows

from the bounds in Corollary 1). For the induction step, assuming k ≥ 6, we have

logNk(q, n) ≥ Nk−1(q, n)/Nk−2(q, n)

≥ Nk−1(q, n)/tk−4(N3(q, n))

≥ 2tk−4(
N3(q,n)

2nq −
∑k−7

i=0 2−i)−tk−4(logN3(q,n))

≥ 2tk−4(
N3(q,n)

2nq −
∑k−7

i=0 2−i−2−(k−6))

= tk−3

(N3(q, n)

2nq
−
k−6∑
i=0

2−i
)
,

where the first inequality follows from Lemma 3.5, the second inequality from the upper bound

Nk(q, n) ≤ tk−2(N3(q, n)) in Theorem 3, the third inequality from the induction hypothesis, and

the fourth inequality from Lemma 3.6 using the fact that k−4 ≥ 2, as well as (12). This completes

the proof.
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4 Concluding Remarks and Open Problems

An exact bound for the two-edge path?: Combining Theorem 1 together with Observa-

tion 2.5 we see that N3(q, n) is determined by the number of antichains in [n]q. In particular,

N3(q, 2)− 1 is the number of antichains in [2]q, where [2]q is the Boolean poset over [q], that is, the

poset of the subsets—ordered by inclusion—of a q-element ground set. These numbers are called

Dedekind numbers, first introduced by Dedekind in [6], and despite much research they have no

known (reasonable) closed formula. Hence, we do not expect a closed formula even for N3(q, 2)

(i.e., the case of two-edge paths), which is the simplest non-trivial case (for any given q).

The exact exponent of N3(q, n): While Dedekind numbers do not have a closed formula,

Kleitman [13] has shown that the number of antichains in [2]d is at most 2
(1+o(1))( d

d/2). Note that

2( d
d/2) is a trivial lower bound since any family of subsets of [d], all of the same cardinality d/2, is

an antichain. So Kleitman’s result can be phrased as saying that the size of the largest antichain in

[2]d essentially determines also the number of antichains. It is known that the poset [n]d (equipped

with the partial order �) satisfies the so-called “Sperner property”, which means here that the

largest antichain in [n]d is also the “middle layer”. As noted in Subsection 2.4, the middle layer

is of size (1 + od(1))
√

6/dπ · nd−1 for d, n � 1, so Pd−1(n) is (at least) exponentially larger than

this.10 Now, recall that our best upper bound on Pd−1(n) is (roughly) 22nd−1
, so the two exponents

are off by a
√
d factor.

As the problem of estimating the number of antichains in [n]d seems like a natural extension

of the classical problem of estimating the Dedekind numbers (which is the number of antichains in

[2]d), the following question seems especially natural—does the phenomenon in Dedekind’s problem

hold in this case as well? In other words, is the number of antichains in [n]d of order 2cn
d−1/

√
d? One

might even be bolder and ask if the exact constant in the exponent is
√

6/π (as the one in the size of

the largest antichain). Such a bound would immediately imply that N3(q, n) = 2(1+o(1))nq−1/
√
πq/6

with the o(1) term going to 0 as q →∞.

We note that by now there are several proofs [12, 14, 15, 22] of Kleitmen’s result11 but as of now

we are not able to apply any of them in order to prove that the number of antichains in [n]d is of

order 2O(nd−1/
√
d). It is worth mentioning here that an antichain in the poset [n]d is nothing but an

independent set in the graph whose vertex set is [n]d and with an edge between any two x, y ∈ [n]d

satisfying x � y or y � x (this is the corresponding comparability graph). So it seems that the

next step towards a complete solution of the Ramsey-type problem considered in this paper is yet

another classical enumerative problem, namely, that of counting independent sets.

10So we also note that the constant 2/3 in Theorem 2 can be improved to
√

6/π when d is large.
11We remark that earlier works, such as the one by Hansel [11], proved the weaker result that the number of

antichains in [2]n is at most C( n
n/2) for some absolute constant C. Observe, however, that proving a similar result in our

setting, that is, that the number of antichains in [n] is at most Cnd−1/
√
d will suffice to prove that Pd(n) ≤ 2O(nd−1/

√
d).
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Tighter bounds for N4(2, n): While we know thatN3(2, n) =
(

2n
n

)
+1, it seems hard to determine

even the asymptotics of Nk(2, n) for k > 3. Let us explain why this is the case by focusing on k = 4.

Recall that by Corollary 2 we know that N4(2, n) = 22(2−o(1))n
. However, as for the logarithm of

N4(2, n), what we know by Theorem 3 and Lemma 3.5 is only that (roughly)(
2n

n

)
/n2 ≤ log2N4(2, n) ≤

(
2n

n

)
.

Actually, the enumerative characterization in Theorem 5 tells us more. Define a poset on the set of

line partitions P3[n] by letting P � P ′ whenever P is below P ′ (as in Figure 2). This poset is known

in the literature as (the restricted) Young’s lattice L(n, n) (see, e.g., [26], Section 3.1.2), and from

Theorem 5 it follows that N4(2, n)− 1 is exactly equal to the number of antichains in L(n, n) (as it

clearly equals the number of down-sets there). A well-known result in enumerative combinatorics

states that this poset has the Sperner property (this was first shown by Stanley in [24]), implying

that the largest antichain in it is obtained by taking every line partition such that the area below

it is 1
2n

2. However, the number M(n) of these line partitions is, as far as we know, not well

understood, even asymptotically. It therefore seems that determining N4(2, n) is hard; even if

L(n, n) is a “nice” poset, in the sense that the same phenomenon in Dedekind’s problem holds and

the number of antichains in L(n, n) is 2Θ(M(n)), it seems that in order to determine N4(2, n) one

must first know M(n).

Let us mention here that a lower bound for M(n) is not too hard to obtain. Indeed, letting X

be the area below a random member of L(n, n), one can show that the variance of X is O(n3). By

Chebyschev’s Inequality, the area below most members of L(n, n) deviates from 1
2n

2 by O(n3/2), and

so M(n) ≥ Ω(|L(n, n)| /n3/2) (which improves on the “naive” bound M(n) ≥ |L(n, n)| /(n2 + 1)).

Note that this implies that log2N4(2, n) ≥ Ω
((

2n
n

)
/n3/2

)
, as N4(2, n) ≥ 2M(n) similarly to the proof

of Theorem 2. It seems reasonable to believe that M(n), and respectively log2N4(2, n), are not

much larger than the aforementioned lower bounds.

Transitive colorings: As in the rest of the paper, let us assume that the vertices of the complete

hypergraphs Kk
N are the integers 1, . . . , N . We say that a q-coloring of the edges of Kk

N is transitive

if the following condition holds; for every (k + 1)-tuple of vertices x1 < x2, . . . < xk+1, if the two

edges {x1, . . . , xk}, {x2, . . . , xk+1} received color i, then so did the other k − 1 edges consisting

of k of the vertices x1, . . . , xk+1. Let N ′k(q, n) be the variant of Nk(q, n) restricted to transitive

colorings. The problem of bounding N ′k(q, n) was raised by Eliáš and Matoušek [8]. We clearly

have N ′k(q, n) ≤ Nk(q, n) so the main question is whether N ′k(q, n) is a tower of height k − 1 as is

Nk(q, n). It is not hard to see that the coloring showing that N2(q, n) > nq is transitive, implying

that N ′2(q, n) = N2(q, n). One can also check that the colori ng we use in the proof of Lemma 2.4

is transitive, implying that N ′3(q, n) = N3(q, n). One is thus tempted to ask if N ′k(q, n) = Nk(q, n)?

As it turns out, the coloring we use to prove Lemma 3.4 is not transitive. So the question of
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deciding if N ′k(q, n) = Nk(q, n) remains an interesting open problem. It might very well be possible

to define a variant of our coloring that will be transitive and give comparable bounds.

A better exponent for Pd(n): It is not hard to see that one can derive from (3) the bound

N3(3, n) = (27/16)3/2·n2(1−o(1)) = 2(c−o(1))n2
, where c = 3

2(3 log2 3 − 4) ≈ 1.1323. This of course

means that the bound in (4) can be improved to Pd(n) ≤ 2(c−o(1))nd
(for d ≥ 2), implying similar

improvements of the constants involved in the results stated in Subsections 1.3 and 1.5 (for q ≥ 3).

This can also be used to show that Nk(3, n) = tk−1((c− o(1))n2).

Acknowledgment: We are extremely grateful to Benny Sudakov for suggesting to us some of the
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