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Abstract

Let fr(n, v, e) denote the maximum number of edges in an r-uniform hypergraph on n vertices,
which does not contain e edges spanned by v vertices. Extending previous results of Ruzsa and
Szemerédi and of Erdős, Frankl and Rödl, we partially resolve a problem raised by Brown, Erdős
and Sós in 1973, by showing that for any fixed 2 ≤ k < r, we have

nk−o(1) < fr(n, 3(r − k) + k + 1, 3) = o(nk).

1 Introduction

All the hypergraphs considered here are finite and have no parallel edges. An r-uniform hypergraph
(=r-graph for short) H = (V,E), is a hypergraph in which each edge contains precisely r distinct
vertices of V . Denote by fr(n, v, e) the largest number of edges in an r-graph on n vertices that
contains no e edges spanned by v vertices. Estimating the asymptotic growth of this function for
fixed integers r, e, v and large n is one of the most well studied problems in extremal graph theory. In
particular, when e =

(
v
r

)
we get the well known Turán problem of determining the maximum possible

number of edges in an r-graph that contains no complete r-graph on v vertices. See the surveys [8],
[11], [14], and [21] for results and references on this and other graph and hypergraph Turán problems.
In 1973, Brown, Erdős and Sós [5],[6] initiated the study of the function f for r-graphs (r ≥ 3). A
general case they managed to resolve was that for every 2 ≤ k < r and e ≥ 3

fr(n, e(r − k) + k, e) = Θ(nk),

where the upper bound follows from the observation that in any r-graph that contains no e edges
spanned by e(r − k) + k vertices, any set of k vertices belongs to at most e− 1 edges, and the lower
bound is obtained by a (by now) standard application of the probabilistic deletion method. This
suggested the much more difficult problem of computing the asymptotic value of

fr(n, e(r − k) + k + 1, e). (1)

Even in the simplest case of (1), where r = e = 3 and k = 2, the authors of [5], [6] were only able to
obtain Ω(n3/2) = f3(n, 6, 3) = O(n2). The problem of estimating f3(n, 6, 3) became later known as
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the (6, 3)-problem. In one of the classical results in extremal combinatorics, Ruzsa and Szemerédi
[19] resolved the (6, 3)-problem by proving that

n2−o(1) < f3(n, 6, 3) = o(n2). (2)

In the above, as well as throughout this paper, a o(1) term will represent a quantity that approaches
0, as n tends to infinity, whereas o(nk) denotes, as usual, o(1) · nk. In 1986, Erdős, Frankl and Rödl
[9] extended the result of [19] to arbitrary fixed r (and e = 3, k = 2 as in [19]), by showing that

n2−o(1) < fr(n, 3(r − 2) + 3, 3) = o(n2). (3)

Since then, the only progress on the asymptotic value of (1) was obtained by Sárközy and Selkow
[20], who managed to prove some nearly tight upper bounds. Specifically, they showed that

fr(n, e(r − k) + k + blog2(e)c, e) = o(nk). (4)

Note, that the left hand side is obtained from (1) by replacing the 1 by blog2(e)c. As blog2(3)c = 1
this gives upper bounds for e = 3 and arbitrary 2 ≤ k < r in (1). No lower bounds were given since
the result of [9]. Our main goal in this paper is to prove the following theorem, which extends the
result of Erdős, Frankl and Rödl (3) (and therefore also the result of Ruzsa and Szemerédi (2)) by
determining the asymptotic behavior of (1) for e = 3 and arbitrary 2 ≤ k < r as follows.

Theorem 1 For any fixed 2 ≤ k < r we have,

nk−o(1) < fr(n, 3(r − k) + k + 1, 3) = o(nk).

As we have mentioned above, the upper bound given in Theorem 1 can be derived from (4).
However, as observed in Section 3, this special case (that includes the upper bound of (3) as well),
can be proved by a simple reduction to the upper bound of the (6,3)-problem.

The main difficulty in the proof of Theorem 1 is the proof of the lower bound. As in [19] and [9],
one of our tools is a number theoretic construction, which is closely related to that of Behrend [4].
In Section 3 we use this number theoretic construction in order to construct the r-graphs needed to
prove the lower bound of Theorem 1. In Section 4 we prove the main technical lemma needed in
order to prove the correctness of the construction, namely that these r graphs do not contain 3 edges
spanned by 3(r − k) + k + 1 vertices. Unlike the cases studied in [19] and [9], the main difficulty
in the proof is that there are many possible configurations of 3 edges spanned by 3(r − k) + k + 1
vertices that we have to rule out, while in [19] and [9] there was (essentially) only one such possible
configuration. In order to rule out all the possible configurations, we give in Section 2 an algebraic
construction of a certain pseudo-random matrix, which we also use in our construction. This is done
by using some properties of multivariate polynomials. The main ideas behind the construction given
in Section 3, as well as the proof of its correctness in Section 4, are somewhat motivated by the ideas
of [3], though the proof here is more involved and critically relies on the construction given in Section
2. In Section 5 we discuss some open problems as well as some additional observations about the
asymptotic value of (1).
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2 The Matrix

In this section we discuss the construction of a pseudo-random matrix, which will be a central
ingredient in the construction of the r-graphs required to obtain the lower-bound in Theorem 1.
This will be done in Lemma 2.2. We first discuss variable matrices, namely matrices whose entries
contain unknowns xi,j rather than real numbers. To do so, we define a certain type of matrix which
we call a proper matrix. This type of matrix will be useful in the analysis of the construction, which
is given in Section 3. For an integer k ≥ 2 we say that a (2k − 1) × (2k − 1) variable matrix is a
proper-matrix if we can partition its columns into 3 groups T1, T2, T3 of sizes t1, t2, t3 respectively,
such that:

1. For 1 ≤ i ≤ 3 we have 1 ≤ ti ≤ k − 1.

2. Any column vi that belongs to T1 is of the form (x1,i, x2,i, . . . , xk,i, x2,i, . . . , xk,i), that is, the
last k − 1 variables must be the same as those that appear in entries 2, . . . , k, respectively.

3. Any column vi that belongs to T2 is of the form (x1,i, x2,i, . . . , xk,i, 0, . . . , 0), that is, the last
k − 1 variables must be identically zero.

4. Any column vi that belongs to T3 is of the form (0, 0, . . . , 0, x2,i, . . . , xk,i), that is, the variables
that appear in entries 1, . . . , k must be identically zero.

5. All the variables that appear in the upper k rows of the matrix are distinct.

6. All the variables that appear in the lower k − 1 rows of the matrix are distinct.

7. There are at least k columns in T2 ∪ T3 that have no common variables. Namely, if T2 and T3

have d columns that share some variables, then

t3 − d ≥ k − t2. (5)

Moreover, the only way a column v ∈ T3 can share variables with a column u ∈ T2, is that u =
(xi,1, xi,2, . . . , xi,k, 0, . . . , 0) and v = (0, 0, . . . , 0, xi,2, . . . , xi,k), that is, the last k − 1 variables
of v are the variables numbered 2, . . . , k of v in the same order as they appear in v.

Figure 1 depicts a proper-matrix of size 9× 9, where k = 5 and t1 = t2 = t3 = 3. The reader is
advised to verify that it indeed satisfies all the properties of a proper-matrix. In what follows, the
degree of a multivariate polynomial will denote the largest exponent of any variable in the expansion
of the polynomial as a sum of monomials. We need the following simple yet somewhat technical
claim.

Claim 2.1 The determinant of any proper-matrix is a non-zero multivariate polynomial of degree
at most 2 in each variable.

Proof: The fact that the determinant is a multivariate polynomial of degree 2 follows from the
definition of the determinant by observing that each variable appears at most twice in any proper
matrix. We thus only have to show that it is not identically zero. It is clearly enough to show that
for any proper-matrix P , we can assign its variables 0/1 values such that the determinant of the
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x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 0 0 0
x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 0 0 0
x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 0 0 0
x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 0 0 0
x5,1 x5,2 x5,3 x5,4 x5,5 x5,6 0 0 0
x2,1 x2,2 x2,3 0 0 0 x2,4 x2,7 x2,8

x3,1 x3,2 x3,3 0 0 0 x3,4 x3,7 x3,8

x4,1 x4,2 x4,3 0 0 0 x4,4 x4,7 x4,8

x5,1 x5,2 x5,3 0 0 0 x5,4 x5,7 x5,8







0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 2 0 0 0 0 4 0
0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 5
6 0 0 0 0 0 0 0 0




Figure 1: A proper matrix on the left, and the matrix in the proof of Claim 2.1

resultant matrix is ±1. Let P be a proper-matrix. Note that as 1 ≤ t1, t2, t3 ≤ k− 1 (property 1) we
have ti + tj ≥ k for any i, j ∈ {1, 2, 3}. Assume for simplicity that we arrange the columns of P as in
Figure 1, such that the leftmost columns are from T1 while the rightmost columns are from T3. We
describe the process for assigning the values in the following 6 stages. In Figure 1, we use i ∈ [6] in
order to denote the 1s that are assigned in the ith stage to some of the variables of the matrix that
appears on the left. For brevity, when we say that xi,j is set, we mean that we assign it the value 1.

1. Set all the variables on the diagonal that starts at P1,t1+t2−k+1 and ends at Pk,t1+t2 . In Figure
1, this is the diagonal that starts at x1,2 and ends at x5,6. Note that we can set these variables
as t1 + t2 ≥ k (property 1) and as all the variables in the upper k rows are distinct (property
5). As some of the variables in this diagonal may appear in other entries of the matrix we must
set them as well. This is done in the next two stages.

2. For every column of type 1 for which we have set a variable in the upper k rows, we must set
the corresponding variable in the lower k−1 rows. The only exception is column t1 + t2−k +1
as in this column we have set P1,t1+t2−k+1, and it does not appear in the lower k − 1 rows
(recall property 2). In Figure 1 the only variable that is set in this stage is x2,3. It follows that
the number of variables that are set in this stage is

r1 = k − t2 − 1. (6)

3. There may be columns of type 3 with the same variables as some of the columns of type 2
(property 7), so we have to set them as well. In Figure 1 the only such case is x3,4. It is crucial
to observe that the variables that are set in this stage do not belong to any of the rows to which
the variables that were set in the previous stage belong. This is due to properties 2 and 7, and
the fact that in stage 1 of this process the variables that are set form a diagonal. Denote the
number of variables set in this stage by d. We thus get that at the end of this stage, out of the
lower k − 1 rows of the columns of T3, in

r2 = k − 1− d (7)

rows we have not yet set any variable. Similarly, out of the t3 columns of T3, the number of
columns in which we have not yet set any variable is

r3 = t3 − d. (8)
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4. We now arrive at the main step of the process. Assume the r1 variables that were set in stage
2 belong to a set of rows denoted by R1. We claim that we can find r1 variables that belong to
distinct columns of T3, such that (i) each of these variables belongs to a distinct row of R1 (ii)
None of the other variables of T3 that were previously set, belongs to the same row or column
to which any of these variables belongs. To see this, first observe that by property 7 we have
r3 > r1, which means that we have enough columns in which none of the variables was set in
stage 3. Furthermore, as t3 ≤ k − 1 we also have r2 ≥ r3 ≥ r1, thus we also have enough rows
in which none of the variables was set. We can thus find such a set of r1 variables. In Figure
1, the only such variable is x2,7.

5. Set more variables in the columns of T3 as long as in the row and column to which they belong
none of the variables were set. We can do this as by property 6 all the variables in the lower
k − 1 rows are distinct. In Figure 1, the only such variable is x4,8.

6. Out of the lower k− 1 rows, in k− 1− t3 none of the variables were set. Out of the leftmost t1
columns, in t1− (k− t2) none of the variables were set (k− t2 is the number of variables set in
the first t1 columns in stage 1). As t1 − (k − t2) = k − 1− t3, we can find k − 1− t3 variables
that belong to distinct rows and columns and set them. We can do this as by property 6 all
the variables in the lower k−1 rows are distinct. In Figure 1, the only variable set in this stage
is x5,1.

As in Figure 1, the variables that are not set in the above process are assigned the value 0. A
key observation now is that due to stage 4, the only 1s that appear in a column in which there are
other 1s are those from stages 1 and 2. Similarly, the only 1s that appear in a row in which there
are other 1s are those from stages 4 and 2. However, as those from stage 1 are the only 1s in their
rows, and those from stage 4 are the only 1s in their columns, the expansion of the determinant as
a sum of monomials contains precisely one non-zero term. Hence, the determinant is ±1.

For an r×k variable matrix M with k < r, in which all variables are pairwise distinct, let P(M) be
the following set of (2k−1)×(2k−1) matrices: For any 1 ≤ t1, t2, t3 ≤ k−1 such that t1+t2+t3 = 2k−
1, we pick 3 sets of rows of M , denoted T1, T2, T3, of sizes t1, t2, t3 respectively that satisfy the following
properties (i) T1∩T2 = ∅. (ii) T1∩T3 = ∅. (iii) |T2∪T3| ≥ k. We now use the sets T1, T2, T3 in order to
define a matrix P as follows: For every i ∈ T1 we put the column (Mi,1,Mi,2, . . . , Mi,k,Mi,2, . . . , Mi,k).
For every i ∈ T2 we put the column (Mi,1,Mi,2, . . . ,Mi,k, 0, . . . , 0). For every i ∈ T3 we put the column
(0, 0, . . . , 0,Mi,2, . . . ,Mi,k).

Claim 2.2 For any r × k matrix M , all the matrices in P(M) are proper. Also, |P(M)| ≤ r2k−1.

Proof: Consider any P ∈ P(M) defined using the sets of columns T1, T2, T3 of M . The matrix P
satisfies the first property of a proper matrix as by definition 1 ≤ t1, t2, t3 ≤ k − 1. Properties 2,3
and 4 follow from the definition of the matrices in P(M). Properties 5 and 6 follow from the fact
that T1∩T2 = ∅ and T1∩T3 = ∅, and property 7 follows from the fact that |T2∪T3| ≥ k. Finally, the
upper bound on |P(M)| follows from the number of ways to choose 2k − 1 rows from M (possibly,
with repetitions), which is clearly an upper bound for the size of P(M).

We now turn to prove the main lemma of this section. In what follows we will also refer to a
set P(M) where M is a matrix with integer values rather than unknown variables. This should
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be understood as the set P(M) defined above, where we replace each variable Mi,j in each of the
matrices in P(M) with the value assigned to Mi,j . We need the following lemma of Zippel (c.f., e.g.
[16]).

Lemma 2.1 Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a non-zero polynomial in
F[x1, . . . , xn]. Suppose the degree of f in each variable is at most d. Then, if S is a subset of F with
|S| > d, there are at least (|S| − d)n assignments x1 ∈ S, . . . , xn ∈ S so that f(x1, . . . , xn) 6= 0.

Lemma 2.2 For any 2 ≤ k < r there is an r × k matrix M with the following properties:

1. All the entries of M are positive integers bounded by r2r.

2. Any k rows of M are linearly independent.

3. All the matrices in P(M) are non-singular.

Proof: Let M be an r×k variable matrix. We will show that there is an assignment to the rk entries
of M that satisfies the three requirements of the lemma. Note, that requiring a certain set of k rows
to be linearly independent is equivalent to requiring that a certain multivariate polynomial, namely
the determinant of the corresponding matrix, will be non zero. Observe, that as M consists of rk
distinct variables, any such polynomial is not identically zero. Similarly, requiring all the matrices
in P(M) to be non-singular is equivalent to requiring that their determinants will be non-zero.

For each set S of k rows of M let fS be the multivariate polynomial that computes its determinant.
Note, that as the variables of M are distinct, fS is a non-zero polynomial of degree 1 in each
variable. Also, for any matrix P ∈ P(M) let fP be the multivariate polynomial that computes its
determinant. Recall, that by Claim 2.1 the degree of each of these polynomials in each variable is
at most 2, and that for any matrix P ∈ P(M) the polynomial fP is not identically zero. Finally,
let F be the product of all the polynomials fS and fP . As each of the factors of F is of degree at
most 2 in each variable, it follows by Claim 2.2 that each of the variables of F has degree at most
2(|P(M)|+(

r
k

)
) ≤ 2(r2k−1+

(
r
k

)
) < r2r. In addition, as each of the factors of F is not identically zero,

F is also not identically zero. Note, that as each of the requirements 2 and 3 is equivalent to requiring
that one of the factors of F is non zero, it is enough to show that there are rk integers bounded by
r2r, on which F evaluates to a non-zero integer. Finally, observe that this follows immediately from
Lemma 2.1, while working over R and taking S = {1, . . . , r2r}.

We mention that a slightly better dependency on r in the above Lemma can be obtained by using
the so called Combinatorial Nullstellensatz [1]. As this will only change the constants hidden in the
o(1) term in Theorem 1 we used Lemma 2.1 instead. As we have commented above, the matrix we
construct in the above lemma has properties one would expect to find in a random matrix. In fact,
one can show that for a large enough prime p = p(k, r), a random r × k matrix over GF (p) satisfies
requirements 2 and 3 of Lemma 2.2, and hence satisfies them over the reals as well.

3 The Construction

In this section we describe the construction of the r-graphs, which will establish the lower bound of
Theorem 1. In what follows, we say that a set Z ⊆ [n] = {1, . . . , n} is h-sum-free if for every pair of
positive integers a, b ≤ h the only solution of the equation

6



az1 + bz2 = (a + b)z3 (9)

with z1, z2, z3 ∈ Z is one in which z1 = z2 = z3. Note that a solution of the form z1 = z2 = z3

is always a valid solution to equations of this type, hence an h-sum-free set is one that contains no
non-trivial solution to equations of this type as long as their coefficients are bounded by h. For our
construction we will need the following lemma whose proof, which is based on the construction of
Behrend [4], can be found in [9] or [2].

Lemma 3.1 For every integer h there is a constant c = c(h), such that for every n there is an
h-sum-free subset Z ⊂ [n] of size at least n/ec

√
log n.

We turn to define the r-graphs H, which will establish the lower bound of Theorem 1. Given
integers n and 2 ≤ k < r let M be an r× k matrix which satisfies the three assertions of Lemma 2.2.
Let Z be an r4r2

-sum-free subset of [n/r3r]. By Lemma 3.1, we can find such a set Z, of size at least

n/r3r

ec
√

log(n/r3r)
≥ n

ec′
√

log n
= n1−o(1), (10)

where c′ = c′(r) > 0. Consider the following definition of an r-graph H = H(n, k, r, Z, M): The
vertex set of H consists of r pairwise disjoint sets of vertices V1, . . . , Vr, where, with a slight abuse of
notation, we think of each of these sets as being the set of integers 1, . . . , n/r. For every k dimensional
vector z = (z1, . . . , zk) ∈ Zk, we put an edge in H that contains the vertices v1 ∈ V1, . . . , vr ∈ Vr,
where for 1 ≤ i ≤ r we take vi to be the integer (Mz)i ∈ Vi. In what follows we denote by
E(z1, . . . , zk), the edge that we put in H when we picked z = (z1, . . . , zk) ∈ Zk. Note, that we thus
put precisely |Z|k edges in H and that each of these edges has precisely one vertex in each of the
sets V1, . . . , Vr (below we show that these edges are distinct). Recall, that by Lemma 2.2 item 1,
the entries of M are integers bounded by r2r. Furthermore, the integers in Z are bounded by n/r3r,
hence for every z ∈ Zk and 1 ≤ i ≤ r, we have (Mz)i ≤ k · r2r · n/r3r ≤ n/r. Therefore, the vertices
”fit” into the sets V1, . . . , Vr.

Claim 3.1 Any pair of edges in H share at most k − 1 vertices. In particular, H contains |Z|k =
nk−o(1) distinct edges.

Proof: It is clearly enough to show that any k vertices of an edge uniquely determine the other
r − k vertices of it. Suppose vt1 ∈ Vi1 , . . . , vtk ∈ Vtk are k vertices of the edge E(z1, . . . , zk). Denote
z = (z1, . . . , zk), v = (vt1 , . . . , vtk) and observe that from the definition of H it follows that for
1 ≤ i ≤ k we have (M · z)ti = vti . Let A be the k × k matrix whose ith row contains the tthi row of
M . We thus get that Az = v. As any k rows of M are linearly independent (property 2 in Lemma
2.2), A is invertible. Hence, z1, . . . , zk are uniquely determined by vt1 , . . . , , vtk . In particular, they
determine the other vertices of the edge. We thus get that H contains precisely |Z|k distinct edges.
As by (10) we have |Z| = n1−o(1) the claim follows.

In the next section we prove the following lemma, which is the key ingredient in the proof of
Theorem 1.
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Lemma 3.2 (The Key Lemma) Suppose we construct H = H(n, k, r, Z, M) as above. If the edges
E(a1, . . . , ak), E(b1, . . . , bk) and E(c1, . . . , ck), are spanned by 3(r − k) + k + 1 vertices, and if for
some 1 ≤ i ≤ k, we have ai ≤ ci ≤ bi then there are positive integers β1, β2 ≤ r4r2

such that

β1ai + β2bi = (β1 + β2)ci.

The lower bound of Theorem 1 will follow by combining Claim 3.1 and Lemma 3.2.

Proof of Theorem 1: We start with the lower bound. Given n, k and r, construct the r-graph H =
H(n, k, r, Z, M) as above. By Claim 3.1 it contains nk−o(1) edges. Suppose indirectly that it contains
3 edges spanned by 3(r − k) + k + 1 vertices and denote these edges by E(a1, . . . , ak), E(b1, . . . , bk)
and E(c1, . . . , ck). Consider any 1 ≤ i ≤ k and assume without loss of generality that ai ≤ ci ≤ bi.
By Lemma 3.2, there are positive integers β1, β2 ≤ r4r2

such that β1ai + β2bi = (β1 + β2)ci. As Z
is r4r2

-sum-free, we have ai = bi = ci. As this holds for all 1 ≤ i ≤ k, we conclude that E1, E2, E3

were defined using the same set of k integers from Z, which is impossible. This completes the proof
of the lower bound.

For the upper bound we use a simple transformation to the upper bound of the (6,3)-problem
given in (2). Assume indirectly that for some 2 ≤ k < r, there is a constant γ and infinitely many
integers n1, n2, . . . for which there is an r-graph Hi on ni vertices with γnk

i edges and no 3 edges
spanned by 3(r− k) + k + 1 vertices. Using Hi we define a hypergraph Ti as follows: If k = 2 we set
Ti to be Hi. If k > 2, then by averaging Hi has k − 2 vertices v1

i , . . . , v
k−2
i that belong to at least

γn2
i of the edges of Hi. We can thus create for each i, an (r − (k − 2)) = (r − k + 2)-graph Ti on ni

vertices that contains all the edges that contain v1
i , . . . , v

k−2
i in Hi after removing v1

i , . . . , v
k−2
i from

them.
It is clear that Ti contains γn2

i edges, and that it cannot contain 3 edges spanned by 3(r − k) +
k +1− (k− 2) = 3(r− k)+3 vertices. As a consequence, we also conclude that each set of 3 vertices
belongs to at most 2 edges, as otherwise 3 edges containing the same 3 vertices are spanned by at
most 3 + 3((r − k + 2)− 3) < 3(r − k) + 3 vertices, which is impossible by the previous argument.

Finally, for each ni we use Ti to create a 3-graph Gi as follows: for every edge e ∈ Ti we put a
3-edge e′ in Gi that contains an arbitrary subset of 3 vertices from e. It is easy to see that Gi contains
no 3 edges spanned by 6 vertices. Indeed, if e′1, e

′
2, e

′
3 are 3 such edges then let e1, e2, e3 be the three

edges in Ti that contain the three vertices of these edges, respectively. We thus get that e1, e2, e3 are
3 edges of Ti spanned by at most 6 + 3((r − k + 2) − 3) = 3(r − k) + 3 vertices which contradicts
the properties of Ti. As we have previously established that each set of 3 vertices in Ti belongs to at
most 2 edges, each Gi contains at least γn2

i /2 edges, hence f3(6, 3) = Ω(n2) contradicting (2).

4 Proof of the Key Lemma

In this section we give the proof of Lemma 3.2. Let H = H(n, k, r, Z, M) be the r-graph defined
as in the previous section. In what follows we denote by a, b, c the vectors (a1, . . . , ak), (b1, . . . , bk),
(c1, . . . , ck). We also write Mt for the tth row of M . Suppose H contains 3 edges E1 = E(a1, . . . , ak),
E2 = E(b1, . . . , bk) and E3 = E(c1, . . . , ck) spanned by a set T ′ of 3(r − k) + k + 1 vertices. Remove
from T ′ any vertex that is not contained in any of the edges E1, E2, E3 to obtain a new set T of at
most 3(r − k) + k + 1 vertices each of which is contained in at least one of these edges.
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Claim 4.1 Each of the edges E1, E2 and E3 has at least k vertices in which it intersects one or two
of the other two edges.

Proof: Assume E3 intersects either E1 and/or E2 in t vertices. Then, there are r − t vertices that
belong solely to E3. The edge E2 contains another set of r vertices. By Claim 3.1, E1 and E2 have at
most k− 1 common vertices, thus there are at least r− k + 1 additional vertices, which E1 contains.
This means that E1, E2 and E3 are spanned by at least (r − t) + r + (r − k + 1) = 3r − k − t + 1
vertices, which is larger than 3(r − k) + k + 1 whenever t < k. The other two cases are obviously
identical.

We now arrive at the main step of the proof in which we express the intersections between E1, E2

and E3 as a set of linear equations. Assume that vertex vt ∈ Vt ∩ T is common to both E1 and E2.
By the definition of H in Section 3 it follows that Mta = Mtb, or equivalently that

a1Mt,1 + a2Mt,2 + . . . + akMt,k = vt = b1Mt,1 + b2Mt,2 + . . . + bkMt,k (11)

In what follows we say that edge Ei belongs to a linear equation as in (11) if the equation is due
to some vertex belonging to Ei and another edge. We will say that an equation as in (11) contains
an edge, if the edge belongs to that equation. We will also say that an equation is due to vertex
v, if the edges that belong to the equation have v in common. In (11), E1 and E2 belong to the
equation (therefore, it contains them) while E3 does not, and this equation is due to vertex vt. In
what follows, it will be more convenient to write (11) as

a1Mt,1 + a2Mt,2 + . . . + akMt,k − b1Mt,1 − b2Mt,2 − . . .− bkMt,k = 0 (12)

Define Φ′ to be the set obtained by writing an equation as (12) for each of the vertices of T that lies
in Ei, Ej ∈ {E1, E2, E3}. If a vertex lies in the three edges E1, E2, E3 we write one equation that
contains E1 and E3 and another that contains E2 and E3.

Comment 1 It is important for the rest of the proof that the non-symmetry between E3 and E1, E2

caused by this choice is totaly arbitrary, and that we can and will later exchange the roles of, say,
E3 and E1, if needed.

Claim 4.2 The set Φ′ contains at least 2k − 1 equations.

Proof: For each vertex v ∈ T let dv be the number of edges out of E1, E2, E3 that contain v (thus
1 ≤ dv ≤ 3). Note, that due to v, the set Φ′ contains dv − 1 equations. Thus

|Φ′| =
∑

v∈T

(dv − 1) = 3r − |T | ≥ 3r − (3(r − k) + k + 1) = 2k − 1

where we used double-counting to get
∑

v dv = 3r and the fact that |T | ≤ 3(r − k) + k + 1.

Claim 4.3 There is Φ ⊆ Φ′ of size 2k − 1 that satisfies the following properties:

1. For i ∈ {1, 2}, all the equations in Φ that contain Ei are due to distinct vertices.

2. Φ contains all the equations that contain E3, which belonged to Φ′.
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3. For any two distinct i, j ∈ {1, 2, 3}, the set Φ contains at least one and at most k− 1 equations
that contain Ei and Ej.

Proof: We first observe that as by Claim 3.1 each pair of edges have at most k−1 common vertices,
for any i, j, Φ′ contains at most k − 1 equations that contain Ei and Ej . In particular, Φ′ contains
at most 2k− 2 equations that contain E3. Hence, we can remove some of the equations that contain
both E1 and E2 and thus get a set Φ that contains all the equations that contained E3. This gives
item 2, and the upper bound of item 3. For the lower bound of item 3 we again use the fact that
there are at most 2k − 2 equations that contain one of the edges, to infer that there is at least one
equation that contains the other two. For item 1, just observe that by construction of Φ′ we put at
most one equation in Φ′ for each vertex that contains E1 or E2, and as Φ ⊆ Φ′ we get item 1.

In the rest of the proof we show how to obtain the required linear equation that contains a1, b1

and c1. The other cases are identical. To prove Lemma 3.2, we will simply show that there is a linear
combination of the equations of Φ from Claim 4.3, which results in the required linear equation
relating a1, b1, c1. We will call such a linear combination good. Denote the linear equations of Φ
by `1, . . . , `2k−1. In order to get a good linear combination, we introduce unknowns α1, . . . , α2k−1,
where αi will be the coefficient of `i. For 1 ≤ i ≤ k, let Ai = 0 be the homogenous linear equation
in unknowns α1, . . . , α2k−1, which requires the coefficient of ai to vanish in a linear combination of
`1, . . . , `2k−1 with coefficients α1, . . . , α2k−1. For 1 ≤ i ≤ k define Bi and Ci to be the analogous
equations with respect to bi and ci.

Claim 4.4 For 1 ≤ i ≤ k we have Ai + Bi + Ci = 0.

Proof: Just observe that the coefficient of αj in Ci is the coefficient of ci in the jth equation of Φ.
The same applies for Ai and Bi. For example, if (12) is equation `j in Φ, then for 1 ≤ i ≤ k the
coefficient of αj in Ci is 0 because E3 does not belong to this equation. Also, for 1 ≤ i ≤ k the
coefficient of αj in Ai is Mt,i and the coefficient of αj in Bi is −Mt,i. Given these observations the
claim is trivial.

In order to get the required equation in Lemma 3.2 the coefficients of the integers a2, . . . , ak,
b2, . . . , bk and c2, . . . , ck must vanish. This amounts to a set of 3k − 3 homogenous linear equations
Ai, Bi, Ci for 2 ≤ i ≤ k defined above. However, by Claim 4.4 we may remove equations C2, . . . , Ck

and thus get a set of 2k− 2 linear equations. Call this set Ψ. We will need the following well known
result which follows from Cramer’s rule and Hadamard Inequality (see, e.g., [13]).

Lemma 4.1 Let Ψ be a set of p homogenous linear equations in q variables with integer coefficients.
If p < q and each of the coefficients in these equations has absolute value at most d, then Ψ has a
non zero solution {α1, . . . , αq}, where all the αis are integers with absolute value at most (d2p)p/2.

As Ψ is a set of 2k− 2 equations in 2k− 1 unknowns α1, . . . , α2k−1 and each of the coefficients in Ψ
is bounded by r2r (recall that these coefficients are entries of M , see (12) and Lemma 2.2 item 1),
we get from the above lemma that:

Claim 4.5 There are integers α1, . . . , α2k−1 ≤ r2r2
, not all equal to zero, such that in a linear

combination of Φ with coefficients α1, . . . , α2k−1, for 2 ≤ i ≤ k the coefficients of ai, bi, ci vanish.
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Note, that the sum of the coefficients in each of the equations of Φ is zero (see (12)). Hence, the
sum of the coefficients in a linear combination of these equations must also be zero. It follows that if
for 2 ≤ i ≤ k the coefficients of ai, bi, ci vanish while the coefficients of a1, b1, c1 do not, then we get
the required equation. Claim 4.5 thus almost guarantees the existence of a good linear combination.
It guarantees that the coefficients of a1, b1, c1 are integers bounded by (2k − 1)r2r2 ≤ r4r2

, and
that the coefficient of all the other ai, bi, ci vanish. The only thing that can go wrong is that the
coefficients of a1, b1, c1 will also vanish. To argue that this is impossible we will first show that the
coefficients of a1 and b1 do not vanish. To this end, we show that the equations of Ψ and any one of
the equations A1, B1 are linearly independent. As we chose a non-zero vector of coefficient in Claim
4.5, it cannot satisfy 2k − 1 linearly independent homogenous linear equations in 2k − 1 unknowns.
This will immediately imply that the coefficients of a1 and b1 do not vanish.

Claim 4.6 The set Ψ with either A1 or B1 is a set of linearly independent linear equations.

Proof: Consider the matrix P whose upper k rows are the coefficients of α1, . . . , α2k−1 in equations
A1, . . . , Ak and whose lower k − 1 rows are the coefficients of α1, . . . , α2k−1 in equations B2, . . . , Bk.
Observe, that the jth column of P contains the coefficients of αj in equations A1, . . . , Ak, B2, . . . , Bk.
As by Lemma 2.2 item 3 all the matrices in P(M) are non-singular, it is enough to show that
P ∈ P(M).

For a column vector v of P , denote by va the k dimensional vector that contains the upper k
entries of v and by vb the k−1 dimensional vector that contains the lower k−1 entries of v. Observe
that if v is the jth column of P , then va and vb contain the coefficients of a1, . . . , ak and b2, . . . , bk

respectively in equation `j . Note further, that if E1 does not appear in `j then va = 0 and if it does,
then va = (Mt,1,Mt,2, . . . , Mt,k) where Vt is the cluster in which E1 intersects another edge (recall
the definition of H(n, k, r, Z,M) in Section 3). Similarly, either vb = 0 or vb = (Mt,2, . . . ,Mt,k).
This means that there are three types of columns: (i) Columns v that correspond to equations that
contain both E1 and E2. In these columns va 6= 0 and vb 6= 0. Moreover, observe that in these
columns the entries of vb are precisely the last k − 1 entries of va. (ii) Columns that correspond to
equations that contain both E1 and E3. In these columns va 6= 0 while vb = 0. (iii) Columns that
correspond to equations that contain both E2 and E3. In these columns va = 0 while vb 6= 0. Denote
by t1, t2, t3 the number of columns of type (i), (ii) and (iii) respectively. We claim that the columns
of types (i), (ii), (iii) can play the role of the sets of columns T1, T2, T3 in the definition of a proper
matrix (see beginning of Section 2). Indeed, by the above discussion they satisfy properties 2, 3 and
4. By Claim 4.3 item 3 we get that 1 ≤ t1, t2, t3 ≤ k−1, hence property 1 is also satisfied. Properties
5 and 6 follow from Claim 4.3 item 1. Finally, from Claim 4.1 and Claim 4.3 item 2 we get property
7. We conclude that P ∈ P(M) as needed. The proof for Ψ and B1 is identical where we replace A1

in the above argument with B1.

Proof of Lemma 3.2 (The Key Lemma): As we have commented above, all the cases 1 ≤ i ≤ k
are identical, thus we prove the case i = 1. By Claim 4.5 we can find a linear combination of the
equations of Φ in which for 2 ≤ i ≤ k the coefficients of ai, bi, ci vanish. By Claim 4.6 the coefficients
of a1 and b1 do not vanish in such a linear combination. If the coefficient of c1 also does not vanish
we are done. By the discussion preceding the proof of Claim 4.6 we conclude that if it does, then
the coefficient of a1 must be equal to the inverse of the coefficient of b1 (as their sum must be 0),
thus a1 = b1. In this case we can rerun the argument of this section while exchanging the roles of

11



E1 and E3 (recall Comment 1). We will thus either get the required equation, or that b1 = c1. In
the former case the lemma will follow, while in the latter we will get that a1 = b1 = c1 (thus they
satisfy the equation a1 + b1 = 2c1, which satisfies the requirements of the lemma). In either case we
get the required linear equation.

5 Concluding Remarks and Open Problems

• Given the previous results and the results of this paper, the following conjecture seems plausible:

Conjecture 1 For every fixed 2 ≤ k < r and e ≥ 3 we have

nk−o(1) < fr(n, e(r − k) + k + 1, e) = o(nk). (13)

It will be very interesting to extend our construction for arbitrary number of edges and thus
prove the lower bound of (13). Recall, that one of the main ingredients of the construction
was Lemma 3.1, which guarantees the existence of a dense (i.e, one of size n1−o(1)) set of
integers that contains no non-trivial solution to equations of the form az1 + bz2 = (a + b)z3

where a, b are small integral constants. As the proof of Theorem 1 suggests, in order to extend
the construction for arbitrary e we will have to use a dense set of integers, which contains no
non-trivial solution to equations of the form

a1z1 + . . . + ae−1ze−1 = (a1 + . . . + ae−1)ze. (14)

However, we can only construct dense sets which contain no non-trivial solution to equations
of the above type as long as a1, . . . , ae−1 are positive. In fact, it is easy to see that the largest
subset of the first n integers without a solution to the equation z1 + z2 − z3 = z4 is of size
O(
√

n). Note, that for three edges we do not have to worry about the sign of the coefficients
as we can always ”switch sides” in order to get an equation with positive coefficients. It thus
follows that the only (natural) way to extend our technique to arbitrary number of edges is to
extend Lemma 3.2 by showing that given e edges spanned by e(r − k) + k + 1 vertices we can
find a linear combination as in (14) with positive coefficients. This seems to be a hard task.
See [3] for a solution of a similar problem. See also [18] for some constructions that may be
relevant.

• Though we are currently unable to extend our lower bounds to arbitrary number of edges, in
some settings we can obtain lower bounds for more than 3 edges.

Proposition 5.1 Suppose that for some integers e ≥ 3, k ≥ 2 and r = k + 1 we have

1. nk−o(1) < fr(n, (e− 1)(r − k) + k + 1, e− 1).

2. e/ d(e(r − k) + k + 1)/re < 2.

then we also have nk−o(1) < fr(n, e(r − k) + k + 1, e).
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Proof: By item 1 there are infinitely many integers ni for which there is an r-graph Hi on
ni vertices with n

k−o(1)
i edges that contains no e − 1 edges spanned by (e − 1)(r − k) + k + 1

vertices. We may clearly assume that these r-graphs are r-partite as it is easy and well known
that every r-graph with |E| edges contains an r-partite subgraph with at least r!|E|/rr edges.
(See, e.g., [16], page 67).

We claim that this family of r-graphs establishes that nk−o(1) < fr(n, e(r − k) + k + 1, e).
Indeed, suppose one of these r-graphs Hi contains e edges spanned by e(r−k)+k +1 vertices.
By item 2, this set contains a vertex that belongs to at most one edge. Removing this vertex
and the edge to which it belongs, we get a set of e(r − k) + k + 1− 1 = (e− 1)(r − k) + k + 1
vertices (recall that r− k = 1) that span at least e− 1 edges. This contradicts our assumption
on Hi.

Using this proposition with r = 3, k = 2, e = 4 and the fact that n2−o(1) < f3(n, 6, 3)
one immediately gets that n2−o(1) < f3(n, 7, 4). A similar estimate was mentioned (without
proof) in [19]. Reusing the above proposition with r = 3, k = 2, e = 5 and the fact that
n2−o(1) < f3(n, 7, 4) we get that n2−o(1) < f3(n, 8, 5). Several other lower bounds can be
obtained using this process, but provide no new cases of equality in the left side of (13).

• It will also be very interesting to prove the upper bound of (13) for an arbitrary value of e. As
we observe below, to this end it is enough to resolve only the cases of k = 2.

Proposition 5.2 If for any e ≥ 3 and r ≥ 3 we have fr(n, e(r − 2) + 3, e) = o(n2) then for
any e and 2 ≤ k < r we have fr(n, e(r − k) + k + 1, e) = o(nk).

Proof: Assume indirectly that for some e ≥ 3 and 2 < k < r, there is a constant γ and infinitely
many integers n1, n2, . . . for which there is an r-graph Hi on ni vertices with γnk

i edges and no
e edges spanned by e(r − k) + k + 1 vertices. By averaging, each of these r-graphs has k − 2
vertices v1

i , . . . , v
k−2
i that belong to at least γn2

i of the edges of Hi. We can thus create for each
i, an (r−(k−2))-graph Ti on ni vertices that contains all the edges that contain v1

i , . . . , v
k−2
i in

Hi after removing v1
i , . . . , v

k−2
i from them. It is clear that Ti contains γn2

i edges. Moreover, it is
easy to see that it cannot contain e edges spanned by e(r−k)+k+1−(k−2) = e((r−k+2)−2)+3
vertices. This implies that fr−k+2(n, e((r − k + 2)− 2) + 3, e) = Ω(n2), which contradicts our
initial assumption.

• In [19], Ruzsa and Szemerédi used ideas similar to the ones used to resolve the (6,3)-problem
in order to construct graphs on n vertices that contain Θ(n) induced matchings each of size
n1−o(1). It will be interesting to estimate the maximum possible number of induced matchings
of size n1−o(1) in a k-graph on n vertices.

• The (6, 3)-problem (under different disguises) has found many applications in extremal combi-
natorics, some examples of which are [12] and [7]. It has also found applications in theoretical
computer science. Some examples are PCP analysis and Linearity Testing [15], Communi-
cation Complexity [17] and Monotonicity Testing [10]. It may be interesting to find similar
applications of our extension of the (6, 3)-problem.
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properties of graphs. Combinatorial Mathematics and Combinatorial Computing (Palmerston
North, 1990). Australas. J. Combin. 4 (1991), 25–31.

[8] D. de Caen, The current status of Turán’s problem on hypergraphs, Extremal problems for finite
sets (Visegrád, 1991), 187-197, Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest,
1994.
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