Home Assignment 4

Please submit organized and well written solutions!

Problem 1. Show that there is no absolute constant C, so that for every $\epsilon > 0$ every graph has an ϵ -regular partition of order at most $(1/\epsilon)^C$.

Problem 2. Show that there is a K_7 -free graph which has independence number o(n) and more than $n^2/3$ edges. Also, show that if G is a K_7 -free graph with $(\frac{1}{3} + \epsilon)n^2$ edges then it has independence number at least $\delta(\epsilon)n$.

Problem 3. Let G be a graph with $pn^2/2$ edges. We say that G satisfies property \mathcal{P} if it contains at most $(p^4 + o(1))n^4$ copies of C_4 . We say that G satisfies property \mathcal{Q} if all but $o(n^2)$ pairs of vertices u, v satisfy $d(u, v) \leq (p^2 + o(1))n$, where d(u, v) is the co-degree of u, v, that is, the number of vertices that are adjacent to both u and v. Show that \mathcal{P} and \mathcal{Q} are equivalent.

Problem 4. The Erdős-Hajnal Theorem states that for every graph H there is a constant c = c(H) so that every *n*-vertex graph that has no induced copy H, contains either a clique or an independent set of size $2^{c\sqrt{\log n}}$. Derive the Induced Ramsey Theorem from the Erdős-Hajnal Theorem. **Hint:** Show that if $n \ge n_0(|H|)$ and G is an *n*-vertex graph with no clique or independent set of size $2\log n$, then in any 2-coloring of E(G) we can find a monochromatic *induced* copy of H.

Problem 5. Let G be a Red/Black-coloring of K_m where the largest Red clique has size t-1. Let us define a 2-coloring of the complete 3-uniform hypergraph on 2^m vertices as follows: we think of the vertices as strings in $\{0,1\}^m$ ordered lexicographically, with entries indexed by the vertices of G, and define $\delta(x, y)$ to be the largest entry where two vectors $x, y \in \{0,1\}^m$ differ. Then we color each triple of vertices x < y < z with the color given to the edge $(\delta(x, y), \delta(y, z))$ in G.

- Show that this coloring has a red $K_{2^t}^3$.
- Show that there is a function f so that this coloring does not contain a red $K_{f(t)}^3$. Hint: Use Ramsey's Theorem.
- Suppose we change the coloring so that if $(\delta(x, y), \delta(y, z))$ is red then we color (x, y, z) red, but if $(\delta(x, y), \delta(y, z))$ is black then we color (x, y, z) black if $\delta(x, y) < \delta(y, z)$ and grey if $\delta(x, y) > \delta(y, z)$. Deduce from the previous item that there is a function g(t), so that if Gdoes not contain a red K_t or a black $K_{g(t)}$ then this coloring has no Red, Black or Grey K_t^3 .
- Use the previous item to deduce that $R_3(t, t, t) \ge 2^{R_2(t, g(t))}$, where $R_2(s, t)$ is the usual Ramsey number for graphs.