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Abstract

One of the most basic results in graph theory states that every graph with at least two

vertices has two vertices with the same degree. Since there are graphs without 3 vertices of the

same degree, it is natural to ask if for any fixed k, every graph G is “close” to a graph G′ with

k vertices of the same degree. Our main result in this paper is that this is indeed the case.

Specifically, we show that for any positive integer k, there is a constant C = C(k), so that given

any graph G, one can remove from G at most C vertices and thus obtain a new graph G′ that

contains at least min{k, |G| − C} vertices of the same degree.

Our main tool is a multidimensional zero-sum theorem for integer sequences, which we prove

using an old geometric approach of Alon and Berman.

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Graph theory notation

follows [3].

Perhaps one of the most obvious properties shared by all graphs (with at least two vertices)

is that they have at least two vertices with the same degree. In general, the repetition number

of a graph G, denoted by rep(G), is the maximum multiplicity of a vertex degree in G. So, any

graph with at least two vertices has rep(G) ≥ 2, and there are simple constructions showing that

equality holds for infinitely many graphs. Repetition numbers of graphs (and hypergraphs) have

been studied by several researchers. See [2, 4, 5, 6, 7, 8, 9] for some representing works.

Since infinitely many graphs have rep(G) = 2, it seems interesting to determine how many

vertices one must delete from a graph in order to increase its repetition number to 3 or higher. We

state the problem more formally as follows. For a given positive integer k, let C = C(k) denote

the least integer such that any graph with n vertices has an induced subgraph with at least n−C
vertices whose repetition number is at least min{k, n − C}. Stated otherwise, we can delete at

most C(k) vertices from any graph and obtain a subgraph with k repeated degrees (or a regular
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subgraph in case the subgraph has less than k vertices). Trivially C(1) = C(2) = 0. A simple lower

bound of C(k) ≥ k − 2 is easily obtained from the fact that there are infinitely many graphs with

rep(G) = 2 and precisely one pair of vertices with the same degree. For general k, it is not obvious,

however, that C(k) is finite. The main result of this paper shows that it is.

Before we state our main result, let us consider a more general setting, where the graph in

question is the complete graph with integer edge weights in {0, . . . , r}. The (weighted) degree of

a vertex v, denoted by deg(v), is the sum of the weights of the edges incident with it. Likewise,

the repetition number of an edge-weighted graph is the maximum multiplicity of a vertex degree.

Observe that, unlike the unweighted case, already for r = 2 we do not necessarily have two vertices

with the same degree, as can be seen by assigning the weights 0, 1, 2 to the edges of a triangle.

The related well-studied graph parameter of irregularity strength asks for the smallest r for which

the edges of a graph can be weighted with {1, . . . , r} (weight 0 represents non-edges) such that all

vertex degrees are distinct (see [11, 13]).

For given positive integers k, r, let C = C(k, r) denote the least integer such that any complete

graph with n vertices and edge weights in {0, . . . , r} has a complete subgraph with at least n− C
vertices whose repetition number is at least min{k, n−C}. Notice that C(k) = C(k, 1). Our main

result is then the following.

Theorem 1.1 For positive integers k, r there exists a constant C = C(k, r) such that the following

holds. Any complete graph with n vertices whose edges have weights in {0, . . . , r} contains a complete

subgraph with at least n− C vertices whose repetition number is at least min{k, n− C}.

The bound we obtain for C(k, r) via the proof of Theorem 1.1 is exponential in terms of k

already for r = 1. In the case r = 1, it satisfies C(k) = C(k, 1) ≤ (8k)k. Together with a nontrivial

lower bound of C(k) ≥ Ω(k log k) that we prove in Section 5 we obtain the following corollary.

Corollary 1.2 We have

Ω(k log k) ≤ C(k) ≤ (8k)k .

It would be of course interesting to close the exponential gap between the upper bound and

lower bound in the above corollary. Already for the first nontrivial case, C(3), the proof of Theorem

1.1 gives the explicit bound C(3) ≤ 203. An alternative ad hoc argument shows that 3 ≤ C(3) ≤ 6

(see Section 4). Even the exact value of C(3) is an open problem. When trying to adapt these ad

hoc arguments to obtain an upper bound for C(4) one quickly sees that the case analysis becomes

significantly involved. Instead, our proof of Theorem 1.1 is obtained by reducing the problem (after

some additional combinatorial arguments are applied) to another problem in additive combinatorics,

which may be interesting in its own right.

Let [−r, r]d denote the set of d-dimensional vectors over {−r, . . . , r}. The main tool used in the

proof of Theorem 1.1 is the following theorem.
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Theorem 1.3 For positive integers r, d, q the following holds. Any sequence of n ≥ (dq/re +

2)(2rd+ 1)d elements of [−r, r]d whose sum is in [−q, q]d contains a nonempty proper subsequence

whose sum is zero.

It is noteworthy to mention here a result of Erdős et al. [10] who proved that for every positive

integer k, there is a number N(k) such that for all n > N(k), if the edges of the complete graph Kn

are red-blue colored, then there is a monochromatic complete subgraph Kk (say blue) the degree

of whose vertices in the blue-colored graph differ by at most R(k) − 2 where R(k) is the diagonal

Ramsey number. Our proof of Theorem 1.1 shows, in fact, that for n > N(K) and any red-blue

coloring, we can delete some M(k) vertices such that there is a monochromatic Kk (say blue) with

equal degrees in the blue-colored graph.

We finally mention that our result here shows that any graph G is “close” to another graph G′

with k vertices of the same degree, where by close we mean that few vertices need to be removed.

It is of course natural to ask what happens if we are allowed to remove (or also add) edges. As it

turns out this variant of the problem is not hard. Indeed, it is easy to see that in this case it is

enough to remove O(k2) edges in order to force k vertices of the same degree. It is also easy to see

that Ω(k2) edge removals are required. We omit the details.

The rest of this paper is organized as follows. Section 2 contains the proof of Theorem 1.3. The

proof of Theorem 1.1 is given in Section 3. Section 4 considers the special case C(3). A non-linear

lower bound for C(k) is established in Section 5.

2 Proof of Theorem 1.3

Our proof of Theorem 1.3 uses a geometric approach similar to the one used by Alon and Berman

in [1]. To this end, we need the following result of Sevast’yanov [14].

Lemma 2.1 (Sevast’yanov [14]) Let V be any normed d-dimensional space. Suppose v1, . . . , vn ∈
V where ‖vi‖ ≤ 1 and

∑n
i=1 vi = 0. Then there is a permutation π on {1, . . . , n} such that for all

j = 1, . . . , n, ∥∥∥∥∥∥
j∑
i=1

vπ(i)

∥∥∥∥∥∥ ≤ d .
Proof (Theorem 1.3): Consider a sequence X = [x1, . . . , xn] of n ≥ (dq/re+2)(2rd+1)d elements

of [−r, r]d whose sum is w ∈ [−q, q]d. It is easy to see that since w ∈ [−r, r]d, we can always find

p = dq/re vectors xn+1, . . . , xn+p ∈ [−r, r]d whose sum is −w. Adding these “artificial” vectors to

X we obtain a zero-sum collection X ′ = [x1, . . . , xn, xn+1, . . . , xn+p]. For every 1 ≤ i ≤ n + p set

vi = xi/r, and consider X ′′ = [v1, . . . , vn+p]. Then X ′′ is a zero-sum sequence with ‖vi‖∞ ≤ 1 for

every vi ∈ X ′′. By Lemma 2.1 (with the `∞ norm), there is a permutation π on {1, . . . , n+ p} such

that for all j = 1, . . . , n+ p, we have
∥∥∥∑j

i=1 vπ(i)

∥∥∥
∞
≤ d. Observe now that each coordinate of any
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vi is a rational of the form t/r where t ∈ {−r, . . . , r}. Hence, any possible sum of a subset of vectors

of X ′′ whose `∞ norm is at most d is a vector with rational coordinates where each coordinate is

of the form t/r where t ∈ {−rd . . . , rd}. Hence, there are at most (2rd + 1)d such possible sums.

As any prefix sum of the elements of X ′′ ordered by the permutation π has `∞ norm at most d, we

have, by the pigeonhole principle, that some prefix sum value repeats at least (n + p)/(2rd + 1)d

times. Since n ≥ (p+ 2)(2rd+ 1)d, some prefix sum value, call it z, repeats at least p+ 2 times.

Consider therefore p+2 locations j1, . . . , jp+2 for which
∑j`
i=1 vπ(i) = z for ` = 1, . . . , p+2. This

means that for ` = 1, . . . , p+ 1, we have

j`+1∑
i=j`+1

vπ(i) = 0 .

As we added only p artificial vectors to X ′ (and thus also to X ′′), one of these p+1 collections must

give us the collection we want. Specifically, there exists some ` for which π(j` + 1), . . . , π(j`+1) ∈
{1, . . . , n}, implying that we have a non-empty and proper collection of vectors from X (namely

xπ(j`+1), . . . , xπ(j`+1)) whose sum is zero.

The following is an immediate corollary of Theorem 1.3.

Corollary 2.2 For positive integers r, d, q the following holds. Any sequence of n ≥ (dq/re +

2)(2rd+ 1)d elements of [−r, r]d whose sum, denoted by z, is in [−q, q]d contains a subsequence of

length at most (dq/re+ 2)(2rd+ 1)d whose sum is z.

3 Proof of Theorem 1.1

We start with the following simple lemma.

Lemma 3.1 Suppose that G is a complete graph with n vertices whose edges have weights in

{0, . . . , r}. If n ≥ s2 where s is a positive integer, then there is a set S of s vertices with the

property that |deg(x)− deg(y)| ≤ sr for any x, y ∈ S.

Proof: Clearly, the difference between the minimum degree of G and the maximum degree of G is

at most (n−2)r. We need to prove that for any positive integer s, if n ≥ s2, then there is a set S of

s vertices with the property that |deg(x)− deg(y)| ≤ sr for any x, y ∈ s. To see this, assume that

the vertices are {v1, . . . , vn} where deg(vi) ≤ deg(vi+1). Let Sj = {v(s−1)j+1, . . . , v(s−1)(j+1)+1} for

j = 0, . . . , b(n− 1)/(s− 1)c − 1. Observe that the last vertex of Sj is also the first vertex of Sj+1.

Now, if some Sj has the desired property of S, we are done. Otherwise the difference between

deg(v1) and the last vertex of Sb(n−1)/(s−1)c−1 is at least

(sr + 1) · bn− 1

s− 1
c ≥ (sr + 1)

n− s+ 1

s− 1
> (n− 2)r

4



where the last inequality follows from the assumption n ≥ s2. As this contradicts the maximum

gap between the minimum and maximum degree, the lemma follows.

We note that for the case r = 1, a slightly stronger result follows from a result of Erdős et al [10]

using the Erdős-Gallai criterion for degree sequences. It is proved that for any n ≥ s ≥ 2 there is

a set S of s vertices with the property that |deg(x)− deg(y)| ≤ s− 2 for any x, y ∈ S.

Recall that Rr(k) is the multicolored Ramsey number, which is the least integer s such that in any

coloring of the edges of the complete graph with s vertices using r colors, there is a monochromatic

Kk (see [12]).

Proof (Theorem 1.1): Let s = Rr+1(k) be the multicolored Ramsey number, and set

C = C(k, r) = max{s2, k + (s+ 2)(2r(k − 1) + 1)k−1} .

Consider a complete graph with n vertices whose edges have weights in {0, . . . , r}. We may assume

that n ≥ C as otherwise we can just delete, say, n− 2 ≤ C vertices and obtain a regular subgraph

with two vertices. Since n ≥ C ≥ s2, we have by Lemma 3.1 that there is a set S of s vertices

with the property that |deg(x) − deg(y)| ≤ sr for any x, y ∈ S. Thus, for some p ∈ {0, . . . , r} the

induced complete subgraph G[S] has an induced complete subgraph on k vertices, denoted by K,

such that the edge (x, y) for x, y ∈ K has weight p.

Without loss of generality, assume that V (G) \K = {v1, . . . , vn−k} and K = {vn−k+1, . . . , vn}.
Let w(vi, vj) denote the weight of the edge connecting vi and vj . We construct a sequence of n− k
vectors x1, . . . , xn−k of [−r, r]k−1 as follows. Coordinate j of xi is w(vn−k+j , vi) − w(vn, vi) for

i = 1, . . . , n− k and j = 1, . . . , k − 1. Observe that indeed w(vn−k+j , vi)− w(vn, vi) ∈ {−r, . . . , r}
as required. What can be said about the sum of all the j’th coordinates?

n−k∑
i=1

(w(vn−k+j , vi)− w(vn, vi)) =
n−k∑
i=1

w(vn−k+j , vi)−
n−k∑
i=1

w(vn, vi)

= (deg(vn−k+j)− p(k − 1))− (deg(vn)− p(k − 1))

= deg(vn−k+j)− deg(vn) ≤ sr .

Hence,

z =
n−k∑
i=1

xi ∈ [−sr, sr]k−1 .

Since n − k ≥ C − k ≥ (s + 2)(2r(k − 1) + 1)k−1, we have by Corollary 2.2 with d = k − 1 and

q = sr that there is a subsequence of X of size at most (s+ 2)(2r(k − 1) + 1)k−1 whose sum is z.

Deleting the vertices of G corresponding to the elements of this subsequence results in a subgraph

with at least n− (s + 2)(2r(k − 1) + 1)k−1 ≥ n− C vertices in which all the k vertices of K have

the same degree.
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The following corollary is immediate from the bound C(k, 1) ≤ max{s2, k+(s+2)(2(k−1)+1)k−1}
given in the proof of Theorem 1.1, together with the well known facts that s = R2(k) < 4k and

R2(3) = 6.

Corollary 3.2 We have C(k) ≤ (8k)k and C(3) ≤ 203.

4 Equating three vertices

In this section we prove that 3 ≤ C(3) ≤ 6.

Proposition 4.1 For any graph G with at least 5 vertices, one can delete at most 6 vertices such

that the subgraph obtained has at least three vertices with the same degree. Consequently, C(3) ≤ 6.

Proof: By a result of [10], G has a set X of 5 vertices such that |deg(u)−deg(v)| ≤ 3 for u, v ∈ X.

Now, either X has a triangle, or else X has an independent set of size 3, or else X induces a C5.

In any case, this implies that X has three vertices x, y, z with deg(x) ≤ deg(y) ≤ deg(z) such that

the following holds: (x, y) is an edge if and only if (x, z) is an edge. Furthermore, if (y, z) is an

edge, then {x, y, z} induce a triangle. We use this property implicitly throughout the remainder

of the proof. We may also assume deg(z) > deg(x) otherwise x, y, z already have the same degree.

Throughout the proof we denote by N(.) the set of neighbors of a vertex in the current G (that is,

in the graph G after some vertices have possibly been deleted). Similarly, we denote by deg(.) the

degree of a vertex in the current G.

Consider first the case deg(x) < deg(y) = deg(z) in the original G. If (N(z) \N(x)) ∩ (N(y) \
N(x)) 6= ∅ we can delete a vertex of this intersection and decrease the degrees of y and z by 1

without affecting the degree of x. Otherwise, if (N(z) \N(x))∩ (N(y) \N(x)) = ∅ we can delete a

vertex of N(z)\N(x) and a vertex of N(y)\N(x) and decrease the degrees of y and z by 1 without

affecting the degree of x. Observe that in any case we delete at most two vertices. Repeating

this process at most three times we eventually obtain deg(x) = deg(y) = deg(z). Overall, we have

deleted at most 6 vertices.

Consider next the case deg(x) ≤ deg(y) < deg(z) in the original G. Let p = deg(z) − deg(y)

and let q = deg(y) − deg(x), and observe that p + q ≤ 3. Let us first equate deg(z) and deg(y)

by deleting some u ∈ N(z) \ N(y). Observe that u 6= x. We always prefer to delete a vertex u

that is non-adjacent to x, as long as there is such a vertex u. Overall, we have deleted p vertices.

The problem is that in the current graph we may have that deg(x) also decreased by some amount

r ≤ p. Suppose first that r = 0. As in the previous case, we may need to delete 2q additional

vertices to equate the degrees of y and z to that of x. Overall, we have deleted at most p+ 2q ≤ 6

vertices. If r > 0 then this means that at some point, when we deleted a vertex u, that vertex also

had to be adjacent to x. Hence, in the current graph, (N(z) \N(x)) ⊂ (N(y) \N(x)). So, we may

simply delete r additional vertices (all of them from N(z) \N(x)) to equate the degrees of y and

z to that of x. Overall, we deleted p+ r ≤ 2p ≤ 6 vertices.
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Figure 1: A graph showing that C(3) ≥ 3.

The graph in Figure 1 proves that C(3) ≥ 3. If we delete vertices 1, 2, 8, then in the resulting

graph, vertices 4, 5, 7 have the same degree. It is easy to check that deleting any two vertices does

not yield a graph with repetition number 3. In fact, a computer verification asserts that this graph

is the smallest graph (in terms of the number of vertices) for which we need to delete more than

two vertices to obtain repetition number 3.

5 A lower bound for C(k)

In this section we prove that C(k) = Ω(k log k). Our construction is based upon an additional

building block: graphs that have the property that all of their induced subgraphs have repetition

number which is not too large.

Lemma 5.1 For any integer n, there exists a graph Dn with n vertices such that no induced

subgraph of Dn has more than 3n/ lnn vertices with the same degree.

Proof: Consider the non-increasing sequence of integers ai = d2n/(i lnn)e. Let Si =
∑i
j=1 aj and

let s be the largest integer such that Ss ≤ n. Observe that s ≤
√
n since

Sd
√
ne =

d
√
ne∑

i=1

ai ≥
2n

lnn

d√ne∑
i=1

1

i

 > n .

Note that we also have n− Ss ≤ a1 = d2n/(lnn)e.
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Construct a graph Dn with n vertices as follows. Take s vertex-disjoint cliques B1, . . . , Bs where

Bi = Kai is a clique on ai vertices. The remaining set of n− Ss vertices of Dn is a set denoted by

Bs+1 consisting of n− Ss isolated vertices.

Let H be any induced subgraph of Dn, and suppose that K is a set of k vertices of H with the

same degree in H. Let j be the largest index such that K contains a vertex from Bj . Observe that

if j = s + 1, then all vertices of K have degree 0 in H and thus contain at most one vertex from

each Bi for i ≥ 1. In this case we have

k ≤ |B0|+ s = n− Ss + s ≤ d2n/(lnn)e+
√
n ≤ 3n

lnn
.

If j ≤ s, then all vertices of K have the same degree in H which is at most aj − 1 and thus K

contains at most aj vertices from each Bi for i = 1, . . . , j. Hence

k ≤ jaj = jd2n/(j lnn)e ≤ 2n

lnn
+
√
n ≤ 3n

lnn
.

Theorem 5.2 C(k) = Ω(k log k).

Proof: We will prove the slightly stronger assertion that for k sufficiently large, there are in-

finitely many graphs such that one cannot equate the degrees of k vertices by removing fewer than

(k ln k)/10 vertices.

Let Hn be any graph with n vertices and with rep(Hn) = 2. Denote is vertices by {h1, . . . , hn}
where deg(hi) ≤ deg(hi+1). Let Hn(q) be the graph obtained from Hn by the following procedure.

First, take a q-blowup of Hn, namely, each hi is replaced by an independent set of q vertices,

denoted by Bi = {hi,1, . . . , hi,q}. We connect each vertex of Bi to each vertex of Bj if and only if

(hi, hj) ∈ E(Hn). Otherwise, Bi ∪ Bj is an independent set. Next, for each i = 1, . . . , n we place

the graph Dq of Lemma 5.1 inside Bi. Observe that Hn(q) has nq vertices, and, furthermore, since

rep(Hn) = 2, we have that for i > j, deg(hi)− deg(hj) ≥ b(i− j)/2c. Since deg(hi)q ≤ deg(hi,x) <

(deg(hi) + 1)q for all x = 1, . . . , q, we have that for i > j,

deg(hi,x)− deg(hj,y) ≥
q(i− j)

2
− 3q

2
. (1)

We claim that for, say, q = 5k, any induced graph obtained from Hn(q) by deleting fewer

than (k ln k)/10 vertices, does not have k vertices with the same degree. Indeed, assume otherwise

and suppose we can delete a set of vertices X of size at most (k ln k)/10 from Hn(q) such that

the resulting subgraph H ′ has a set K of k vertices with the same degree. Let B′i = Bi \ X for

i = 1, . . . , n and notice that if two vertices of K belong to Bi, then they have the same degree in the

subgraph induced by B′i. Notice also that in Hn(q), the degrees of any two vertices of K differ by
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at most (k ln k)/10. Hence, if v ∈ Bi and u ∈ Bj are two vertices of K, then |i− j| ≤ (ln k)/20− 1,

as otherwise, by (1), their degrees in Hn(q) would differ by at least

q(ln k/20− 1)

2
− 3q

2
>
k ln k

10

where in the last inequality we used q = 5k and that k is sufficiently large. It follows that some

B′i contains at least 20k/ ln k vertices of K. However, as the subgraph induced by B′i was obtained

from Dq by deleting vertices, we have by Lemma 5.1 that it cannot have more than 3q/ ln q vertices

of the same degree. But we now arrive at a contradiction since 3q/ ln q < 20k/ ln k.
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