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Abstract

A celebrated result of Gowers states that for every ε > 0 there is a graph G such that every

ε-regular partition of G (in the sense of Szemerédi’s regularity lemma) has order given by a

tower of exponents of height polynomial in 1/ε. In this note we give a new proof of this result

that uses a construction and proof of correctness that are significantly simpler and shorter.

1 Introduction

Szemerédi’s regularity lemma asserts that every graph can be partitioned into a bounded number of

vertex sets Z1, . . . , Zk, such that the graphs between almost all pairs (Zi, Zj) behave “randomly”.

More precisely, given two vertex sets in a graph G let dG(A,B) = e(A,B)/|A||B| where e(A,B) is

the number of ordered pairs (u, v) such that u ∈ A, v ∈ B and u is connected to v in G. We say

that the pair (A,B) is ε-regular if |dG(A,B)− dG(A′, B′)| ≤ ε for all A′ ⊆ A and B′ ⊆ B satisfying

|A′| ≥ ε|A| and |B′| ≥ ε|B|. A partition Z = {Z1, . . . , Zk} of the vertex set of a graph is called

an equipartition if all the sizes of the sets Zi differ by at most 1. The order of an equipartition Z,

denoted |Z|, is the number of sets in it (k above). An equipartition Z is ε-regular if all but at most

εk2 of the pairs (Zi, Zj) are ε-regular1. Szemerédi’s regularity lemma then states the following.

Theorem 1 (Szemerédi [5]). For every ε > 0 there is M = M(ε) such that every graph has an

ε-regular equipartition of order at most M .

Despite its apparent simple statement (and proof) the regularity lemma has become one of

the most widely used tools in extremal graph theory, as well as in many other fields (see [4] for

a survey). Unfortunately, the proof in [5] only showed that M(ε) ≤ twr(O(1/ε5)) where twr(x)

is a tower of exponents of height x. Hence, the numerous applications of the lemma are all of

asymptotic nature and supply very weak effective bounds.
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For a long time it was not known whether the tower-type bound for M(ε) was unavoidable

until Gowers proved [3] that (surprisingly) this is indeed the case. Gowers’ paper contained two

proofs. The “first” proof used a simple construction with a short proof of correctness, but it

only showed that M(ε) ≥ twr(14 log(1/ε)). The “second” proof established the much stronger

bound M(ε) ≥ twr(1/εc) thus showing that M(ε) indeed grows as a tower of exponents of height

polynomial in 1/ε ([3] obtains c = 1/16). However, the second proof of the stronger bound used

a far more complicated construction with a significantly more involved proof of correctness, and

was dubbed a tour-de-force in the laudatio to Gowers’ Fields medal [1]. Conlon and Fox [2] gave

another proof of the fact that M(ε) ≥ twr(1/εc) (with c = 1), but their proof was equally involved.

While the proof of Gowers’ first construction used an inductive approach, in the concluding

remarks to his paper [3] he explained that “the proof for the second construction is so much more

complicated than the proof for the first” since one cannot use a similar inductive approach in the

second construction. Our main contribution here is a new proof that M(ε) ≥ twr(1/εc) (we obtain

c = 1/6). At a high level, our proof is almost identical to the first proof in [3] using a very similar

inductive approach. However, the proofs differ in several subtle aspects which make it possible to

execute the inductive argument 1/εc times and not only log(1/ε) times as in the first proof of [3].

We finally note that the second construction in [3] as well as the one in [2] prove lower bounds

for weaker versions of the regularity lemma. It would be interesting to see if one could use the

ideas in our new proof to give simple proofs of comparable lower bounds for weaker versions of the

regularity lemma.

Let us say that an equipartition Z = {Z1, . . . , Zk} is ε-nice if for every Z ∈ Z all but εk of the

sets Z ′ ∈ Z are such that (Z,Z ′) is ε-regular. Let M ′(ε) be such that every graph has an ε-nice

equipartition of order at most M ′(ε). It is a well-known (and easy) observation that M ′(ε) ≤M(ε3).

Hence, to prove that M(ε) ≥ twr(1/ε1/6) it will suffice to prove the following.

Theorem 2. There is a constant c > 0 such that M ′(ε) ≥ twr(c/ε1/2) for every 0 < ε < c.

2 Proof of Theorem 2

2.1 Preliminary lemmas

Suppose G is a weighted complete graph, where each edge (x, y) is assigned a weight dG(x, y) ∈
[0, 1]. Given two vertex sets A,B in G, define the weighted density between A,B by dG(A,B) =∑

x∈A,y∈B dG(x, y)/|A||B|. The following claim follows immediately from Chernoff’s bound.

Claim 2.1. Let ζ > 0. Suppose G is a weighted complete graph on n vertices with weights in [0, 1],

and G′ is a random graph, where each edge (x, y) is chosen independently to be included in G′ with

probability dG(x, y). Then with probability at least 1/2 we have |dG′(A,B) − dG(A,B)| ≤ ζ for all

sets A,B of size at least 20ζ−2 log(n).
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A pair of vertex sets A,B in a weighted graph G are ε-regular if |dG(A,B)− dG(A′, B′)| ≤ ε for

all A′ ⊆ A and B′ ⊆ B satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|. Clearly if one can construct a large

weighted graph G with the property that every ε-nice equipartition of G is of size twr(1/εc), then

an application of Claim 2.1 will give a “genuine” graph G′ with the same property. Hence, we will

prove our lower bound on M ′(ε) with respect to weighted graphs.

If M is an even integer, then a sequence (Ai, Bi)
m
i=1 of m bipartitions of [M ] is called c-balanced

if for every i we have |Ai| = |Bi| = M/2 and for every distinct t, t′ ∈ [M ] there are at most (12 +c)m

values i for which t, t′ lie in the same part of (Ai, Bi).

Lemma 2.2. For every m ≥ 1 and M = 2dm/512e there exists a sequence of m bipartitions of [M ]

that is 1
16 -balanced.

Proof. If m ≤ 512 then M = 2 and we can just take m identical copies of the partition A = {1}
and B = {2}. Suppose now that m > 512. We choose, uniformly at random, m bipartitions of

[M ] into two sets of equal size, with the choices being mutually independent. Fix t 6= t′ ∈ [M ].

The probability that t and t′ are in the same part of a given bipartition is 2
(
M−2
M/2−2

)
/
(
M
M/2

)
≤ 1/2.

By Chernoff’s inequality, the union bound, and the fact that m > 512, the probability that some

pair t 6= t′ ∈ [M ] belongs to the same part for more than 9m/16 of the bipartitions is at most(
M
2

)
exp(−2m/256) < 1, so the required sequence of partitions exists.

Lemma 2.3. If (Ai, Bi)
m
i=1 is a sequence of bipartitions of [M ] that is 1

16 -balanced, then for every

λ = (λ1, . . . , λM ) with λt ≥ 0, ‖λ‖1 = 1, and ‖λ‖∞ ≤ 1 − 8ζ, at least2 m/6 of the bipartitions

(Ai, Bi) satisfy min(
∑

t∈Ai
λt,
∑

t∈Bi
λt) ≥ ζ.

Proof. Suppose (Ai, Bi)
m
i=1 is a sequence of partitions of [M ] that is 1

4 -balanced (and not neces-

sarily 1
16 -balanced). We first show that in this case we can find one bipartition (Ai, Bi) satisfying

min(
∑

t∈Ai
λt,
∑

t∈Bi
λt) ≥ ζ. Choose one of the partitions (Ai, Bi) in the sequence uniformly at

random, and let Yt be the random variable satisfying Yt = 1 if t ∈ Ai, and Yt = −1 if t ∈ Bi.

Clearly, E[Y 2
t ] = 1 and as the sequence is 1

4 -balanced, we have E[YtYt′ ] ≤ 1/2 for every t 6= t′ ∈ [M ].

Let Y =
∑M

t=1 λtYt. Then

E[Y 2] ≤ 1

2

∑
t6=t′

λtλt′ +
∑
t

λ2t =
1

2
(
∑
t

λt)
2 +

1

2

∑
t

λ2t =
1

2
+

1

2

∑
t

λ2t ≤ 1− 4ζ ,

where in the last inequality we used the fact that
∑

t λ
2
t ≤ ‖λ‖∞ · ‖λ‖1 ≤ 1 − 8ζ. We conclude

that E[|Y |] ≤ 1 − 2ζ, implying that there exists an i for which the bipartition (Ai, Bi) satisfies∣∣∑
t∈Ai

λt −
∑

t∈Bi
λt
∣∣ ≤ 1 − 2ζ. Since

∣∣∑
t∈Ai

λt −
∑

t∈Bi
λt
∣∣ = 2

∣∣∣∣∑t∈Ai
λt − 1

2

∣∣∣∣ this means that

ζ ≤
∑

t∈Ai
λt ≤ 1− ζ, implying that min(

∑
t∈Ai

λt,
∑

t∈Bi
λt) ≥ ζ, as desired.

2We note that here we improve upon a similar lemma of Gowers [3] where he obtains 4ζm bipartitions (Ai, Bi) as

above. The improvement from 4ζm to m/6 is key to our new proof.
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Suppose now that our sequence of m bipartitions is 1
16 -balanced. We repeatedly apply the

argument from the previous paragraph, where in each step we “pull out” a bipartition satisfying

min(
∑

t∈Ai
λt,
∑

t∈Bi
λt) ≥ ζ. By the claim in the previous paragraph we can do this as long as the

remaining set of bipartitions is 1
4 -balanced. We claim that as long as we have removed less than m/6

of the bipartitions, the remaining sequence is still 1
4 -balanced. Indeed, since the original sequence

was 1
16 -balanced, if we remove at most m/6 bipartitions, then for each pair t 6= t′ ∈ [M ] the fraction

of bipartitions in which t, t′ belong to the same part is at most (9m/16)/(5m/6) ≤ 3/4.

2.2 The construction

We now describe the weighted graph G = (V,E) on n vertices which, as we will shortly prove, has

no small ε-nice equipartition. Henceforth, set δ = 30ε1/2, s = b1/δc, φ(m) = 2dm/512e and assume

n is large enough as a function of ε, and that 0 < ε < c for some small enough c.

Let X0,X1, . . . ,Xs be a sequence of s+1 equipartitions of V each refining the previous one, where

X0 is the trivial partition with |X0| = 1, so that every part of Xr−1 is subdivided into φ(|Xr−1|) parts

in Xr.. Note that |Xr| = |Xr−1| · φ(|Xr−1|), implying that |Xr| = twr(Ω(r)). For each 1 ≤ r ≤ s

we now define a weighted graph Gr using the partitions Xr−1 and Xr. For convenience, write

Xr−1 = {X1, . . . , Xm} and Xr = {Xi,t}m,Mi=1,t=1 such that the sets Xi,1, . . . , Xi,M form a partition of

Xi. Let (A′j , B
′
j)
m
j=1 be a sequence of m bipartitions of [M ] that is 1

16 -balanced, as in Lemma 2.2

(we can choose these bipartitions since M = φ(m) = 2dm/512e). For each 1 ≤ i ≤ m, we assign

to Xi a sequence of m bipartitions (Ai,j , Bi,j)
m
j=1 of its vertices by letting Ai,j :=

⋃
t∈A′j

Xi,t and

Bi,j :=
⋃
t∈B′j

Xi,t (i.e., we think of each bipartition (A′j , B
′
j) as a bipartition of the collection of

sets Xi,1 . . . , Xi,M ). Now, for every u ∈ Xi and v ∈ Xj , the edge (u, v) has a positive weight δ in

Gr if and only if u ∈ Ai,j and v ∈ Aj,i or u ∈ Bi,j and v ∈ Bj,i. Notice we allow i = j in the above;

moreover, we allow (for convenience) self loops. As an example, notice |X0| = 1 and |X1| = 2, so

G1 is just a vertex-disjoint union of two cliques, each on exactly half the vertices, whose edges are

all of weight δ. Finally, define G = G1 +G2 + · · ·+Gs, meaning that the final weight assigned to

each edge is the sum of the weights assigned to this edge over all graphs G1, . . . , Gs. This is well

defined as the weight of each edge is at most sδ ≤ 1.

We now state an important observation regarding the graph G. Fix an integer 1 ≤ r ≤ s, a

set Xi ∈ Xr−1, a vertex v ∈ Xi and 1 ≤ j ≤ m. Since in the construction above the bipartition

Xj = Aj,i∪Bj,i satisfies |Aj,i| = |Bj,i| = |Xj |/2, we see that dGr(v,Xj) = δ/2. Since each setX ∈ Xr
is a disjoint unions of sets X ′ ∈ Xr+1 etc. and since the partitions X1, . . . ,Xs are equipartitions,

we get that for every 1 ≤ r ≤ s, vertex v ∈ V , and X ∈ Xr that dGr+1+···+Gs(v,X) = 1
2δ(s − r).

Finally, since the sets Aj,i are disjoint unions of sets X ∈ Xr we get that for every set Aj,i and for

any other set of vertices Z, we have

dGr+1+···+Gs(Z,Aj,i) =
1

2
δ(s− r) . (1)
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2.3 Proof of correctness

We write A ⊆β B to denote the fact that |A ∩ B| ≥ (1 − β)|A|. We say that a partition Z is a

β-refinement of a partition X if for every Z ∈ Z there is an X ∈ X such that Z ⊆β X. Note that

if Z is a β-refinement of X with β < 1/2 then, in particular, each Z ∈ Z satisfies Z ⊆β X for a

unique X ∈ X . In what follows, we only consider β-refinements with β < 1/2. The heart of the

proof of Theorem 2 is the following lemma, in which G, s and δ are those defined above.

Lemma 2.4. Suppose β ≤ δ/60 < 1/2, and 1 ≤ r ≤ s. If Z is an ε-nice equipartition of G that

β-refines Xr−1 then it (β + 8ε)-refines Xr.

We first deduce Theorem 2 from Lemma 2.4 and then prove the lemma.

Proof of Theorem 2. Let Z be an ε-nice equipartition of the weighted graph G. Since Z is a

0-refinement of X0 = V , it follows from repeated applications of Lemma 2.4 that Z is an r · 8ε-
refinement of Xr, for every r ≤ δ/(60 · 8ε), and in particular, for r = s. We thus get that Z is

a β-refinement of Xs with β = s · 8ε < ε1/2/2 ≤ 1/2, which implies |Z| ≥ |Xs| /2. As mentioned

earlier, |Xs| = twr(Ω(s)) ≥ twr(c/ε1/2), thus proving the desired lower bound on |Z|. Finally, as

noted earlier, it follows from Claim 2.1 that there exists a (non-weighted) graph G′ satisfying the

same conclusion, thus completing the proof.

Proof of Lemma 2.4. Write Xr−1 = {X1, . . . , Xm} and Xr = {Xi,t}m,Mi=1,t=1. Suppose to the contrary

that there exists Z0 ∈ Z with Z0 ⊆β Xi such that Z0 6⊆β+8ε Xi,t for every 1 ≤ t ≤ M . Write

k = |Z|. We will show that there are at least εk sets Z ∈ Z such that (Z0, Z) is ε-irregular.

Call a vertex v ∈ Xj useful if the unique Z ∈ Z containing v satisfies Z ⊆β Xj . Call a set

Xj useful if it contains at least (1 − 12β) |Xj | useful vertices, and moreover, the bipartition Xi =

Ai,j ∪Bi,j satisfies min(|Z0 ∩Ai,j | , |Z0 ∩Bi,j |) ≥ ε |Z0|. We now show that there are at least m/12

useful sets Xj ∈ Xr−1. First, note that as Z is a β-refinement of Xr−1, at most βn of all vertices

are non-useful. Hence by averaging, there are at most m/12 sets Xj ∈ Xr−1 containing more than

12β |Xj | non-useful vertices. Second, for each 1 ≤ t ≤M set λt = |Z0 ∩Xi,t| / |Z0 ∩Xi|. Denoting

λ = (λ1, . . . , λM ), we have ‖λ‖1 = 1 and, as Z0 6⊆β+8ε Xi,t for all t, we have ‖λ‖∞ < 1−8 ·ε/(1−β).

Since the sequence of bipartitions (Ai,j , Bi,j)
m
j=1 is (by construction) 1

16 -balanced, we get from

Lemma 2.3 (with ζ = ε/(1 − β)) that there are at least m/6 values j for which the bipartition

(Ai,j , Bi,j) is such that both
∑

t∈Ai,j
|Z0 ∩Xi,t| / |Z0 ∩Xi| and

∑
t∈Bi,j

|Z0 ∩Xi,t| / |Z0 ∩Xi| are at

least ε/(1−β). For each such bipartition we have min(|Z0 ∩Ai,j | , |Z0 ∩Bi,j |) ≥ ε |Z0|. We conclude

that there are at least m/6−m/12 = m/12 values j for which Xj is useful.

Fix a useful set Xj . Let Zj = {Z ∈ Z : Z ⊆β Xj}. We now show that there are at least 12εk/m

sets Z ∈ Zj such that (Z0, Z) is ε-irregular. Together with the fact that there are at least m/12

useful sets Xj we will thus get the required εk (distinct) sets Z for which (Z0, Z) is ε-irregular.

So suppose on the contrary that Zj contains fewer than 12εk/m sets that together with Z0 form

an ε-irregular pair. Set F = Gr+1 + · · · + Gs, Z
1 = Z0 ∩ Ai,j and Z2 = Z0 ∩ Bi,j . Since Xj is
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useful, we have min(|Z1|, |Z2|) ≥ ε|Z0|. Let A ⊆ Aj,i be the set of vertices x satisfying one of the

following: (i) x is not useful, (ii) x belongs to a set Z ∈ Zj such that (Z0, Z) is ε-irregular, (iii)

x belongs to a set Z ∈ Zj such that (Z0, Z) is ε-regular and dF (x, Z2) < dF (x, Z1) + 3
4δ. We now

show that |A| ≤ 1
2δ |Aj,i|. Since Xj is useful and |Aj,i| = |Xj |/2 we infer that Aj,i has at most

24β |Aj,i| vertices satisfying (i). Our assumption on the number of ε-irregular pairs (Z0, Z) with

Z ∈ Zj implies that there at most 24ε |Aj,i| vertices satisfying (ii). Suppose Z ∈ Zj and (Z0, Z) is

ε-regular. Further suppose that Z contains a subset Z ′ ⊆ Z of at least ε |Z| vertices all of which

satisfy (iii). Since Z ′ ⊆ Aj,i, Z1 ⊆ Ai,j and Z2 ⊆ Bi,j we have by construction that dGr(Z ′, Z1) = δ

and dGr(Z ′, Z2) = 0. Moreover, notice that3 dG`
(Z ′, Z1) = dG`

(Z ′, Z2) for every 1 ≤ ` ≤ r − 1.

Therefore, in this case we would get that

dG(Z ′, Z1)− dG(Z ′, Z2) = dGr(Z ′, Z1)− dGr(Z ′, Z2) + dF (Z ′, Z1)− dF (Z ′, Z2)

> δ − 3

4
δ > 2ε ,

contradicting the fact that (Z0, Z) is ε-regular. We thus get that Aj,i contains at most 4ε |Aj,i|
vertices satisfying (iii), implying that altogether |A| ≤ (24β + 28ε) |Aj,i| ≤ 1

2δ |Aj,i|, as we wanted

to show. Note that if x 6∈ A then dF (x, Z2)− dF (x, Z1) ≥ 3
4δ, hence we can conclude that

dF (Aj,i, Z
2)− dF (Aj,i, Z

1) =
1

|Aj,i|

∑
x 6∈A

dF (x, Z2)− dF (x, Z1) +
∑
x∈A

dF (x, Z2)− dF (x, Z1)


≥ (1− δ/2)

3

4
δ − δ/2 > 0 .

But this contradicts (1), thus completing the proof.
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János Bolyai Math. Soc., Budapest (1996), 295–352. 1
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