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Abstract. We consider the performance of two classic approximation algorithms which work by
scanning the input and greedily constructing a solution. We investigate whether running these
algorithms on a random permutation of the input can increase their performance ratio. We obtain
the following results:

1. Johnson’s approximation algorithm for MAX-SAT is one of the first approximation algorithms
to be rigorously analyzed. It has been shown that the performance ratio of this algorithm is 2/3.
We show that when executed on a random permutation of the variables, the performance ratio of
this algorithm is improved to 2/3 + c for some c > 0. This resolves an open problem of Chen,
Friesen and Zhang [3].

2. Motivated by the above improvement, we consider the performance of the greedy algorithm
for MAX-CUT whose performance ratio is 1/2. Our hope was that running the greedy algorithm on
a random permutation of the vertices would result in a 1/2+ c approximation algorithm. However,
it turns out that in this case the performance of the algorithm remains 1/2. This resolves an open
problem of Mathieu and Schudy [9].

1. Introduction and Statement of Main Results

The “greedy” approach is probably the earliest and most widely used paradigm in designing algo-
rithms. Some of the most well studied exact algorithms are based on this approach. This method
has also turned out to be useful when designing approximation algorithms. See [11] for more de-
tails and several concrete examples. Our main goal in this paper is to consider variants of two
classic approximation algorithms that were based on this approach. In both cases we analyze the
performance ratio of an algorithm which executes the greedy algorithm on a random permutation
of the input.

1.1. Johnson’s Algorithm for Maximum Satisfiability. The first problem we examine is the
(weighted) MAX-SAT problem: Given an input set of clauses, together with a weight function
w(C) for each clause C, find an assignment so as to maximize the total weight of satisfied clauses.
Since MAX-SAT is the archetypal NP-hard problem, approximation algorithms for this problem
where studied as early as the early 70’s. Probably the first algorithm was Johnson’s algorithm [8],
which was shown by its namesake to have approximation ratio at least 1/2 (this was later improved
to 2/3). For many years this was the best approximation algorithm, until Yannakakis [13] obtained
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a 3/4 approximation algorithm, which was later simplified by Goemans and Williamson [7]. The
best approximation algorithm is due to Avidor, Berkovitch and Zwick [1] which builds upon several
previous algorithms (see [1] for details), all of which apply semidefinite programming.

While the above algorithms certainly outperform Johnson’s algorithm, they all rely on sophisticated
techniques such as Semidefinite programming, linear programming or Max-flow algorithms. On the
other hand Johnson’s algorithm can be stated as the following simple algorithm. Let x1, ..., xn be
an arbitrary ordering of the variables. Starting from x1, assign the variables the value true/false
using the following rule; when trying to assign xi a value, we give it the value that maximizes
the conditional expectation of the weight of satisfiable clauses, where the conditional expectation
is taken over a uniform assignment to the variables xi+1, ..., xn (while fixing the assignments to
x1, ..., xi). If both values have equal expectation, one is chosen arbitrarily. One can easily see
that this algorithm is just a simple derandomization (using the standard method of conditional
expectations) of the algorithm that assigns x1, ..., xn random values. Since in expectation, a random
assignment satisfies at least half of the clauses (noting each clause has at least one literal), we
immediately get that Johnson’s algorithm has performance ratio at least 1/2. This was the best
result concerning the performance ratio of Johnson’s algorithm, until Chen, Friesen and Zheng [3]
obtained a tighter analysis showing that the performance ratio was actually 2/3 (see also [5] for a
streamlined version of their analysis). More precisely they proved the following.

Theorem 1. [3] The weight wsat of clauses satisfied by Johnson’s algorithm satisfies

wsat ≥ wtot + wopt

3
≥ 2

3
wopt ,

where wtot is the total weight of all clauses and wopt is the weight satisfied by an optimal assignment.

It was also observed in [3] that the 2/3 ratio in Theorem 1 is tight. For example, on the clause set

{(x1 ∨ ¬x2), (x1 ∨ ¬x3),¬x1},
with all clauses having weight 1 and all variables defaulting to true in case of ties, the algorithm
begins by assigning x1 to “true” (as both expected values are 2) and fails to satisfy the third
clause. Note, however, that this was in some sense due to an unfortunate ordering of variables; if
the algorithm had instead first considered x2 or x3, it would have set those variables “false”. In
either case x1 would then have been set to false and all clauses would have been satisfied.

Because of this, [3] suggested the following randomized version of Johnson’s Algorithm:

Algorithm 1: First choose an ordering of the variables uniformly at random, then run Johnson’s
Algorithm with the variables considered in this new order.

The following open problem was raised in [3]:

Question 1 ([3]). Does Algorithm 1 give a performance ratio better than 2/3?

Our first main result answers this question in the affirmative:
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Theorem 2. There is an absolute constant c > 0 such that for any weighted maximum satisfiability
instance, Algorithm 1 satisfies in expectation at least a (2/3+c) fraction of the optimal assignment.

We recall again that all the algorithms whose performance ratio is at least 3/4 are rather involved.
It would thus be nice to know if the performance ratio of the randomized Johnson algorithm is 3/4,
since this would give an extremely simple and practical 3/4 approximation algorithm for MAX-
SAT. We currently do not know the optimum value for c in Theorem 2, though we do know that
there are instances where the performance ratio is with high probability only 3/4 (see Corollary 1
below). In particular, this method cannot outperform the more sophisticated algorithms that apply
semidefinite programming. We conjecture that the case described in Corollary 1 is essentially the
worst possible, that is to say

Conjecture 1. Algorithm 1 always satisfies in expectation at least a 3/4 fraction of the weight
satisfied by the optimal assignment (i.e. we can take c = 1/12 in Theorem 2).

1.2. The Greedy Algorithm for MAX-CUT. A second problem for which we consider the
performance of randomized greedy algorithms is MAX-CUT: Given an input graph G, we aim
to find the partition (L,R) of the vertices of G which maximizes the number of edges crossing
between L and R. Here the greedy algorithm (which dates back to Erdős [6]) is even simpler:
vertices are considered in turn and each xi is assigned to whichever of L and R creates more
crossing edges between xi and xj , j < i. Ties are broken arbitrarily. This algorithm can be
viewed as a derandomization of the uniform random cut, and as such has an approximation ratio
of at least 1/2. Again, this ratio is tight for the original algorithm: If the algorithm starts with
a complete bipartite graph on L0 × R0 and initially divides L0 uniformly between the two sides,
then no assignment of R0 can cut more than 1/2 the edges. Again, however, this example seems
to be an artifact of a poor choice of vertex order. Mathieu and Schudy [9] proposed the following
randomized variant of the greedy algorithm to avoid such examples:

Algorithm 2: Choose a random ordering of the vertices {x1, . . . , xn}. Then perform the above
greedy algorithm considering the vertices in this ordering.

In [9], the authors showed that repeated applications of such a randomized algorithm can be used
to construct an approximation with an expected difference of εn2 edges from the optimal cut size
in time n2 + 2O(ε−2). In particular, for dense graphs it provides a very good approximation to the
maximum cut size. Motivated by this, they asked:

Question 2. [9] Does the randomized greedy algorithm provide better than a 1/2−approximation
for general graphs?

Given Theorem 2, which shows that taking a random permutation before running a similar greedy
algorithm gives an improved performance ratio for MAX-SAT, it is tempting to assume that the
answer to Question 2 would be positive. However, as we show in Theorem 3, the answer turns out to
be negative: The randomized greedy partition does not provide better than a (1

2 +ε) approximation
to MAX-CUT in general for any ε > 0.
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Theorem 3. For any ε > 0 there are bipartite graphs G = (V, E) on n vertices for which
Algorithm 2 outputs a cut with at most (1

2 + ε)|E(G)| edges with probability 1 − exp(Ωε(log3 n)).
In particular, repeating the algorithm a polynomial number of times is unlikely to give a (1/2 + ε)-
approximation. 1

It is an interesting question at precisely which edge densities Algorithm 2 outperforms a simple
random cut. The analysis of Mathieu and Schudy [9] establishes that Algorithm 2 gives a 1− o(1)
approximation for MAX-CUT on graphs with Ω(n2) edges, and it is also not difficult to see that
the algorithm provides a non-negligible improvement in the case of graphs with O(n) edges (for
example, because the algorithm gains half an edge over random on average every time it has to split
an odd number of edges, and this adds up to a positive fraction of the total edges). Conversely, the
details of the proof of Theorem 3 reveal that the performance ratio can be no better than 1/2+o(1)
on graphs with O(n

√
log n) edges. We (hesitantly) make the following conjecture:

Conjecture 2. For any 0 < c < 1 there are bipartite graphs on n2−c edges for which Algorithm 2
with high probability only cuts a 1

2 + o(1) fraction of the edges.

Finally, let us return to the analysis of Johnson’s algorithm and derive the following upper bound
on the performance of Algorithm 1 from our upper bound on the performance of Algorithm 2.

Corollary 1. The performance ratio of Algorithm 1 is at most 3/4, that is 0 < c ≤ 1/12. The
same conclusion holds even when restricted to satisfiable formulas.

Proof. Note that we can view MAX-CUT as a special case of MAX-SAT: Given a graph G, we
construct a formula ΨG, where each edge (xi, xj) ∈ E(G) is represented by two clauses, (xi ∨ xj)
and (¬xi ∨ ¬xj), each of weight 1 in ΨG. Observe that if we take a bipartition of G into L,R
and set the variables in L to “true” and the variables in R to “false”, then a cut edge satisfies two
clauses and an uncut edge one. Now, it is not hard to see that Algorithm 1 specializes in this case
to Algorithm 2. Hence, if we execute it on the formulas ΨG, which are derived from the graphs G
of Theorem 3, the 1

2 +o(1) upper bound on the fraction of cut edges due to Theorem 3 implies that
Algorithm 1 will satisfy only 3

4 + o(1) of the clauses. Moreover, since the graphs G are bipartite,
the formulas are completely satisfiable and so the performance ratio is bounded by 3/4 even if the
formula is satisfiable. ¤

1.3. Paper overview. Theorem 2, regarding the performance of the modified Johnson algorithm,
is proven in Section 2. The proof applies certain martingale and stopping time arguments along
with LP-duality. We believe the combination of these techniques may be of independent interest
and may be applicable to the analysis of other randomized approximation algorithms. Theorem 3,
regarding the performance of the randomized MAX-CUT algorithm, is proven in Section 3. The
main idea is to apply martingale arguments in order to analyze the performance of the algorithm
on sparse random graphs.

1The problem raised by Mathieu and Schudy [9] considered executing Algorithm 2 some constant number of times,
but we rule out the possibility of getting a 1/2+ ε performance ratio even when executing the algorithm a polynomial
number of times.
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2. The Proof of Theorem 2

We may assume without loss of generality that the original optimal assignment had every variable
set to “true” by swapping the roles of some xi and ¬xi as necessary.

At any point in the algorithm we will denote by S those clauses which have already been satisfied
by the assigned variables. We will refer to a clause as negative if it has not yet been satisfied
and every variable within it occurs in the form ¬xi, and denote the set of negative clauses by
N . We will refer to an unsatisfied clause as open if it contains at least one unassigned variable,
and closed otherwise. The measure of a clause, µ(C), will be defined as w(C)2−|C|, where |C| is
the number of unassigned variables in C. In terms of this notation, the two expected values in
Johnson’s algorithm can be thought of as comparing the measure of the clauses containing “xi” to
that of the clauses containing “¬xi”.

A key lemma in the analysis of [3] was the following:

Lemma 1. At every step in Johnson’s algorithm and for every i we have

∆iw(S) ≥ 2∆iµ(N),

where ∆i denotes the change in each quantity if variable xi is the next to be assigned.

The crux of our argument will be to show that, under certain conditions, the additional random-
ization step allows the 2 to be replaced by a better ratio for at least part of the algorithm. Let
δ0, δ1,and δ2 be small positive constants to be determined later.

Lemma 2. Suppose that the initial set of clauses satisfied wopt ≥ (1− δ0)wtot.

Suppose furthermore that the following two conditions are simultaneously satisfied at some point in
our randomized Johnson’s algorithm:

• The weight of S, the set of currently satisfied clauses, satisfies w(S) ≤ δ1wtot.
• A random assignment which independently sets each unassigned variable to true or false

with probability 1
2 each satisfies in expectation weight at most (2

3 + δ2)wopen of the open
clauses, where wopen denotes the total weight of open clauses.

Then the next step in the algorithm has the property that

E(∆w(S)) ≥ rE(∆µ(N)),

where
r = r(δ0, δ1, δ2) :=

6(1− δ0 − 2δ1)
2 + 3δ0 + δ1 + 12δ2 − 12δ1δ2

.

Note that r(0, 0, 0) = 3, but that r drops below 2 as the δi increase (Lemma 1 still applies in this
case even in the randomized version though). In some sense this is a reflection about how our
initial “nearly satisfiable” condition gives us more control over the behavior of the algorithm at the
beginning than further along.
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The motivation for this lemma and its proof can be thought of as how knowledge that the approx-
imation ratio of the original Johnson’s Algorithm was near 2/3 can be exploited to provide a good
amount of information about the (initial) structure of the set of clauses.

The use of δ0 is motivated by the observation that Johnson’s algorithm performs better on sets
of long clauses than on sets of short ones. The algorithm it derandomizes (assigning all variables
uniformly at random) satisfies a clause of length k with probability 1−2−k. If the expected fraction
of clauses satisfied by the original algorithm is significantly larger than 2/3, we are already done
since Johnson’s algorithm also satisfies this fraction. So we assume this is not the case, which
among other things implies that a positive fraction of the initial weight of clauses were singleton.

The use of δ2 is motivated by how the original bound of wsat ≤ 2(wsat + wopt)/3 in [3] is strongest
when wsat and wopt are separated. In improving the overall approximation ratio, then, we can
assume that the original set of clauses (including those singleton clauses we know exist) was nearly
satisfiable. Note that this does nothing to prevent contradictory clauses from being produced later
on in the algorithm, and we have less and less control over such created contradictions as time goes
on. We introduce δ1 as a cutoff to reflect this lack of control.

The proof of Lemma 2 involves viewing the lemma’s constraints, along with an additional constraint
coming from the definition of Johnson’s Algorithm, as effectively defining a linear program2. The
statement of the lemma now becomes that this program has a non-negative minimum, which can
be directly verified.

2.1. The proof of Lemma 2. By rescaling, we may assume that wtot = 1. We may also assume
that r ≥ 2, as otherwise the Lemma follows immediately from Lemma 1.

Let A1 denote the set of unassigned variables which, if selected by Johnson’s algorithm, would be
set to true in the current step, and A2 denote those unassigned variables that would be set to false.
Let f(α, β, γ, δ) be the total weight of unsatisfied clauses with

• α instances of “xi”, with xi ∈ A1,
• β instances of “¬xi”, with xi ∈ A1,
• γ instances of “xi”, with xi ∈ A2,
• δ instances of “¬xi”, with xi ∈ A2.

In particular, f(0, 0, 0, 0) represents the total weight of closed clauses. We have the following five
inequalities relating the f . First, the total weight of the clauses must equal wtot, which we write as

(1) −w(S)−
∑

f(α, β, γ, δ) = −1.

Here and elsewhere all sums are assumed to be over all nonnegative values of variables in the
summand. Next, we note that the definition of A2 and that of Johnson’s algorithm guarantees that

2We would like to thank Alex Samorodnitsky for suggesting this linear programming interpretation, which replaced
a much clunkier original analysis.
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for any variable xi ∈ A2 the measure of clauses containing ¬xi must be at least as large as the
measure of clauses containing xi. Adding up over all variables in A2 gives

(2)
∑ δ − γ

2α+β+γ+δ
f(α, β, γ, δ) ≥ 0.

By the assumptions of the lemma we have

(3) −w(S) ≥ −δ1.

By assumption, we also know that µ(N) was initially at most 1
2δ0 (since all clauses initially had

length at least one), and by Lemma 1 we know the change in µ(N) so far is at most 1
2w(S). This

gives an upper bound on µ(N), which we write as

(4)
∑ −1

2β+δ
f(0, β, 0, δ) ≥ −δ0 + δ1

2
.

Finally, since a random assignment fails for at least a 1
3 − δ2 fraction of the unsatisfied clauses, we

have

(5)
∑

(α,β,γ,δ)6=(0,0,0,0)

f(α, β, γ, δ)
2α+β+γ+δ

+ (
1
3
− δ2)(w(S) + f(0, 0, 0, 0)) ≥ 1

3
− δ2.

We view equations (1)-(5) as a set of constraints defining a linear program on the f(α, β, γ, δ) and
w(S). Our goal is to show that the objective function

(6)
∑

(α + δ)f(α, β, γ, δ)− r

(∑ β − δ

2β+δ
f(0, β, 0, δ) +

∑ 1
2β+δ

f(0, β, 1, δ)
)

has a non-negative minimum value.

Consider the inequality formed by taking

c1(1) + c2(2) + c3(3) + c4(4) + c5(5),

where
(c1, c2, c3, c4, c5) = (r − 1, 2(r + 1),

1
3
(3− r(1 + 6δ2)), 2 + r, 2r).

(It can be checked that c3 > 0).

The right hand side of this inequality is

(r − 1)(−1)− 1
3
(3− r(1 + 6δ2))δ1 − (2 + r)

δ0 + δ1

2
+ 2r(

1
3
− δ2) = 0 ,

(where r was chosen so that this was true). By LP-Duality, we are therefore done if we can show
that for each (α, β, γ, δ) the coefficient of f(α, β, γ, δ) in

(7) (6)− (c1(1) + c2(2) + c3(3) + c4(4) + c5(5))

is non-negative.

We will show this by the following case analysis:
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Case 0: α + β + γ + δ ≤ 5. These follow from direct computation, which we omit here.

Case 1: α > 0 or γ > 1 and α+β +γ +δ > 5 In this case the contribution of f(α, β, γ, δ) to ∆µ(N)
is 0, and (7) evaluates to

α + δ + r − 1− 2(δ + r + δr − γ(1 + r))
2α+β+γ+δ

≥ α + δ + 1− 6
2α+β+γ+δ

− 8δ

α + β + γ + δ

≥ α + δ + 1− 6
64
− 48

64
≥ 0

using the inequalities 2 ≤ r ≤ 3.

Case 2: α = 0, γ = 1, and β + δ ≥ 5. Now (7) evaluates to

r + δ − 1− δr + r + δ − 1
2β+δ

≥ δ + 1− 4δ + 2
2β+δ

≥ δ + 1− 4δ + 2
32

≥ 0.

Case 3: α = 0, γ = 0, and β + δ ≥ 6. Now (7) evaluates to

r + δ − 1− r(β + δ + 1) + 2δ − 2
2β+δ

≥ 1 + δ − 3(β + δ + 1)
2β+δ

− 2δ − 2
2β+δ

≥ 1 + δ − 21
64
− 5

32
≥ 0.

2.2. Leveraging Lemma 2 into a better bound. By Theorem 1, in the case where wopt ≤
wtot(1− δ0) we have

wsat ≥ wtot + wopt

3

≥ wopt

1
1−δ0

+ 1
3

≥ wopt(
2
3

+
δ0

3
).

Now let us assume that wopt ≥ (1 − δ0)wtot. Let S0 be the set of satisfied clauses and N0 be the
set of negative clauses at the beginning of the first step where the hypotheses of Lemma 2 do not
all apply, and let B be the event that w(S0) ≥ δ1wtot.

By Lemma 2, it follows that w(S)− r(δ0, δ1, δ2)µ(N) is a submartingale at each step prior to this
point. Since this difference is clearly bounded for any fixed set of clauses, it follows from Doob’s
optional stopping theorem that the stopped difference is also a submartingale, that is to say that

(8) E(w(S0)) ≥ r(δ0, δ1, δ2)E(µ(N0)).
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We then have from Lemma 1 that after our modified analysis stops, the rate of increase of w(S)
remains at least twice that of µ(N), that is to say

w(S)− w(S0) ≥ 2(µ(N)− µ(N0)),

which would give us the usual 2/3 bound at the end of the algorithm.

However, we can do better in the case where B did not occur. Since Johnson always does at least
as well as random, we know that, conditioning on ¬B, we have

w(S)− w(S0) ≥ (
2
3

+ δ2)wopen,

while

µ(N)− µ(N0) ≤ w(N)− w(N0) ≤ (
1
3
− δ2)wopen.

Comparing, we have at the end of the algorithm:

w(S)− w(S0) ≥ 2(µ(N)− µ(N0)) + 3δ2wopen

≥ 2(µ(N)− µ(N0)) + 3δ2(1− 3
2
δ1 − 1

2
δ0)wtot .

Combining this with (8), we have (again at algorithm’s end),

E(wsat) = E(w(S0)) + E(wsat − w(S0))

≥ 2E(µ(N0)− µ(Ninit)) + (1− 2
r(δ0, δ1, δ2)

)E(w(S0)) + 2E(µ(N)− µ(N0))

+3δ2(1− 3
2
δ1 − 1

2
δ0)wtotP(¬(B))

= 2E(µ(N)− µ(Ninit)) + (1− 2
r(δ0, δ1, δ2)

)(δ1wtotP(B)) + 3δ2(1− 3
2
δ1 − 1

2
δ0)wtotP(¬(B))

≥ 2E((wtot − wsat)− 1
2
(wtot − wopt)) + min{(1− 2

r(δ0, δ1, δ2)
)δ1, 3δ2(1− 3

2
δ1 − 1

2
δ0)}wtot .

Solving and using wopt ≤ wtot gives

E(wsat) ≥ (
2
3

+
1
3

min{(1− 2
r(δ0, δ1, δ2)

)δ1, 3δ2(1− 3
2
δ1 − 1

2
δ0)})wopt .

Combining this with the case where wopt is small, we have an improvement in the ratio of

1
3

min{δ0, (1− 2
r(δ0, δ1, δ2)

)δ1, 3δ2(1− 3
2
δ1 − 1

2
δ0)}.

This is positive so long as δ0, δ1, and δ2 are all sufficiently small. (e.g. it is equal to 0.003653 at
(δ0, δ1, δ2) = (0.01096, 0.06802, 0.004094)).
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3. The Proof of Theorem 3

Let p =
√

log n
n , and consider the bipartite graph G formed by first assigning each vertex into

either R0 or L0 uniformly and independently at random, then connecting each pair of vertices
(x, y) ∈ R0 × L0 independently with probability p. We will refer to G as ε-pseudorandom if it
satisfies the following three properties

• P1: ||L0| − n
2 | < n3/4.

• P2: ||E(G)| − pn2

4 | ≤ εpn2

40 .
• P3: There is no cut (L,R) in G that simultaneously satisfies

|E(L,R)| ≥ (
1
2

+ ε)|E(G)|
and

(9) ||L0 ∩ L| − |L0|
2
| ≤ εn/10.

Lemma 3. The probability that G is ε−pseudorandom is at least 1 − exp(−Ω(ε2n
√

log n − n)) −
exp(−Ω(

√
n).

Proof. We repeatedly use the following special case of Chernoff’s bound for binomial variables ([4],
see [10] for this particular version):

Theorem 4. Let X = X1 + · · · + Xm be the sum of iid Bernoulli variables, each with success
probability q. Then

P(|X −mq| > t
√

mq) ≤ 2 max{e−t2/4, e−t
√

mq/2}.

Applying this bound with q = 1/2, m = n, and t = n1/4 gives that the probability P1 fails to occur
is exp(−Ω(n1/2)).

Applying this bound with q = p, m = n2/4− n3/2, and t = εn
√

p gives

P(P1 ∧ ¬P2) = exp(−Ω(n2pε2)) = exp(ω(ε2n
√

log n)).

For P3, we apply the union bound over all cuts satisfying (9). There are at most 2n such cuts, and
each cut satisfying (9) has at most m := n2(1+ε/10)

2 pairs (x, y) of vertices on opposite sides of the
cut. Applying Chernoff with this m, q = p, and t = ε

√
mp/2 gives that

P(E(X,Y ) > mp(1 + ε/2)) ≤ exp(−Ω(ε2mp/16)) = exp(−Ω(ε2n
√

log n))

by our choice of p. The probability that P3 occurs but not P2 or P1 is at most 2n times this
large. ¤

A natural way of thinking of condition P3 is that a pseudorandom graph only has one good cut
– the only cuts which cut significantly more than half of the edges are those which correlate with
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the original bipartition. It is therefore enough to show that the cut output by Algorithm 2 usually
does not exhibit such correlation, that is to say

Lemma 4. For a random G with this edge probability, Algorithm 2 satisfies (9) with probability
1− exp(−Ω(log3 n)).

Combining the above two lemmas, we see that the probability Algorithm 2 succeeds on a random
graph is exp(−Ω(log3 n)).

Proof. By symmetry, it suffices to bound the probability L is too large. To do so, we view both
G and the cut given by the Algorithm as being exposed simultaneously. In other words, we first
expose the ordering {x1, . . . , xn} of the vertices, then successively expose for each xi its assignment
to either L0 and R0, followed by its edges to those xj with j < i.

We define

• L1(t) as the number of vertices in {x1, . . . , xt} assigned to L0 in G, and then to L by our
greedy algorithm,

• L2(t) as the number of vertices in {x1, . . . , xt} assigned to L0 in G, and then to R by our
greedy algorithm,

• R1(t) as the number of vertices in {x1, . . . , xt} assigned to R0 in G, and then to L by our
greedy algorithm,

• R2(t) as the number of vertices in {x1, . . . , xt} assigned to R0 in G, and then to R by our
greedy algorithm.

We also define
g1(t) = L1(t)− L2(t) and g2(t) = R2(t)−R1(t)

(note the asymmetry in the definition). Our intuition from before is encoded in the following
lemma, which states that g1 and g2 cannot have much drift unless they are already large.

Claim 1. At any point in Algorithm 2, we have

E(g1(t + 1)− g1(t)) ≤ max{0, pg2(t)} and E(g2(t + 1)− g2(t)) ≤ min{0, pg1(t)}

Proof. We focus on the first expectation (the proof for the second is identical). Clearly g1(t + 1) =
g1(t) unless xt+1 ∈ L0. If xt+1 ∈ L0 and g2(t) ≤ 0 (meaning that R0 currently has at least as many
vertices assigned to L as to R), then clearly the probability xt+1 is assigned to L is at most 1/2,
giving the 0 upper bound on the expectation in this case. So now suppose g2(t) > 0, and let T
be an arbitrary collection of g2(t) vertices in R2. Let E be the event that xt+1 has at least one
neighbor in T . We have by symmetry (after throwing out the vertices in T both sides have an equal
number of vertices) that

E(g1(t + 1)− g1(t)|¬E) = 0,

so it follows that
E(g1(t + 1)− g1(t)) ≤ E(g1(t + 1)− g1(t)|E)P(E)

The first term is at most one, while the second is at most pg2(t). ¤
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This claim suggests that g1(t) and g2(t) are (in a rough sense) “dominated on average” by the
solutions to the differential equation g′(t) = pg(t), g(0) = 1. Lemma 4 corresponds to how the
solution to this differential equation, ept, is still o(n) even at t = n (recall that p was taken to be
o(log n/n)).

Now define f(t) = 20e10pt log3/2 n√
p , and let f1(t) = g1(t)− f(t) and f2(t) = g2(t)− f(t). Consider the

stopping process which halts when either all n vertices are assigned or the larger of f1(t) and f2(t)
exceeds t1/2 log3/2 n.

Claim 2. Both f1(t) and f2(t) are supermartingales throughout the stopping process.

Remark 1. f(t) was essentially chosen in such a way as to make this lemma true. The general
idea we are using here (turning the quantities we are tracking into (super)martingales, then using
stopping time arguments and concentration inequalities to show that these martingales do not
become too large anywhere in the process) was motivated by the use of similar arguments in the
differential equations method for random graph processes [12].

Proof. Again we focus only on f1, since f2 is identical.

E(f1(t + 1)− f1(t)) = E(g1(t + 1)− g1(t))− (f(t + 1)− f(t))

≤ max{0, p(f(t) + t1/2 log3/2 n)} − (f(t + 1)− f(t)),

since we are assuming the process has not yet stopped. This is negative if the first term is 0, since
f is increasing. Otherwise we have

E(f1(t + 1)− f1(t)) ≤ p(
20e10pt log3/2 n√

p
+ t1/2 log3/2 n)− 20e10pt log3/2 n√

p
(e10p − 1)

≤ p(
20e10pt log3/2 n√

p
+ t1/2 log3/2 n)− 20e10pt log3/2 n√

p
(5p)

= log3/2 n
√

p(
√

pt− 80e10pt)

The claim now follows from the inequality
√

z ≤ 80e10z for nonnegative z. ¤

Our final claim is that this process likely does not stop until all vertices have been assigned.

Claim 3. The probability that the process stops before t = n is at most exp(−Ω(log3 n)).
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Proof. By the above, f1(t) is a submartingale, and we have

|f1(t + 1)− f1(t)| ≤ 1 + f(t + 1)− f(t)

= 1 +
20 log3/2 ne10pt

√
p

(e10p − 1)

≤ 1 +
400p log3/2 ne10pn

√
p

≤ 1 +
400 log7/4 ne10

√
log n

√
n

≤ 2,

for n sufficiently large. It follows from Azuma’s inequality [2] that for any t

P(f1(t) ≥ t1/2 log3/2 n) ≤ e− log3 n/8.

Taking the union bound over all t, we see the probability of stopping before t = n due to f1

becoming too large is exp(−Ω(log3 n)). The same holds for f2. ¤

We now can put everything together. If the process does not stop, it follows that f1(n) ≤
n1/2 log3/2 n, from which it follows that

g1(n) ≤ f(n) + n1/2 log3/2 n

≤ 20n1/2e10
√

log n log3/2 n + n1/2 log3/2 n

≤ n2/3

for n sufficiently large.

¤
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