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Abstract

The arithmetic regularity lemma due to Green [GAFA 2005] is an analogue of the famous
Szemerédi regularity lemma in graph theory. It shows that for any abelian group G and any
bounded function f : G — [0, 1], there exists a subgroup H < G of bounded index such
that, when restricted to most cosets of H, the function f is pseudorandom in the sense that
all its nontrivial Fourier coefficients are small. Quantitatively, if one wishes to obtain that
for 1 — € fraction of the cosets, the nontrivial Fourier coefficients are bounded by €, then
Green shows that |G/H| is bounded by a tower of twos of height 1/€3. He also gives an
example showing that a tower of height €2 (log 1/¢€) is necessary. Here, we give an improved
example, showing that a tower of height €2(1/€) is necessary.

1. Introduction

As an analogue of Szemerédi’s regularity lemma in graph theory [4], Green [2] proposed
an arithmetic regularity lemma for abelian groups. Given an abelian group G and a bounded
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function f : G — [0, 1], Green showed that one can find a subgroup H < G of bounded
index, such that when restricted to most cosets of H, the function f is pseudorandom in
the sense that all of its nontrivial Fourier coefficients are small. Quantitatively, the index of
H in G is bounded by a tower of twos of height polynomial in the error parameter. The
aim of this paper is to provide an example showing that these bounds are essentially tight.
This strengthens a previous example due to Green [2] which shows that a tower of height
logarithmic in the error parameter is necessary; and makes the lower bounds in the arithmetic
case analogous to these obtained in the graph case [1].

We restrict our attention in this paper to the group G = Z/, and note that our construction
can be generalised to groups of bounded torsion in an obvious way. We first make some
basic definitions. Let A be an affine subspace (that is, a translation of a vector subspace) of
Z5andlet f : A — [0, 1] be a function. The Fourier coefficient of f associated with n € Z
is

-~ 1
Fop = o2 3 FOED = Bl f @D

xeA

Any subspace H < Zj naturally determines a partition of Zj into affine subspaces
Zy/H ={H+g :gecZy)}.
The number |Z3/H| = 2"~™# of translations is called the index of H.

1-1. Arithmetic regularity and the main result

For an affine subspace A = H + g of Z, where H < Zj and g € Zj, we say that a
function f : A — [0, 1] is e-regular if all its nontrivial Fourier coefficients are bounded by
€, that is,

max | 7| <<
n¢H+

Note that a trivial Fourier coefficient (i.e., f(n) with n € H™) satisfies |f(n)| = |Eiea f(x)].
Henceforth, for any f : Z; — [0, 1] we write f|4 : A — [0, 1] for the restriction of f
to A.

Definition 1-1 (e-regular subspace). Let f : Z; — [0, 1]. A subspace H < Z] is e-
regular for f if f|, is e-regular for at least (1 — €) - |Z3/H | translations A of H.

Green [2] proved that any bounded function has an e-regular subspace H of bounded
index, that is, whose index depends only on € (equivalently, H has bounded codimension).
In the following, twr (h) is a tower of twos of height /; formally, twr (h) := 2™ #=D for a
positive integer &, and twr (0) = 1.

THEOREM 1 (Arithmetic regularity lemma in Z}, [2 theorem 2-1]). For every 0 < € <
1/2 there is M(€) such that every function f : Z) — [0, 1] has an e-regular subspace of
index at most M (€). Moreover, M (¢) < twr([1/€°]).

A lower bound on M (¢) of about twr (log,(1/€)) was given in the same paper [2], fol-
lowing the lines of Gowers’ lower bound on the order of e-regular partitions of graphs [1].
While Green’s lower bound implies that M (¢) indeed has a tower-type growth, it is still quite
far from the upper bound in Theorem 1.

Our main result here nearly closes the gap between the lower and upper bounds on M (¢),
showing that M (¢) is a tower of twos of height at least linear in 1/¢. Our construction follows
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the same initial setup as in [2], but will diverge from that point on. Our proof is inspired by
the recent simplified lower bound proof for the graph regularity lemma in [3] by a subset of
the authors.

THEOREM 2. For every € > 0 it holds that M (e) > twr ([ 1/16€]).

1-2. A variant of Theorem 2 for binary functions

One can also deduce from Theorem 2 a similar bound for e-regular sets, that is, for binary
functions f : Z; — {0, 1}. For this, all we need is the following easy probabilistic argument.

CLAM 1-2. Lett > Oand f : Z) — [0, 1]. There exists a binary function S : 7, —
{0, 1} satisfying, for every affine subspace A of Zj of size |A| > 4n*/t* and any vector
n € 75, that

ISTa(m) — fla(m| <t

Proof. Choose S : Z5 — {0, 1} randomly by setting S(x) = 1 with probability f(x),
independently for each x € Zj. Let A, n be as in the statement. The random variable

STan) = ZS(x)( DR
xEA
is an average of |A| mutually independent random variables taking values in [ 1, 1], and its
expectation is f |a(n). By Hoeffding’s bound, the probability that |S la(n) — > Tis
smaller than

2exp(—72|A]/2) < 272+

The number of affine subspaces over Z) can be trivially bounded by 2", the number of
sequences of n vectors in Z3. Hence, the number of pairs (A, n) is bounded by 27+ The
claim follows by the union bound.

Applying Claim 1-2 with T = €/2 (say) implies that if f : Z7 — [0, 1] has no e-regular
subspace of index smaller than twr (| 1/16¢€]) then, provided n is sufficiently large in terms
of €, there is § : Z7 — {0, 1} that has no €/2-regular subspace of index smaller than
twr ([1/16¢€]).

2. Proof of Theorem 2
2-1. The Construction

To construct a function witnessing the lower bound in Theorem 2 we will use pseudo-
random spanning sets.

CLAIM 2-1. Let V be a vector space over Z, of dimension d. Then there is a set of 8d
nonzero vectors in V such that any 6d of them span V.

Proof. Choose random vectors vy, ..., vggy € V \ {0} independently and uniformly. Let U
be a subspace of V of dimension d — 1. The probability that a given v; lies in U is at most
1/2. By Chernoff’s bound, the probability that more than 6d of our vectors v; lie in U is
smaller than exp(—2(2d)?/8d) = exp(—d). By the union bound, the probability that there
exists a subspace U of dimension d — 1 for which the above holds is at most 2¢ exp(—d) < 1.
This completes the proof.
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We now describe a function f : Z; — [0, 1] which, as we will later prove, has no e-
regular subspace of small index. Henceforth set s = |1/16¢]. Furthermore, let d; be the
following sequence of integers of tower-type growth:

20 ifi=1,2,3
di+1 =

- 2D;—3 lfl -3 where Di = Zd] and D() =0.

j=1
Note that the first values of d; fori > 1 are 1,2, 8, 28, 224 etc., and it is not hard to see
thatd; > twr(i — 1) forevery i > 1. Setn = D; (= twr(s — 1)). For x € Z, partition its
coordinates into s blocks of sizes d, ..., d,, and identify x = (x!,...,x%) € Z‘;‘Jr"'”‘ =
7.

Let 1 < i < s. Bijectively associate with each v € Zf =7 a nonzero vector
&) € Zg" such that the set of vectors {&;(v) : v € Zf "~'} has the property that any subset
of 3/4 fraction of its elements spans Zg’. The existence of such a set, which is a subset of
size 2P in a vector space of dimension d;, follows from Claim 2-1 when i > 3, since then
2DPi-1 = 8d;. When i < 3 the existence of such a set is trivial since [(3/4)i] = i, hence any
basis would do (and we take 2°-' = d;). With a slight abuse of notation, if x € Z} we write
& (x) for & ((x', ..., x"7").

We define our function f : Z) — [0, 1] as

{1 <i <s 0 (&) = 0}

N

dy+-+di—
2

fx) =
The following is our main technical lemma, from which Theorem 2 immediately follows.
LEMMA 2-2. The only e-regular subspace for f is the zero subspace {0}.
Proof of Theorem 2. The index of {0} is ’Z’;/{O}‘ =2" > twr(s) = twr(|1/16€]).

2-2. Proof of Lemma 2-2

Let H =+ {0} be a subspace of Z. Let 1 < i < s be minimal such that there is v € H for
which v’ = 0. For any g € Z) let

Vg:(O,...,O,Si(g),o,...,o)EZ;

where only the ith component is nonzero. We will show that for more than an € fraction of
the translations H + g of H it holds that y, ¢ H* yet

f/lz:g(yg) > €.

This will imply that H is not e-regular for f, thus completing the proof.
First, we argue that y, ¢ H™ for a noticeable fraction of g € Z5. We henceforth let
B ={g € Z;: y, € H*} be the set of “bad” elements.

CLAIM 2:3. |B| < 3 |Z3).

Proof. If g € B then (£;(g), v') = 0. Hence, {£(g) : g € B} does not span Z‘zi". By the
construction of &, this means that {(g', ..., g"~") : ¢ € B} accounts to at most 3 fraction of
the elements in Z.'~', and hence | B| < 2|z

Next, we argue that typically f/ll:g(yg) is large. Let W < Z) be the subspace spanned
by the last s — i blocks, thatis, W = {w € Z} : w' = ... = w’ = 0}. Note that for any
g €75, w € W we have y,,, = ¥,. In particular, g + w € B if and only if g € B.
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CLAIM 2-4. Fix g € Z, such that y, ¢ H*. Then

— 1
Evew | fTavern 7)) = -

Proof. Write f(x) = %Zj:l Bj(x) where B;(x) : Z; — {0, 1} is the characteristic
function for the set of vectors x satisfying (x/, &;(x)) = 0. Hence, for any affine subspace
Ain Z7,

— I & —
Flatv) ==Y Bilarp) - 1)

j=1

Set A = H+g+w for an arbitrary w € W. We next analyze the Fourier coefficient m (Ve)
for each j < i, and note that in these cases we have &;(x) = §;(g) for any x € A. First, if
j < i then for every x € A we have x/ = g/, which implies that B;|, is constant. Since a
nontrivial Fourier coefficient of a constant function equals 0, we have

Bila(y) =0,  Vj<i. (2:2)

Next, for j =i, write B;|4(x) = %((—1)(Xi"5f(")> + 1). Since (x, y,) = (x', & (x)), we have

g 1 ; ; 1
Bila(yy) = Exea [5«—1)“ SNy (=Y ff“”] =EclB0l=5. (23

Finally, for j > i we average over all w € W. Let H + W be the subspace spanned by
H, W. Writing B;(x) = ((—1)*"%®) 4 1)/2, the average Fourier coefficient is

i 1 i Jj
EuewErcrtsern [ B0 (=D 50 | = JBycp e [ (-D0 0000 ]

Note that for every fixing of x', ..., x/~', we have that x/ is uniformly distributed in Z(zlj
(due to W), and that (—1)™"%()) is constant. Since &;(x) =% 0, we conclude that

Euew [ Bilirera()| =0, ¥j>i. 24)
The proof now follows by substituting (2-2), (2-3) and (2-4) into (2-1).
As f|/H;;w (¥,) < 1, we infer (via a simple averaging argument) the following corollary.

COROLLARY 2-5. If'y, & H™* then for more than 1/4s fraction of all w € W,

f|H+g+w(yg) > .

4s
We can now conclude the proof of Lemma 2-2. Partition Z} into translations of W.
By Claim 2.3, for at least 1/4 fraction of the translations g + W we have y, ¢ H*. By
Corollary 2.5, for each such g, more than 1/4s fraction of the elements g + w € g + W
satisfy f|/H\+Hu,(yg) > 1/4s. As 1/16s > €, this means that |y, is not e-regular for more
than € fraction of all x € Z7, implying that the subspace H is not e-regular for f.
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