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Abstract

We show that there exist linear 3-uniform hypergraphs with n vertices and Ω(n2) edges which con-
tain no copy of the 3×3 grid. This makes significant progress on a conjecture of Füredi and Ruszinkó.
We also discuss connections to proving lower bounds for the (9, 6) Brown-Erdős-Sós problem and to
a problem of Solymosi and Solymosi.

1 Introduction

In recent years there has been some interest in Turán-type results for linear hypergraphs [4, 5, 6]. In
this paper, all hypergraphs are 3-uniform. For a family H of 3-uniform hypergraphs, we let exlin(n,H)
denote the maximum number of edges in a linear 3-uniform H-free hypergraph on n vertices. When
H has a single element H, we will write exlin(n,H). Arguably, the interest in problems of this type
is motivated by the famous Brown-Erdős-Sós conjecture [1, 2], which states that, for every k ≥ 3, if
Hk+3,k is the set of all 3-uniform hypergraphs with k edges and at most k+3 vertices (such hypergraphs
are called (k + 3, k)-configurations), then1 exlin(n,Hk+3,k) = o(n2). So far, this conjecture has only
been proven in the case k = 3. This is a celebrated result of Ruzsa and Szemerédi [7], which became
known as the (6, 3) theorem. Ruzsa and Szemerédi [7] have also given a construction which shows that
exlin(n,H6,3) ≥ n2−o(1), implying that the exponent 2 in the (6, 3) theorem cannot be improved. For
k ≥ 4, the Brown-Erdős-Sós conjecture remains widely open despite considerable effort, with the best
approximate result recently obtained in [3] (see also [8, 10]).

It is easy to check that H6,3 contains only one linear hypergraph: the triangle T, which is the
hypergraph with vertices 1, 2, 3, 4, 5, 6 and edges {1, 2, 3}, {3, 4, 5}, {5, 6, 1}. Thus, the aforementioned
results of Ruzsa and Szemerédi [7] are equivalent to the statement n2−o(1) ≤ exlin(n,T) ≤ o(n2).

It is natural to try and prove that exlin(n,Hk+3,k) ≥ n2−o(1) for every k ≥ 3, which would mean that,
in a sense, the Brown-Erdős-Sós conjecture is optimal. For k = 4, 5, such a lower bound follows from
the simple observation that every (7, 4)- or (8, 5)-configuration contains a (6, 3)-configuration. Similar
considerations were used in [5] to handle the cases k = 7, 8. For k = 6, however, such arguments
could not be used, since there exists a (9, 6)-configuration which contains no (6, 3)-configuration; this
is the 3 × 3 grid G3×3, which is the 3-uniform hypergraph whose vertices are the nine points in a
3 × 3 point array, and whose edges correspond to the 6 horizontal and vertical lines of this array. It
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1The Brown-Erdős-Sós conjecture is usually stated about general (i.e., not necessarily linear) hypergraphs, but it is

well-known that it suffices to consider linear hypergraphs. Indeed, if a hypergraph H contains no (k + 3, k)-configuration,
then every pair of vertices is contained in at most k−1 edges, so H has a linear subhypergraph with at least e(H)/(k−1) =
Ω(e(H)) edges.
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is not hard to verify2 (see also [5]) that every linear (9, 6)-configuration either contains a triangle T
or is isomorphic to G3×3. Hence, exlin(n,H9,6) ≥ exlin(n, {T,G3×3}). This relation has led Füredi
and Ruszinkó [4] to study extremal problems related to the grid. In particular, they conjectured that
exlin(n,G3×3) =

(
1
6 − o(1)

)
n2, and, more strongly, that for every large enough admissible n, there

exists a Steiner triple system of order n which is G3×3-free. Using a standard probabilistic alterations
argument, Füredi and Ruszinkó [4] showed that exlin(n,G3×3) = Ω(n1.8). This was then slightly

improved (as a special case of a more general result) to Ω(n1.8 log1/5 n) by Shangguan and Tamo [9].
Here we make significant progress on the conjecture of Füredi and Ruszinkó [4], by showing that
exlin(n,G3×3) = Ω(n2).

Theorem 1. For infinitely many n, there exists a linear G3×3-free 3-uniform hypergraph with n vertices
and ( 1

16 − o(1))n2 edges.

Theorem 1 is proved in the following section. Then, in Section 3, we discuss some related open problems.

2 The Construction

Construction 2.1. Let F be a field and let X,A ⊆ F. Define H(X,A) to be the 3-partite 3-uniform
hypergraph with sides X, Y := {x + a : x ∈ X, a ∈ A} and Z := {x · a : x ∈ X, a ∈ A}, and with an
edge (x, x + a, x · a) ∈ X × Y × Z for every x ∈ X and a ∈ A.

We now prove that the hypergraph H(X,A) defined in Construction 2.1 is always G3×3-free. We
will then show that it contains a dense linear subhypergraph. We denote the vertices of G3×3 by
{pi, qi, ri : 1 ≤ i ≤ 3} and its edges by {{pi, qi, ri}, {pi+1, qi+2, ri} : 1 ≤ i ≤ 3}, where (here and later
on) indices are taken modulo 3. A 3-partition of a 3-uniform hypergraph F is a partition V (F ) =
P ∪ Q ∪ R such that every edge of F contains one element from each of the sets P,Q,R. Observe
that {p1, p2, p3}, {q1, q2, q3}, {r1, r2, r3} is a 3-partition of G3×3. It can be verified3 that every two
3-partitions of G3×3 are equivalent, in the sense that there is an automorphism of G3×3 which maps
every class of one to a class of the other.

Lemma 2.2. Let F be a field and let X,A ⊆ F. Then H(X,A) is G3×3-free.

Proof. Suppose, for the sake of contradiction, that H(X,A) contains a copy of G3×3. Since all 3-
partitions of G3×3 are equivalent (as explained above), we may assume, without loss of generality, that
p1, p2, p3 ∈ X, q1, q2, q3 ∈ Y = {x + a : x ∈ X, a ∈ A} and r1, r2, r3 ∈ Z = {x · a : x ∈ X, a ∈ A}. By
definition of H(X,A), for every edge {x, y, z} ∈ E(H) (with x ∈ X, y ∈ Y and z ∈ Z) there is a ∈ A
such that y = x+a and z = x ·a; hence, z = x ·(y−x). It follows that for every 1 ≤ i ≤ 3, we must have
ri = pi · (qi− pi) and ri = pi+1 · (qi+2− pi+1). Here and throughout the proof, indices are taken modulo
3. By comparing these two expressions for ri, we see that

pi · (qi − pi) = pi+1 · (qi+2 − pi+1). (1)

2Indeed, let H be a linear (9, 6)-configuration avoinding T. First, observe that H has maximum degree 2, for if
{a, b, c}, {a, d, e}, {a, f, g} are three edges containing a, then there can be only one edge containing the remaining two
vertices (as H is linear), so there must be an edge which contains two vertices from {b, c, d, e, f, g}, which gives a T. Now,
as e(H) = 6, all degrees in H must be 2. Consider the two edges {a, b, c}, {a, d, e} containing some vertex a. Let f, g, h, i
be the four remaining vertices. Each of the four remaining edges must contain two vertices from {f, g, h, i} and one from
{b, c, d, e}. Every vertex from {b, c, d, e} must be covered once by these edges, and every vertex from {f, g, h, i} twice.
Hence, the pairs from {f, g, h, i} which are covered by these edges must form a C4. Since H is T-free, b and c must be
contained in opposite edges of this C4, and the same for d and e. This gives a G3,3.

3Indeed, every 3-partition of G3×3 is either obtained from the 3-partition (P,Q,R) by permuting its classes, or equals
({p1, q3, r2}, {p2, q1, r3}, {p3, q2, r1}) or one of its permutations.
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for every 1 ≤ i ≤ 3. Multiplying (1) by pi+2 and then summing over 1 ≤ i ≤ 3, we obtain

3∑
i=1

pipi+2 · (qi − pi) =
3∑

i=1

pi+1pi+2 · (qi+2 − pi+1).

It is easy to see that for every 1 ≤ i ≤ 3, both sides have the term pipi+2qi. Cancelling out these terms
and rearranging, we get

0 =

3∑
i=1

p2i pi+2 −
3∑

i=1

p2i+1pi+2 = (p1 − p2)(p2 − p3)(p3 − p1).

Hence, there must be 1 ≤ i ≤ 3 such that pi+1 = pi. However, this is impossible as p1, p2, p3 ∈ X must
correspond to distinct vertices of a copy of G3×3. This contradiction completes the proof. �

Proof of Theorem 1. We first prove Theorem 1 with a slightly worse bound, namely, with the frac-
tion 1

16 replaced by 1
18 . We then explain how our argument can be modified to give 1

16 .
Let p be an odd prime power, and set X := A := Fp\{0}. Let H = H(X,A) be the hypergraph from

Construction 2.1. By Lemma 2.2, H is G3×3-free. We claim that for each edge e = (x, x + a, x · a) ∈
E(H) ⊆ X × Y × Z, if f ∈ E(H) \ {e} satisfies that |e ∩ f | = 2 then f = (a, x + a, x · a). So let
f = (y, y + b, y · b) ∈ E(H) \ {e} be such that |e ∩ f | = 2. We cannot have (x, x + a) = (y, y + b) or
(x, x ·a) = (y, y ·b), for otherwise we would have x = y, a = b and hence e = f . Therefore, we must have
(x+a, x ·a) = (y+ b, y · b), which gives y(x+a−y) = x ·a. Solving this quadratic equation for y, we get
that y = x or y = a, and hence (y, b) = (x, a) or (y, b) = (a, x). In the former case, f = e, and in the
latter case f = (a, x+a, x ·a). This proves our claim. It follows that for each e ∈ E(H) there is at most
one other edge f ∈ E(H) such that |e ∩ f | = 2. By deleting one edge from each such pair (e, f), we

obtain a linear sub-hypergraph H ′ of H with e(H ′) ≥ e(H)
2 = |X||A| = (12−o(1))p2 = ( 1

18−o(1))v(H)2,
where in the last equality we used the fact that v(H) = 3p− 2 as |X| = p− 1, |Y | = p and Z = p− 1.
This shows that exlin(n,G3×3) ≥ ( 1

18 − o(1))n2.
To improve the constant, we choose X and A differently: let X be the set of (non-zero) quadratic

residues and A be the set of (non-zero) quadratic non-residues in Fp. Evidently, |X| = |A| = p−1
2

and |Y | ≤ p. As Z = {x · a : x ∈ X, a ∈ A} = A, one also has |Z| = p−1
2 . Altogether we get

v(H) = |X| + |Y | + |Z| ≤ 2p − 1. Moreover, e(H) = |X||A| = (14 − o(1))p2 = ( 1
16 − o(1))v(H)2.

Crucially, we observe that H is linear, because for every e = (x, x + a, x · a) ∈ E(H), the edge
f = (a, x+a, x ·a) is not in H, as x is a quadratic residue while a is not. This completes the proof. �

3 Concluding Remarks And Open Problems

� Another problem raised in [4] is to prove that exlin(n,H9,6) ≥ n2−o(1). This problem remains
open. Recalling that exlin(n,H9,6) ≥ exlin(n, {T,G3×3}), we see, in light of Lemma 2.2, that it

suffices to find a choice of sets X,A ⊆ Fp, |X|, |A| ≥ p1−o(1), such that the hypergraph H(X,A)
has no triangles (i.e., no copies of T). For this, one needs that there are no x ∈ X and distinct
a, b, c ∈ A such that (x + a− b) · b = x · c.

� There is another construction of a linear 3-uniform grid-free hypergraph with Ω(n2) edges.
For sets X,A ⊆ Fp, define a 3-partite hypergraph with sides X,Y, Z by placing the edge
(x, x + a, x + a2) ∈ X × Y × Z for every x ∈ X, a ∈ A. Here one needs to be more care-
ful: unlike Construction 2.1, this hypergraph can contain a copy of G3×3, but only if there are
x1, x2 ∈ X and a ∈ A satisfying 4x1 + 4a = 4x2 + 1. Let us prove this. Consider a copy of
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G3,3 with vertices {pi, qi, ri : 1 ≤ i ≤ 3}, as described before Lemma 2.2. Here, this copy corre-
sponds to the equations ri − pi = (qi − pi)

2 and ri − pi+1 = (qi+2 − pi+1)
2 for i = 1, 2, 3. Hence,

pi + (qi−pi)
2 = pi+1 + (qi+2−pi+1)

2. Substituting ui := pi+1−pi and vi := qi−pi+1 (i = 1, 2, 3),
we get (vi + ui)

2 = ui + (vi+2 − ui)
2, and, after rearranging,

(2vi + 2vi+2 − 1)ui = v2i+2 − v2i . (2)

Now, if 2vi + 2vi+2 6= 1 for all 1 ≤ i ≤ 3, then in equation (2) we can divide and get ui =
(v2i+2 − v2i )/(2vi + 2vi+2 − 1) for all 1 ≤ i ≤ 3. Summing this over i and using the fact that
u1 + u2 + u3 = (p2 − p1) + (p3 − p2) + (p1 − p3) = 0, we get

0 =

3∑
i=1

ui =

3∑
i=1

v2i+2 − v2i
2vi + 2vi+2 − 1

=
−2(v3 − v1)(v1 − v2)(v2 − v3)

(2v1 + 2v3 − 1)(2v2 + 2v1 − 1)(2v3 + 2v2 − 1)
.

Hence, there must be 1 ≤ i ≤ 3 such that vi+2 = vi. Plugging this into (2) and using that
2vi + 2vi+2 6= 1, we get that ui = pi+1 − pi = 0, which is impossible as pi, pi+1 are distinct
vertices. Therefore, there must be 1 ≤ i ≤ 3 such that 2vi + 2vi+2 = 1, hence also v2i+2 − v2i = 0

by (2). Plugging vi+2 = 1/2− vi into v2i+2 − v2i = 0, we get that vi = 1/4, hence qi − pi+1 = 1/4.
Now, recall that by construction, pi, pi+1 ∈ X and qi = pi + a for some a ∈ A. Hence, we have
our desired solution to 4x1 +4a = 4x2 +1 with x1, x2 ∈ X, a ∈ A. So in order for the hypergraph
to be G3×3-free, it suffices to choose X,A that avoid such solutions; for example, one can take
X = A = {1, . . . , bp/8c}.
This construction can also be a candidate for showing that exlin(n,H9,6) ≥ n2−o(1). Again, the
issue is choosing X,A so as to avoid triangles, which in this case correspond to solutions to the
equation a + c2 − c = b2 with distinct a, b, c ∈ A. Thus, in order to show that exlin(n,H9,6) ≥
n2−o(1), it suffices to show that there exists A ⊆ Fp, |A| = p1−o(1), with no non-trivial solution to
this equation.

� A related conjecture of Solymosi and Solymosi [10] states that every (large enough) 3-uniform
hypergraph with n vertices and Ω(n2) edges contains a 2-core on at most 9 vertices, where a
2-core is a hypergraph with minimum degree 2. This conjecture is closely related4 to the case
k = 6 of the Brown-Erdős-Sós conjecture, since a 2-core on 9 vertices has at least 6 edges.

Let H be the 3-partite hypergraph with sides X,Y, Z, all equal to Fp, and with edge-set
{(x, x + a, x + 2a) ∈ X × Y × Z : x, a ∈ Fp}. Alternatively, this is the hypergraph whose
edges are all triples (x, y, z) ∈ X × Y × Z satisfying y = (x + z)/2. By a somewhat lengthy case
analysis, one can show that H avoids all 2-cores on at most 9 vertices except for the grid G3×3.
Thus, the hypergraph corresponding to a linear relation (namely, the relation y = (x + z)/2)
avoids all but one of the 2-cores on at most 9 vertices, whereas in order to avoid G3×3 one needs a
non-linear relation (as in Construction 2.1 or in the construction described in the previous item).
It would be interesting to understand the connection between the structure of a configuration F
and the relation which can be used to define a hypergraph which avoids F .

We note that inspite of the above construction, it is plausible that the Solymosi-Solymosi conjec-
ture is true; namely, that while there exist dense linear hypergraphs which avoid any individual
2-core on at most 9 vertices (and even hypergraphs which avoid all but one of them), avoiding
all such 2-cores in a dense linear hypergraph is impossible.

4Strictly speaking, the Solymosi-Solymosi conjecture does not imply the case k = 6 of the Brown-Erdős-Sós conjecture,
since the former allows the 2-core to have less than 9 vertices, and hence less than 6 edges.
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