Constructing Dense Grid-Free Linear 3-Graphs

Lior Gishboliner* Asaf Shapira ${ }^{\dagger}$

April 1, 2021

Abstract

We show that there exist linear 3-uniform hypergraphs with n vertices and $\Omega\left(n^{2}\right)$ edges which contain no copy of the 3×3 grid. This makes significant progress on a conjecture of Füredi and Ruszinkó. We also discuss connections to proving lower bounds for the $(9,6)$ Brown-Erdős-Sós problem and to a problem of Solymosi and Solymosi.

1 Introduction

In recent years there has been some interest in Turán-type results for linear hypergraphs [4, 5, 6]. In this paper, all hypergraphs are 3 -uniform. For a family \mathcal{H} of 3 -uniform hypergraphs, we let ex $\mathrm{x}_{\mathrm{lin}}(n, \mathcal{H})$ denote the maximum number of edges in a linear 3 -uniform \mathcal{H}-free hypergraph on n vertices. When \mathcal{H} has a single element H, we will write $\operatorname{ex}_{\text {lin }}(n, H)$. Arguably, the interest in problems of this type is motivated by the famous Brown-Erdős-Sós conjecture [1, 2], which states that, for every $k \geq 3$, if $\mathcal{H}_{k+3, k}$ is the set of all 3 -uniform hypergraphs with k edges and at most $k+3$ vertices (such hypergraphs are called $(k+3, k)$-configurations $)$, then ${ }^{1} \operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{k+3, k}\right)=o\left(n^{2}\right)$. So far, this conjecture has only been proven in the case $k=3$. This is a celebrated result of Ruzsa and Szemerédi [7], which became known as the $(6,3)$ theorem. Ruzsa and Szemerédi [7] have also given a construction which shows that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{6,3}\right) \geq n^{2-o(1)}$, implying that the exponent 2 in the $(6,3)$ theorem cannot be improved. For $k \geq 4$, the Brown-Erdős-Sós conjecture remains widely open despite considerable effort, with the best approximate result recently obtained in [3] (see also [8, 10]).

It is easy to check that $\mathcal{H}_{6,3}$ contains only one linear hypergraph: the triangle \mathbb{T}, which is the hypergraph with vertices $1,2,3,4,5,6$ and edges $\{1,2,3\},\{3,4,5\},\{5,6,1\}$. Thus, the aforementioned results of Ruzsa and Szemerédi [7] are equivalent to the statement $n^{2-o(1)} \leq \operatorname{ex}_{\operatorname{lin}}(n, \mathbb{T}) \leq o\left(n^{2}\right)$.

It is natural to try and prove that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{k+3, k}\right) \geq n^{2-o(1)}$ for every $k \geq 3$, which would mean that, in a sense, the Brown-Erdős-Sós conjecture is optimal. For $k=4,5$, such a lower bound follows from the simple observation that every $(7,4)$ - or $(8,5)$-configuration contains a $(6,3)$-configuration. Similar considerations were used in [5] to handle the cases $k=7,8$. For $k=6$, however, such arguments could not be used, since there exists a $(9,6)$-configuration which contains no (6,3)-configuration; this is the 3×3 grid $\mathbb{G}_{3 \times 3}$, which is the 3-uniform hypergraph whose vertices are the nine points in a 3×3 point array, and whose edges correspond to the 6 horizontal and vertical lines of this array. It

[^0]is not hard to verify ${ }^{2}$ (see also [5]) that every linear (9,6)-configuration either contains a triangle \mathbb{T} or is isomorphic to $\mathbb{G}_{3 \times 3}$. Hence, $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{9,6}\right) \geq \operatorname{ex}_{\operatorname{lin}}\left(n,\left\{\mathbb{T}, \mathbb{G}_{3 \times 3}\right\}\right)$. This relation has led Füredi and Ruszinkó [4] to study extremal problems related to the grid. In particular, they conjectured that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathbb{G}_{3 \times 3}\right)=\left(\frac{1}{6}-o(1)\right) n^{2}$, and, more strongly, that for every large enough admissible n, there exists a Steiner triple system of order n which is $\mathbb{G}_{3 \times 3}-$ free. Using a standard probabilistic alterations argument, Füredi and Ruszinkó [4] showed that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathbb{G}_{3 \times 3}\right)=\Omega\left(n^{1.8}\right)$. This was then slightly improved (as a special case of a more general result) to $\Omega\left(n^{1.8} \log ^{1 / 5} n\right)$ by Shangguan and Tamo [9]. Here we make significant progress on the conjecture of Füredi and Ruszinkó [4], by showing that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathbb{G}_{3 \times 3}\right)=\Omega\left(n^{2}\right)$.

Theorem 1. For infinitely many n, there exists a linear $\mathbb{G}_{3 \times 3}$-free 3 -uniform hypergraph with n vertices and $\left(\frac{1}{16}-o(1)\right) n^{2}$ edges.

Theorem 1 is proved in the following section. Then, in Section 3, we discuss some related open problems.

2 The Construction

Construction 2.1. Let \mathbb{F} be a field and let $X, A \subseteq \mathbb{F}$. Define $H(X, A)$ to be the 3-partite 3-uniform hypergraph with sides $X, Y:=\{x+a: x \in X, a \in A\}$ and $Z:=\{x \cdot a: x \in X, a \in A\}$, and with an edge $(x, x+a, x \cdot a) \in X \times Y \times Z$ for every $x \in X$ and $a \in A$.

We now prove that the hypergraph $H(X, A)$ defined in Construction 2.1 is always $\mathbb{G}_{3 \times 3}$-free. We will then show that it contains a dense linear subhypergraph. We denote the vertices of $\mathbb{G}_{3 \times 3}$ by $\left\{p_{i}, q_{i}, r_{i}: 1 \leq i \leq 3\right\}$ and its edges by $\left\{\left\{p_{i}, q_{i}, r_{i}\right\},\left\{p_{i+1}, q_{i+2}, r_{i}\right\}: 1 \leq i \leq 3\right\}$, where (here and later on) indices are taken modulo 3. A 3-partition of a 3-uniform hypergraph F is a partition $V(F)=$ $P \cup Q \cup R$ such that every edge of F contains one element from each of the sets P, Q, R. Observe that $\left\{p_{1}, p_{2}, p_{3}\right\},\left\{q_{1}, q_{2}, q_{3}\right\},\left\{r_{1}, r_{2}, r_{3}\right\}$ is a 3 -partition of $\mathbb{G}_{3 \times 3}$. It can be verified ${ }^{3}$ that every two 3 -partitions of $\mathbb{G}_{3 \times 3}$ are equivalent, in the sense that there is an automorphism of $\mathbb{G}_{3 \times 3}$ which maps every class of one to a class of the other.

Lemma 2.2. Let \mathbb{F} be a field and let $X, A \subseteq \mathbb{F}$. Then $H(X, A)$ is $\mathbb{G}_{3 \times 3}$-free.
Proof. Suppose, for the sake of contradiction, that $H(X, A)$ contains a copy of $\mathbb{G}_{3 \times 3}$. Since all 3partitions of $\mathbb{G}_{3 \times 3}$ are equivalent (as explained above), we may assume, without loss of generality, that $p_{1}, p_{2}, p_{3} \in X, q_{1}, q_{2}, q_{3} \in Y=\{x+a: x \in X, a \in A\}$ and $r_{1}, r_{2}, r_{3} \in Z=\{x \cdot a: x \in X, a \in A\}$. By definition of $H(X, A)$, for every edge $\{x, y, z\} \in E(H)$ (with $x \in X, y \in Y$ and $z \in Z$) there is $a \in A$ such that $y=x+a$ and $z=x \cdot a$; hence, $z=x \cdot(y-x)$. It follows that for every $1 \leq i \leq 3$, we must have $r_{i}=p_{i} \cdot\left(q_{i}-p_{i}\right)$ and $r_{i}=p_{i+1} \cdot\left(q_{i+2}-p_{i+1}\right)$. Here and throughout the proof, indices are taken modulo 3. By comparing these two expressions for r_{i}, we see that

$$
\begin{equation*}
p_{i} \cdot\left(q_{i}-p_{i}\right)=p_{i+1} \cdot\left(q_{i+2}-p_{i+1}\right) . \tag{1}
\end{equation*}
$$

[^1]for every $1 \leq i \leq 3$. Multiplying (1) by p_{i+2} and then summing over $1 \leq i \leq 3$, we obtain
$$
\sum_{i=1}^{3} p_{i} p_{i+2} \cdot\left(q_{i}-p_{i}\right)=\sum_{i=1}^{3} p_{i+1} p_{i+2} \cdot\left(q_{i+2}-p_{i+1}\right)
$$

It is easy to see that for every $1 \leq i \leq 3$, both sides have the term $p_{i} p_{i+2} q_{i}$. Cancelling out these terms and rearranging, we get

$$
0=\sum_{i=1}^{3} p_{i}^{2} p_{i+2}-\sum_{i=1}^{3} p_{i+1}^{2} p_{i+2}=\left(p_{1}-p_{2}\right)\left(p_{2}-p_{3}\right)\left(p_{3}-p_{1}\right) .
$$

Hence, there must be $1 \leq i \leq 3$ such that $p_{i+1}=p_{i}$. However, this is impossible as $p_{1}, p_{2}, p_{3} \in X$ must correspond to distinct vertices of a copy of $\mathbb{G}_{3 \times 3}$. This contradiction completes the proof.

Proof of Theorem 1. We first prove Theorem 1 with a slightly worse bound, namely, with the fraction $\frac{1}{16}$ replaced by $\frac{1}{18}$. We then explain how our argument can be modified to give $\frac{1}{16}$.

Let p be an odd prime power, and set $X:=A:=\mathbb{F}_{p} \backslash\{0\}$. Let $H=H(X, A)$ be the hypergraph from Construction 2.1. By Lemma 2.2, H is $\mathbb{G}_{3 \times 3}$-free. We claim that for each edge $e=(x, x+a, x \cdot a) \in$ $E(H) \subseteq X \times Y \times Z$, if $f \in E(H) \backslash\{e\}$ satisfies that $|e \cap f|=2$ then $f=(a, x+a, x \cdot a)$. So let $f=(y, y+b, y \cdot b) \in E(H) \backslash\{e\}$ be such that $|e \cap f|=2$. We cannot have $(x, x+a)=(y, y+b)$ or $(x, x \cdot a)=(y, y \cdot b)$, for otherwise we would have $x=y, a=b$ and hence $e=f$. Therefore, we must have $(x+a, x \cdot a)=(y+b, y \cdot b)$, which gives $y(x+a-y)=x \cdot a$. Solving this quadratic equation for y, we get that $y=x$ or $y=a$, and hence $(y, b)=(x, a)$ or $(y, b)=(a, x)$. In the former case, $f=e$, and in the latter case $f=(a, x+a, x \cdot a)$. This proves our claim. It follows that for each $e \in E(H)$ there is at most one other edge $f \in E(H)$ such that $|e \cap f|=2$. By deleting one edge from each such pair (e, f), we obtain a linear sub-hypergraph H^{\prime} of H with $e\left(H^{\prime}\right) \geq \frac{e(H)}{2}=|X||A|=\left(\frac{1}{2}-o(1)\right) p^{2}=\left(\frac{1}{18}-o(1)\right) v(H)^{2}$, where in the last equality we used the fact that $v(H)=3 p-2$ as $|X|=p-1,|Y|=p$ and $Z=p-1$. This shows that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathbb{G}_{3 \times 3}\right) \geq\left(\frac{1}{18}-o(1)\right) n^{2}$.

To improve the constant, we choose X and A differently: let X be the set of (non-zero) quadratic residues and A be the set of (non-zero) quadratic non-residues in \mathbb{F}_{p}. Evidently, $|X|=|A|=\frac{p-1}{2}$ and $|Y| \leq p$. As $Z=\{x \cdot a: x \in X, a \in A\}=A$, one also has $|Z|=\frac{p-1}{2}$. Altogether we get $v(H)=|X|+|Y|+|Z| \leq 2 p-1$. Moreover, $e(H)=|X||A|=\left(\frac{1}{4}-o(1)\right) p^{2}=\left(\frac{1}{16}-o(1)\right) v(H)^{2}$. Crucially, we observe that H is linear, because for every $e=(x, x+a, x \cdot a) \in E(H)$, the edge $f=(a, x+a, x \cdot a)$ is not in H, as x is a quadratic residue while a is not. This completes the proof.

3 Concluding Remarks And Open Problems

- Another problem raised in [4] is to prove that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{9,6}\right) \geq n^{2-o(1)}$. This problem remains open. Recalling that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{9,6}\right) \geq \operatorname{ex}_{\operatorname{lin}}\left(n,\left\{\mathbb{T}, \mathbb{G}_{3 \times 3}\right\}\right)$, we see, in light of Lemma 2.2, that it suffices to find a choice of sets $X, A \subseteq \mathbb{F}_{p},|X|,|A| \geq p^{1-o(1)}$, such that the hypergraph $H(X, A)$ has no triangles (i.e., no copies of \mathbb{T}). For this, one needs that there are no $x \in X$ and distinct $a, b, c \in A$ such that $(x+a-b) \cdot b=x \cdot c$.
- There is another construction of a linear 3-uniform grid-free hypergraph with $\Omega\left(n^{2}\right)$ edges. For sets $X, A \subseteq \mathbb{F}_{p}$, define a 3-partite hypergraph with sides X, Y, Z by placing the edge $\left(x, x+a, x+a^{2}\right) \in X \times Y \times Z$ for every $x \in X, a \in A$. Here one needs to be more careful: unlike Construction 2.1, this hypergraph can contain a copy of $\mathbb{G}_{3 \times 3}$, but only if there are $x_{1}, x_{2} \in X$ and $a \in A$ satisfying $4 x_{1}+4 a=4 x_{2}+1$. Let us prove this. Consider a copy of
$\mathbb{G}_{3,3}$ with vertices $\left\{p_{i}, q_{i}, r_{i}: 1 \leq i \leq 3\right\}$, as described before Lemma 2.2. Here, this copy corresponds to the equations $r_{i}-p_{i}=\left(q_{i}-p_{i}\right)^{2}$ and $r_{i}-p_{i+1}=\left(q_{i+2}-p_{i+1}\right)^{2}$ for $i=1,2,3$. Hence, $p_{i}+\left(q_{i}-p_{i}\right)^{2}=p_{i+1}+\left(q_{i+2}-p_{i+1}\right)^{2}$. Substituting $u_{i}:=p_{i+1}-p_{i}$ and $v_{i}:=q_{i}-p_{i+1}(i=1,2,3)$, we get $\left(v_{i}+u_{i}\right)^{2}=u_{i}+\left(v_{i+2}-u_{i}\right)^{2}$, and, after rearranging,

$$
\begin{equation*}
\left(2 v_{i}+2 v_{i+2}-1\right) u_{i}=v_{i+2}^{2}-v_{i}^{2} . \tag{2}
\end{equation*}
$$

Now, if $2 v_{i}+2 v_{i+2} \neq 1$ for all $1 \leq i \leq 3$, then in equation (2) we can divide and get $u_{i}=$ $\left(v_{i+2}^{2}-v_{i}^{2}\right) /\left(2 v_{i}+2 v_{i+2}-1\right)$ for all $1 \leq i \leq 3$. Summing this over i and using the fact that $u_{1}+u_{2}+u_{3}=\left(p_{2}-p_{1}\right)+\left(p_{3}-p_{2}\right)+\left(p_{1}-p_{3}\right)=0$, we get

$$
0=\sum_{i=1}^{3} u_{i}=\sum_{i=1}^{3} \frac{v_{i+2}^{2}-v_{i}^{2}}{2 v_{i}+2 v_{i+2}-1}=\frac{-2\left(v_{3}-v_{1}\right)\left(v_{1}-v_{2}\right)\left(v_{2}-v_{3}\right)}{\left(2 v_{1}+2 v_{3}-1\right)\left(2 v_{2}+2 v_{1}-1\right)\left(2 v_{3}+2 v_{2}-1\right)} .
$$

Hence, there must be $1 \leq i \leq 3$ such that $v_{i+2}=v_{i}$. Plugging this into (2) and using that $2 v_{i}+2 v_{i+2} \neq 1$, we get that $u_{i}=p_{i+1}-p_{i}=0$, which is impossible as p_{i}, p_{i+1} are distinct vertices. Therefore, there must be $1 \leq i \leq 3$ such that $2 v_{i}+2 v_{i+2}=1$, hence also $v_{i+2}^{2}-v_{i}^{2}=0$ by (2). Plugging $v_{i+2}=1 / 2-v_{i}$ into $v_{i+2}^{2}-v_{i}^{2}=0$, we get that $v_{i}=1 / 4$, hence $q_{i}-p_{i+1}=1 / 4$. Now, recall that by construction, $p_{i}, p_{i+1} \in X$ and $q_{i}=p_{i}+a$ for some $a \in A$. Hence, we have our desired solution to $4 x_{1}+4 a=4 x_{2}+1$ with $x_{1}, x_{2} \in X, a \in A$. So in order for the hypergraph to be $\mathbb{G}_{3 \times 3}$-free, it suffices to choose X, A that avoid such solutions; for example, one can take $X=A=\{1, \ldots,\lfloor p / 8\rfloor\}$.
This construction can also be a candidate for showing that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{9,6}\right) \geq n^{2-o(1)}$. Again, the issue is choosing X, A so as to avoid triangles, which in this case correspond to solutions to the equation $a+c^{2}-c=b^{2}$ with distinct $a, b, c \in A$. Thus, in order to show that $\operatorname{ex}_{\operatorname{lin}}\left(n, \mathcal{H}_{9,6}\right) \geq$ $n^{2-o(1)}$, it suffices to show that there exists $A \subseteq \mathbb{F}_{p},|A|=p^{1-o(1)}$, with no non-trivial solution to this equation.

- A related conjecture of Solymosi and Solymosi [10] states that every (large enough) 3-uniform hypergraph with n vertices and $\Omega\left(n^{2}\right)$ edges contains a 2 -core on at most 9 vertices, where a 2 -core is a hypergraph with minimum degree 2 . This conjecture is closely related ${ }^{4}$ to the case $k=6$ of the Brown-Erdős-Sós conjecture, since a 2 -core on 9 vertices has at least 6 edges.
Let H be the 3 -partite hypergraph with sides X, Y, Z, all equal to \mathbb{F}_{p}, and with edge-set $\left\{(x, x+a, x+2 a) \in X \times Y \times Z: x, a \in \mathbb{F}_{p}\right\}$. Alternatively, this is the hypergraph whose edges are all triples $(x, y, z) \in X \times Y \times Z$ satisfying $y=(x+z) / 2$. By a somewhat lengthy case analysis, one can show that H avoids all 2 -cores on at most 9 vertices except for the grid $\mathbb{G}_{3 \times 3}$. Thus, the hypergraph corresponding to a linear relation (namely, the relation $y=(x+z) / 2$) avoids all but one of the 2 -cores on at most 9 vertices, whereas in order to avoid $\mathbb{G}_{3 \times 3}$ one needs a non-linear relation (as in Construction 2.1 or in the construction described in the previous item). It would be interesting to understand the connection between the structure of a configuration F and the relation which can be used to define a hypergraph which avoids F.

We note that inspite of the above construction, it is plausible that the Solymosi-Solymosi conjecture is true; namely, that while there exist dense linear hypergraphs which avoid any individual 2 -core on at most 9 vertices (and even hypergraphs which avoid all but one of them), avoiding all such 2-cores in a dense linear hypergraph is impossible.

[^2]
References

[1] W. G. Brown, P. Erdős and V. T. Sós, Some extremal problems on r-graphs, in: New Directions in the Theory of Graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, 1973, 55-63.
[2] W. G. Brown, P. Erdős and V. T. Sós, On the existence of triangulated spheres in 3-graphs and related problems, Period. Math. Hungar. 3 (1973), 221-228.
[3] D. Conlon, L. Gishboliner, Y. Levanzov and A. Shapira, A new bound for the Brown-Erdos-Sós problem, arXiv preprint arXiv:1912.08834, 2019.
[4] Z. Füredi and M. Ruszinkó, Uniform hypergraphs containing no grids. Advances in Mathematics, 240, pp.302-324, 2013.
[5] G. Ge and C. Shangguan, Sparse hypergraphs: new bounds and constructions. arXiv preprint arXiv:1706.03306, 2017.
[6] A. Gyárfás and G. N. Sárközy, Turán and Ramsey numbers in linear triple systems, 2020.
[7] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 939-945, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
[8] G. N. Sárközy and S. Selkow, An extension of the Ruzsa-Szemerédi theorem, Combinatorica 25 (2004), 77-84.
[9] C. Shangguan and I. Tamo, Sparse Hypergraphs with Applications to Coding Theory, SIAM Journal on Discrete Mathematics 34 (3), 1493-1504, 2020.
[10] D. Solymosi and J. Solymosi, Small cores in 3-uniform hypergraphs, J. Combin. Theory Ser. B 122 (2017), 897-910.

[^0]: *ETH Zurich. Email: lior.gishboliner@math.ethz.ch.
 ${ }^{\dagger}$ School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part by ISF Grant 1028/16, ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.
 ${ }^{1}$ The Brown-Erdős-Sós conjecture is usually stated about general (i.e., not necessarily linear) hypergraphs, but it is well-known that it suffices to consider linear hypergraphs. Indeed, if a hypergraph H contains no $(k+3, k)$-configuration, then every pair of vertices is contained in at most $k-1$ edges, so H has a linear subhypergraph with at least $e(H) /(k-1)=$ $\Omega(e(H))$ edges.

[^1]: ${ }^{2}$ Indeed, let H be a linear (9,6)-configuration avoinding \mathbb{T}. First, observe that H has maximum degree 2, for if $\{a, b, c\},\{a, d, e\},\{a, f, g\}$ are three edges containing a, then there can be only one edge containing the remaining two vertices (as H is linear), so there must be an edge which contains two vertices from $\{b, c, d, e, f, g\}$, which gives a \mathbb{T}. Now, as $e(H)=6$, all degrees in H must be 2. Consider the two edges $\{a, b, c\},\{a, d, e\}$ containing some vertex a. Let f, g, h, i be the four remaining vertices. Each of the four remaining edges must contain two vertices from $\{f, g, h, i\}$ and one from $\{b, c, d, e\}$. Every vertex from $\{b, c, d, e\}$ must be covered once by these edges, and every vertex from $\{f, g, h, i\}$ twice. Hence, the pairs from $\{f, g, h, i\}$ which are covered by these edges must form a C_{4}. Since H is \mathbb{T}-free, b and c must be contained in opposite edges of this C_{4}, and the same for d and e. This gives a $\mathbb{G}_{3,3}$.
 ${ }^{3}$ Indeed, every 3 -partition of $\mathbb{G}_{3 \times 3}$ is either obtained from the 3-partition (P, Q, R) by permuting its classes, or equals ($\left.\left\{p_{1}, q_{3}, r_{2}\right\},\left\{p_{2}, q_{1}, r_{3}\right\},\left\{p_{3}, q_{2}, r_{1}\right\}\right)$ or one of its permutations.

[^2]: ${ }^{4}$ Strictly speaking, the Solymosi-Solymosi conjecture does not imply the case $k=6$ of the Brown-Erdős-Sós conjecture, since the former allows the 2 -core to have less than 9 vertices, and hence less than 6 edges.

