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Abstract

The pantograph differential equation and its solution, the deformed exponential

function, are remarkable objects that appear in areas as diverse as combinatorics,

number theory, statistical mechanics, and electrical engineering. In this article we

describe a new surprising application of these objects in graph theory, by showing

that the set of all cliques is not forcing for quasirandomness. This provides a natural

example of an infinite family of graphs, which is not forcing, and answers a natural

question posed by P. Horn.

1 The pantograph equation and its solution.

The best known differential equation

y′(x) = py(x), y(0) = 1

is solved by the exponential function y = epx. Consider a visually similar but very
different equation

y′(x) = y(px), y(0) = 1,

where 0 < p ≤ 1. This is a special case of the pantograph equation, one of the most
studied examples of delay differential equations, where the value of the derivative of y
at time x is a function of the value of y at an earlier time px. The pantograph equation
owes its name to a component of the electric locomotive, connecting it to the overhead
wire, and was first studied in the late 1960’s by British Railways. The equation results
from the study of the pantograph’s movement, where it is crucial that the pantograph
stays in constant contact with the wire, in order to collect current for the locomotive
without interruptions; see [4] for more historical and physics background.

The pantograph equation and its generalizations have found many applications in
physics (see [10]) and mathematics. It can be verified that its unique solution is the
so-called deformed exponential function

fp(x) =
∞∑
j=0

xj

j!
p(

j
2) = 1 + x+

x2

2
p+

x3

6
p3 + · · · ; (1)
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note that when p = 1 we have f1(x) = ex, hence the name. In fact, the deformed expo-
nential was first studied by Mahler in 1940 [12], nearly 30 years before the pantograph
equation made an appearance. Mahler’s motivation was in number theory: he used the
function fp to derive an asymptotic formula for the number of partitions of a large integer
n into powers of a fixed integer r. Later the deformed exponential was found to appear
naturally in many other contexts. In combinatorics it is connected to the Tutte poly-
nomial of complete graphs [22], the enumeration of acyclic digraphs [16], and inversions
of trees [13]. In statistical mechanics the function fp appears as the partition function
of one-site lattice gas [17], and in complex analysis it is related to the Whittaker and
Goncharov constants [1]. The function fp continues to be the focus of current research;
see for example the recent paper [23] which studies the asymptotics of its roots.

In this article, we present an unexpected application of certain properties of the
deformed exponential function to the theory of quasirandom graphs.

2 Quasirandom graphs and forcing families.

Quasirandomness, or pseudorandomness, is a phenomenon occurring in several areas of
discrete mathematics: number theory, group theory, combinatorics, and graph theory.
It can be loosely described as the study of properties of truly random objects in de-
terministic ones; see [21] for a general survey, and [7] for a survey on pseudorandom
graphs.

Let us first focus on counting copies of a fixed small graph H inside a large graph G.
It will be more convenient to count labeled copies, that is, injective mappings from the
vertex set of H to that of G that map edges to edges. Let us illustrate this with some
examples.

Example 1. If G is a complete bipartite graph1 with both parts of size n/2, where n is

a large even number, and H is a star with k edges, i.e., a complete bipartite graph with

part sizes 1 and k, then G contains

n · n
2

(n
2
− 1
)
· · ·
(n

2
− k + 1

)
= (1 + o(1))2−knk+1

labeled copies of H.

In the above example, as well as throughout the rest of the article, any o(1) expression
should be read as a function tending to 0 as n goes to ∞. The o()-notation is an
equivalent, yet more convenient-to-use form of the usual ε-δ-n0 formalism. In particular,
we can use multiple o(1)-expressions in the same formula, saving us the need to introduce
multiple ε’s (two o(1)-expressions are not assumed to be identical). Note that here and
later the o()-notation assumes that n tends to infinity and treats all other variables (e.g.,
k in Example 1) as constant parameters.

1A complete bipartite graph is a graph on the vertex set A ∪ B, where A and B are disjoint, and

whose edge set is A × B. More generally, a complete k-partite graph is a graph whose vertex set is

composed of k disjoint sets A1, . . . , Ak and whose edge set is
⋃

i<j Ai × Aj . In other words, every two

vertices in distinct Ai, Aj are connected by an edge.
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Example 2. If G is a clique2 on pn vertices, where n is large and 0 < p ≤ 1, and H is

a cycle of length k, then G has

pn(pn− 1) · · · (pn− k + 1) = (1 + o(1))pknk

labeled copies of H.

For 0 < p < 1 and a large integer n, the p-random graph on n vertices [3], also known
as the binomial random graph and denoted by G(n, p), is obtained by taking n labeled
vertices and including every edge between them randomly and independently with prob-
ability p. Then, a standard probabilistic argument using Chebyshev’s inequality (also
known as the second moment method [3]) implies the following.

Example 3. For any fixed graph H = (V,E), the random graph G(n, p) contains with

high probability (i.e., with probability tending to 1 as n grows)

(1 + o(1))p|E|n|V |

labeled copies of H. In particular, G(n, p) with high probability contains (1 + o(1))pn2

labeled edges and (1 + o(1))p4n4 labeled copies of the 4-cycle C4.

The reason we singled out the edges and C4’s in the last example is the following
seminal result of Chung, Graham, and Wilson [2, Theorem 1]. In what follows, when
speaking about “large graphs,” we mean, formally, sequences of graphs with the number
of vertices n tending to ∞.

Theorem 1 ([2]). Suppose that 0 < p < 1. The following properties of (large) n-vertex

graphs G are equivalent.

(P1) G has (1 + o(1))pn2 labeled edges and

(1 + o(1))p4n4

labeled copies of C4.

(P2) For every fixed graph H = (V,E), the number of labeled copies of H in G is

(1 + o(1))p|E|n|V |.

(P3) For every c > 0 and vertex set S ⊆ V (G) of size |S| ≥ cn, the number of labeled

edges between vertices in S is

(1 + o(1))p|S|2.
2A clique or complete graph is a graph on a vertex set V , whose edge set consists of all pairs {u, v} ⊆ V .
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Observe that, by Example 3, a random graph G(n, p) satisfies with high probability
property (P2) and thus, a fortiori, also (P1). Similarly, a standard application of the
Chernoff bound [3] shows that G(n, p) satisfies with high probability property (P3).
The remarkable aspect of Theorem 1 is that every (deterministic) graph that satisfies
the seemingly very weak property (P1) must also satisfy the much stronger properties
(P2) and (P3). In fact, the main result of [2] exhibited a number of further equivalent
conditions (which we do not state here formally, for brevity).

A large graph satisfying either (P1), (P2), or (P3) (and therefore all three of them),
is called p-quasirandom. A graph is quasirandom if it is p-quasirandom for some 0 < p <
1. The notion of quasirandomness is central to extremal combinatorics: for instance,
Szemerédi’s famous regularity lemma [20] states (vaguely speaking) that the vertices of
a large graph can be partitioned into a bounded number of parts, so that “almost all”
bipartite graphs between those parts are quasirandom, i.e., resemble a truly random
subgraph of a complete bipartite graph.

A very sensible question to ask at this point is, whether any deterministically con-
structed quasirandom graphs are known to exist. The answer is yes, and one prominent
class of examples are the Paley graphs (arising from a similar construction for matrices
in [15]). Their quasirandomness can be deduced from properties of quadratic residues.

Example 4. Let n = 4k + 1 be a prime, so that x is a quadratic residue modulo n if

and only if −x is one. Let G be a graph on the vertex set {0, . . . , n− 1}, where xy is an

edge whenever x− y is a quadratic residue modulo n. Then G is 1/2-quasirandom.

On the cautious side we would like to add that some properties of the truly random
graph G(n, p) are not captured by quasirandomness. For example, the largest clique in
G(n, p) is with high probability of order log n, whereas in quasirandom graphs it can be
of “almost linear” size.

The discussion above led the authors of [2] to define the notion of a forcing graph
family.

Definition. A family of graphs F is forcing if the following holds for every 0 < p <

1. Suppose G is an n-vertex graph so that for every F ∈ F the graph G contains

(1 + o(1))n|V (F )|p|E(F )| labeled copies of F . Then G is p-quasirandom.

By this definition, Theorem 1 states that the pair {K2, C4} is forcing. To obtain a
better understanding of the quasirandomness phenomenon, one should look for a clas-
sification of forcing families. This natural inverse question to Theorem 1 was raised by
Chung, Graham, and Wilson in the same paper [2].

In the subsequent years, this topic has seen a significant amount of research (see [5]
and the references therein), resulting in discoveries of a number of further forcing families.
It is well known that for any nonbipartite graph H the pair {K2, H} is not forcing, and
the main open question in this area is the forcing conjecture by Skokan and Thoma [18],
saying that for every connected bipartite graph H that is not a tree the pair {K2, H} is
forcing. In [18] this was proved for every complete bipartite graph H (more generally,
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it was shown in [18] that {H1, H2} is forcing for any pair of distinct complete bipartite
graphs), but the full conjecture is still wide open.

In the light of the above, it is even more challenging to decide whether an infinite
family of graphs is forcing. Consider, for instance, four of the most natural such families,
namely the sets of all cycles, stars, trees, and cliques. It is easy to see that the family of
all cycles is not forcing for all 0 < p < 1, since, by Example 2, the graph comprising a
clique on pn vertices and (1−p)n isolated vertices has the “correct” number (1+o(1))p`n`

of labeled cycles of length `, but fails to satisfy (P3) of Theorem 1. Similarly, the family
of all stars is not forcing by Example 1 — in fact, this example shows that the family of
all trees is not forcing.

The situation is less clear for the set of all finite cliques K = {K2,K3, . . . }, where Kj

denotes the complete graph on j vertices. Horn [24] asked whether K, or perhaps some
finite subset of K, is forcing (the latter would clearly imply the former) — this would

mean that any large graph having (1 + o(1))p(
j
2)nj labeled copies of Kj for each j ≥ 2

satisfies property (P3) of Theorem 1. Both questions have been open until now, and our
aim in this article is to answer them in the negative.

First we give an elementary proof of the fact that any set of finitely many cliques is
not forcing.

Theorem 2. For any k ≥ 2 and 0 < p ≤ 1/4 there exist arbitrarily large n-vertex graphs

Gk,p(n) with (1+o(1))p(
j
2)nj labeled copies of Kj for all j = 2, . . . , k, and an independent

set of size at least n/2. Therefore, the family Kk = {K2, . . . ,Kk} is not forcing.

The theorem above deals only with finitely many cliques and only with p ≤ 1/4.3 By
applying some properties of the deformed exponential function defined in (1), we prove
our main result, extending Theorem 2 to all cliques and to all values of p.

Theorem 3. The infinite family K = {K2,K3, . . . } is not forcing for any 0 < p < 1.

3 Proofs of the main results.

3.1 The finite case.

First we deal with the case of finitely many cliques.

Proof of Theorem 2. We claim that for fixed k ≥ 2 and 0 < p ≤ 1/4 there exist k real

nonnegative numbers (c1, . . . , ck) = (c1(k, p), . . . , ck(k, p)) with the following properties.

(i) For all 1 ≤ j ≤ k, ∑
A∈([k]j )

∏
i∈A

ci =
p(

j
2)

j!
,

3Strictly speaking, in order to prove that a family F is not forcing it is enough to exhibit a coun-

terexample for just one 0 < p < 1. Still, it is more desirable to give examples for all 0 < p < 1.
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where
(
[k]
j

)
stands for the set of all j-element subsets of {1, . . . , k}.

(ii) max ci ≥ 3/4.

Given these numbers, define G = Gk,p(n) to be a graph on n vertices as follows. Partition

V (G) into sets V1, . . . , Vk, such that for all 1 ≤ i ≤ k we have ||Vi| − cin| < 1; this is

possible since, by (i),
∑k

i=1 ci = 1. Let E(G) be the set of all edges uv where u ∈ Vi, v ∈
Vj for i 6= j. In other words, G is the complete k-partite graph on (V1, . . . , Vk).

By this construction, for every j = 2, . . . , k the graph Gk,p(n) has

j!
∑

A∈([k]j )

∏
i∈A
|Vi| = j!

∑
A∈([k]j )

∏
i∈A

(cin± 1) = (1 + o(1))j!
∑

A∈([k]j )

∏
i∈A

cin
j

= (1 + o(1))p(
j
2)nj

labeled copies of Kj . Here cin ± 1 stands for an integer within 1 of cin. On the other

hand, by (ii), it has an independent set of size at least n · max ci − 1 ≥ n/2. Hence,

this graph satisfies the assertions of Theorem 2. Note that the fact that Gk,p(n) has

an independent set of size at least n/2 implies it fails property (P3) of Theorem 1 for

c = 1/2. Therefore, Gk,p is not p-quasirandom for any 0 < p < 1, and we conclude that

Kk is not forcing.

It remains to construct the sequence (c1, . . . , ck) with the properties above. To this

end, consider the real polynomial function

fp,k(x) =

k∑
j=0

p(
j
2)

j!
xj , (2)

which is a truncated version of the deformed exponential function (1).

Kurtz [8] established the following useful criterion for a polynomial to have only real

roots, which can be viewed as a converse to Newton’s inequalities.

Proposition 4 ([8], Theorem 2). If the coefficients of a real polynomial P (x) =
∑n

i=0 bix
i

satisfy bi > 0 for all i and b2i > 4bi−1bi+1 for all 1 ≤ i ≤ n − 1, then all the roots of P

are real and distinct.4

In order to apply Proposition 4 to the polynomial fp,k(x) all we need to check is that

p2(
j
2)

j!j!
>

4p(
j+1
2 )+(j−1

2 )

(j + 1)!(j − 1)!

holds for every j = 1, . . . , k − 1. This simplifies to

1

j
>

4p

j + 1
,

4Note that the constant 4 is best possible for n = 2
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which is evidently true for all p ≤ 1/4. Thus, fp,k has k distinct real roots a1, . . . , ak,

and can be written as

fp,k(x) =
p(

k
2)

k!

k∏
i=1

(x− ai). (3)

Since the coefficients of fp,k are positive, fp,k(x) > 0 for x ≥ 0, and thus all of the roots

are negative. Writing ci := −1/ai (so that ai = −1/ci), we obtain

fp,k(x) =
p(

k
2)

k!

k∏
i=1

(
x+

1

ci

)
=
p(

k
2)

k!

(
k∏
i=1

ci

)−1 k∏
i=1

(1 + cix)

=
p(

k
2)

k!
(−1)k

k∏
i=1

ai

k∏
i=1

(1 + cix). (4)

We will now show that the above-defined c1, . . . , ck satisfy the properties (i) and (ii)

stated at the beginning of the proof. Evaluating the constant term in (3) gives

p(
k
2)

k!
(−1)k

k∏
i=1

ai = 1,

which, combined with (4), implies

fp,k(x) =

k∏
i=1

(1 + cix). (5)

Next, evaluating in (5) the coefficient of xj for all 1 ≤ j ≤ k gives

∑
A∈([k]j )

∏
i∈A

ci =
p(

j
2)

j!
, (6)

establishing property (i). In particular, (6) implies
∑k

i=1 ci = 1 and
∑

1≤i<j≤k cicj = p/2.

Therefore,

max ci = max ci ·
k∑
i=1

ci ≥
k∑
i=1

c2i =

(
k∑
i=1

ci

)2

− 2
∑

1≤i<j≤k
cicj = 1− p ≥ 3

4
,

establishing property (ii).

It turns out that the polynomial fp,k has imaginary roots when p > 1/2; hence the
approach we used in the proof above cannot cover all 0 < p < 1. Therefore, to extend
this to all 0 < p < 1 and to handle the set of all cliques, we need a slightly different
approach.
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3.2 The general case.

We now prove that K, the family of all finite cliques, is not forcing. As a first step
towards the proof of Theorem 3, we will construct an “infinite graph” satisfying its
assertion. We briefly mention that in the theory of graph limits (see [11]) such an object
is called a graphon.

Lemma 5. For every 0 < p < 1 there is a graph Wp whose vertex set is the interval

[0, 1] and which satisfies:

(1) For every k ≥ 2, if we randomly and (Lebesgue-)uniformly select k vertices, v1, . . . , vk
from [0, 1], then the probability that for every i < j the vertices vi, vj are connected

by an edge in Wp is p(
k
2).

(2) There is an interval I ⊆ [0, 1] of length 1− p so that {x, y} is not an edge of Wp

for every x, y ∈ I.

Observe that assertion (1) is a continuous counterpart to the property of a finite n-
vertex graph containing the “correct” number of cliques. Similarly, assertion (2) states
that Wp has an independent set on a (1−p)-fraction of its vertices — a finite graph with
this property would fail to satisfy (P3) of Theorem 1.

Proof of Lemma 5. For a sequence of positive real numbers C = (c1, c2, . . . ) and an

integer k ≥ 1, we use σk(C) to denote the formal expression
∑

A∈(Nk)
∏
j∈A cj . Similarly

to the proof of Theorem 2, we claim that for every 0 < p < 1 there exists a sequence

C = (c1, c2, . . . ) of positive reals 1 > c1 ≥ c2 ≥ · · · > 0 with the following properties.

(i) For each k ≥ 1, σk(C) is convergent, with σk(C) = p(
k
2)/k!.

(ii) max ci = c1 ≥ 1− p.

With such a sequence at hand, we partition the [0, 1]-interval into infinitely many

intervals V1, V2, . . . , such that |Vi| = ci for all i (note that
∑∞

i=1 ci = σ1(C) = 1), and we

let Wp be the graph on the vertex set [0, 1], where x and y are connected by an edge if

and only if they belong to different intervals Vi and Vj .

Then for every fixed k ≥ 2, a random sample of k vertices v1, . . . , vk from [0, 1] forms

a clique in Wp with probability k!σk(C) = p(
k
2). Moreover, for the interval V1 we have

|V1| = c1 ≥ 1− p, and no x, y ∈ V1 are connected by an edge in Wp. Hence, Wp satisfies

both assertions of the lemma.

To construct the desired sequence C, we consider the deformed exponential function

fp(z) over a complex variable z, defined in (1). It was shown in [6] and [14] that for

every 0 < p < 1 the function fp can be represented as a product:

fp(z) =

∞∏
i=1

(
1− z

ai

)
, (7)
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where the ai, the roots of fp, are real (which means they must be negative, as the power

series of fp has only positive signs).5 Thus, we can set ci = −1/ai and C := (c1, c2, . . . ),

where the elements are indexed in descending order, to obtain

fp(z) =

∞∏
i=1

(1 + ciz).

By comparing the coefficients of zk for every k ≥ 1 we obtain that each σk(C) is con-

vergent, with σk(C) = p(
k
2)/k!. Furthermore, since all ci are positive, and σ1 and σ2 are

(absolutely) convergent, for c1 = max C we get

c1 = c1 · 1 = c1 · σ1(C) ≥
∞∑
i=1

c2i = (
∞∑
i=1

ci)
2 − 2

∑
1≤i<j

cicj

= σ1(C)2 − 2σ2(C) = 1− p.

Lemma 5 gives an example of a “complete infinite-partite” graph that contains for
every j ≥ 2 the same fraction of copies of Kj as the random graph G(n, p). Such a
construction of course cannot be achieved for finite graphs. Instead, for every k ≥ 2 we
show how to turn Wp into large graphs containing the correct number of labeled copies
of Kj for every j ≤ k.

Proof of Theorem 3. Take the infinite graph Wp defined in Lemma 5, select n vertices

v1, . . . , vn from it uniformly at random, and let Gp(n) be the graph induced on these

vertices. That is, the edges of G are the edges of Wp between v1, . . . , vn.

Fix k ≥ 2 and ε > 0. By assertion (1) of Lemma 5 and the law of large numbers, for

a sufficiently large n = n(k, ε) the graph Gp(n) will, with probability greater than 1/2,

contain between (1− ε)njp(
j
2) and (1 + ε)njp(

j
2) labeled copies of Kj for all j = 2, . . . , k.

Additionally, assertion (2) of Lemma 5 together with the law of large numbers imply that,

for large n, with probability greater than 1/2, Gp(n) will have an independent set of size

at least (1 − p)n/2. Thus, with positive probability, there exists a graph Gk,p,ε(n) that

has both properties. In other words, Gk,p,ε(n) is an n-vertex graph containing between

(1− ε)njp(
j
2) and (1 + ε)njp(

j
2) labeled j-cliques for j = 2, . . . , k and an independent set

of size at least (1− p)n/2.

Now, select a sequence ε1 > ε2 > · · · > 0 such that limk→∞ εk = 0, for instance,

εk = 1/k. For each k take a graph Gk = Gk,p,εk(n) (for some n), and consider the

5To be more detailed, fp(z) is an entire function, that is, fp is defined on all of C, and is holomorphic

everywhere (for more background information about entire functions see [9, 19]). The order of an entire

function g(z) =
∑∞

j=0 ajz
j is given by the formula ρ = lim supn→∞

n logn
log(1/|an|) ([9, Section 1.3, Theorem

2]). Thereby, the deformed exponential fp is of order 0. By Hadamard’s factorization theorem ([19,

Theorem 5.1]) an entire function of order 0, taking value 1 at x = 0, can be represented as a product (7),

where the ai are its complex roots. In [6, 14] it was shown that for any 0 < p < 1 all roots of fp are real.
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sequence G2, G3, . . . ; for the order n = |V (Gk)| of the graphs we have n ≥ k (as Gk
contains a k-clique), so n tends to ∞. Moreover, by construction, for every j ≥ 2 the

graphs in the sequence contain (1+o(1))p(
j
2)nj labeled copies of Kj , while also containing

an independent set of size at least (1− p)n/2. In particular, G = Gk fails property (P3)

of Theorem 1, implying that G is not p-quasirandom. Therefore, the set of all cliques

K = {K2,K3, . . . } is not forcing for any 0 < p < 1.

Remark. The proof of Lemma 5 relied on the fact that the roots of fp are all real. It is

worth noting that a lot more is known about these numbers; for instance, the kth largest

root (denoted ak above) is known to be of order −kp1−k. Wang and Zhang [23] very

recently established the asymptotics of the roots of fp up to arbitrary lower order terms.
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progression, and the primes. In: Sanz-Solé, Soria, J., Varona, J. L., Verdera, J., eds.
Proceedings of the International Congress of Mathematicians, Madrid 2006, Vol. I,
European Math. Society, pp. 581–608.

[22] Tutte, W. T. (1967). On dichromatic polynomials. J. Combin. Theory. 2: 301–320.

[23] Wang, L., Zhang, C. (2018). Zeros of the deformed exponential function. Adv. Math.
332: 311–348.

[24] West, D. (1988). Forcing sets for quasirandomness. Available at: https://faculty.
math.illinois.edu/~west/regs/quasiran.html

11

https://faculty.math.illinois.edu/~west/regs/quasiran.html
https://faculty.math.illinois.edu/~west/regs/quasiran.html

	The pantograph equation and its solution.
	Quasirandom graphs and forcing families.
	Proofs of the main results.
	The finite case.
	The general case.


