On Erdős's Method for Bounding the Partition Function

Asaf Cohen Antonir* Asaf Shapira ${ }^{\dagger}$

Abstract

For fixed m and $R \subseteq\{0,1, \ldots, m-1\}$, take A to be the set of positive integers congruent modulo m to one of the elements of R, and let $p_{A}(n)$ be the number of ways to write n as a sum of elements of A. Nathanson proved that $\log p_{A}(n) \leq(1+o(1)) \pi \sqrt{2 n|R| / 3 m}$ using a variant of a remarkably simple method devised by Erdős in order to bound the partition function. In this short note we describe a simpler and shorter proof of Nathanson's bound.

1 Introduction.

A partition of an integer n is a sequence of positive integers $a_{1} \leq a_{2} \leq \cdots$ whose sum is n. Let $p(n)$ denote the classical partition function of n, namely, the number of ways to write n as a sum of positive integers. The celebrated Hardy-Ramanujan formula [2] (discovered independently by Uspensky [6]) states that $p(n) \sim \frac{1}{4 n \sqrt{3}} \exp (\pi \sqrt{2 n / 3})$. Erdős [1] later devised a remarkably simple proof of the slightly weaker upper bound

$$
\begin{equation*}
\log p(n) \leq \pi \sqrt{2 n / 3} \tag{1}
\end{equation*}
$$

Let \mathbb{N} denote the set of positive integers, and suppose $S \subseteq \mathbb{N}$. We define $p_{S}(n)$ to be the number of partitions of n with all summands in S. For a fixed positive integer m and $R \subseteq\{0,1, \ldots, m-1\}$, we take $A=A(m, R)$ to be the set of all positive integers a with $a(\bmod m) \in R$. Nathanson [4] used Erdős's method for proving (1) to obtain ${ }^{1}$

$$
\begin{equation*}
\log p_{A}(n) \leq(1+o(1)) \pi \sqrt{2 n|R| / 3 m} \tag{2}
\end{equation*}
$$

The argument in [4] was more complicated than Erdős's due to the need to control various error parameters (but was still simpler than the original proof of this result [3]); see the remark at the end of the proof.

Our goal in this short note is to give a proof of (2) which is as simple as Erdős's proof of (1). The main trick is that, instead of directly bounding $p_{A}(n)$, we will instead bound $p_{A^{+}}(n)$, where given m and R as above, we take $A^{+}=A \backslash R$, that is, the set of all integers $a \geq m$ with $a(\bmod m) \in R$. Our main result here is the following generalization ${ }^{2}$ of (1).

Theorem 1. For every A^{+}as above, $\log p_{A^{+}}(n) \leq \pi \sqrt{2 n|R| / 3 m}$.

[^0]It is easy to obtain (2) from the upper bound given by Theorem 1. Indeed, we first note that for every n^{\prime} we have $p_{R^{+}}\left(n^{\prime}\right) \leq\left(n^{\prime}+1\right)^{|R|}$, where $R^{+}=R \backslash\{0\}$. This follows immediately from the fact that in every partition of n^{\prime}, each of the integers of R^{+}is used at most n^{\prime} times. We thus infer that

$$
p_{A}(n)=\sum_{0 \leq n^{\prime} \leq n} p_{R^{+}}\left(n^{\prime}\right) \cdot p_{A^{+}}\left(n-n^{\prime}\right) \leq(n+1)^{|R|} \sum_{0 \leq n^{\prime} \leq n} e^{c \sqrt{n-n^{\prime}}} \leq(n+1)^{|R|+1} e^{c \sqrt{n}},
$$

where $c=\pi \sqrt{2|R| / 3 m}$. Taking logs from both sides, we obtain (2).
The proof of Theorem 1 appears in the next section. At the end of that section we briefly explain why our proof is simpler than that of [4].

2 Proof of Theorem 1.

For a given fixed integer $m \geq 1$ and $R \subseteq\{0,1, \ldots, m-1\}$, let A^{+}denote the set of all integers $a \geq m$ with $a(\bmod m) \in R$. We start with a few observations that extend those used in [1]. We first note that, for every $0<t<1$, we have

$$
\begin{equation*}
\sum_{a \in A^{+}} a t^{a}=\sum_{r \in R} \frac{(r+m) t^{r+m}-r t^{2 m+r}}{\left(1-t^{m}\right)^{2}} \tag{3}
\end{equation*}
$$

Indeed, $\sum_{a \in A^{+}} a t^{a}=\sum_{r \in R} \sum_{a \in A_{r}^{+}} a t^{a}$ where A_{r}^{+}is the set of all integers $a \geq m$ with $a=r(\bmod m)$ (i.e., $A_{r}^{+}=\{r+m, r+2 m, r+3 m, \ldots\}$). Hence, without loss of generality we may assume $|R|=1$. Letting $r \in R$, we have

$$
\sum_{a \in A_{r}^{+}} a t^{a}=t \sum_{a \in A_{r}^{+}} \frac{d}{d t} t^{a}=t \cdot \frac{d}{d t} \sum_{a \in A_{r}^{+}} t^{a}=t \cdot \frac{d}{d t} \frac{t^{r+m}}{1-t^{m}}=\frac{(r+m) t^{r+m}-r t^{2 m+r}}{\left(1-t^{m}\right)^{2}}
$$

This proves (3). We next claim that, if $0 \leq r \leq m-1$ is an integer, then for all $x>0$, we have

$$
\begin{equation*}
\frac{(r+m) e^{-(r+m) x}-r e^{-(2 m+r) x}}{\left(1-e^{-m x}\right)^{2}} \leq \frac{1}{m x^{2}} . \tag{4}
\end{equation*}
$$

Indeed, since $x>0$, the power series expansion of e^{x} gives

$$
e^{x / 2}-e^{-x / 2}=2 \sum_{k=0}^{\infty} \frac{1}{(2 k+1)!}\left(\frac{x}{2}\right)^{2 k+1}=x+x^{3} \sum_{k=1}^{\infty} \frac{x^{2 k-2}}{(2 k+1)!\cdot 2^{2 k}}>x,
$$

implying that

$$
\frac{e^{-x}}{\left(1-e^{-x}\right)^{2}}=\frac{1}{\left(e^{x / 2}-e^{-x / 2}\right)^{2}}<1 / x^{2} .
$$

We can thus infer that

$$
\begin{aligned}
\frac{(r+m) e^{-(r+m) x}-r e^{-(2 m+r) x}}{\left(1-e^{-m x}\right)^{2}} & =\left((r+m) e^{-r x}-r e^{-(m+r) x}\right) \frac{e^{-m x}}{\left(1-e^{-m x}\right)^{2}} \\
& \leq\left((r+m) e^{-r x}-r e^{-(m+r) x}\right) \frac{1}{m^{2} x^{2}}
\end{aligned}
$$

It remains to check that the expression in parentheses is bounded by m. Since the derivative of $(r+m) e^{-r x}-r e^{-(m+r) x}$ (which is $r(r+m)\left(e^{-(m+r) x}-e^{-r x}\right)$) is always nonpositive for $x \geq 0$, it is enough to check its value at $x=0$ where it attains the value m. This proves (4).

We now note that (3) and (4) imply that, for every $x>0$,

$$
\begin{equation*}
\sum_{a \in A^{+}} a e^{-a x} \leq \frac{|R|}{m x^{2}} \tag{5}
\end{equation*}
$$

The final observation we will need is the well-known fact that, for every set of positive integers S, we have

$$
\begin{equation*}
n \cdot p_{S}(n)=\sum_{s \in S \cap[n]} s \sum_{1 \leq k \leq n / s} p_{S}(n-s k), \tag{6}
\end{equation*}
$$

where we use $[n]$ for the integers $\{1, \ldots, n\}$. To see this, let $p_{S}(n, s, t)$ and $p_{S}^{\prime}(n, s, t)$ be the number of partitions of n with summands in S where s appears exactly t times, and at least t times, respectively. Then by double counting, ${ }^{3}$ we have

$$
\begin{aligned}
n \cdot p_{S}(n) & =\sum_{s \in S, t \in \mathbb{N}} s \cdot t \cdot p_{S}(n, s, t)=\sum_{s \in S \cap[n]} s \sum_{t \in \mathbb{N}} t \cdot p_{S}(n, s, t) \\
& =\sum_{s \in S \cap[n]} s \sum_{t \in \mathbb{N}} p_{S}^{\prime}(n, s, t)=\sum_{s \in S \cap[n]} s \sum_{1 \leq k \leq n / s} p_{S}(n-s k) .
\end{aligned}
$$

This proves (6).
We are now ready to complete the proof of Theorem 1. In what follows we set $c=\pi \sqrt{2|R| / 3 m}$. We use induction on n, with the base case trivially holding. We have

$$
\begin{aligned}
n \cdot p_{A^{+}}(n) & =\sum_{a \in A^{+} \cap[n]} a \sum_{1 \leq k \leq n / a} p_{A^{+}}(n-a k) \leq \sum_{a \in A^{+} \cap[n]} a \sum_{1 \leq k \leq n / a} e^{c \sqrt{n-a k}} \\
& \leq e^{c \sqrt{n}} \sum_{a \in A^{+} \cap[n]} a \sum_{1 \leq k \leq n / a} e^{-\frac{c a k}{2 \sqrt{n}}} \leq e^{c \sqrt{n}} \sum_{k=1}^{\infty} \sum_{a \in A^{+}} a e^{-\frac{c a k}{2 \sqrt{n}}} \\
& \leq e^{c \sqrt{n}} \sum_{k=1}^{\infty} \frac{4|R| n}{m c^{2} k^{2}}=n e^{c \sqrt{n}} \frac{4|R|}{m c^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}=n \cdot e^{c \sqrt{n}}
\end{aligned}
$$

where the first equality is (6), the first inequality is by the induction hypothesis, the second inequality uses the elementary fact $\sqrt{n-r k} \leq \sqrt{n}-\frac{r k}{2 \sqrt{n}}$, and in the last inequality we applied (5) with $x=\frac{c k}{2 \sqrt{n}}$. Dividing both sides by n we obtain the theorem.

Bounding $p_{A^{+}}(n)$ vs. bounding $p_{A}(n)$. The reader might be wondering why bounding $p_{A^{+}}(n)$ is so much easier than bounding $p_{A}(n)$. The answer is that the former gives us inequality (4) from which we obtain the clean inequality (5). To illustrate the complication that arises when working with $p_{A}(n)$, let us take A to be the set of odd integers. Then, running the same argument, instead of (4), one would have liked to use the inequality $\frac{e^{-x}+e^{-3 x}}{\left(1-e^{-2 x}\right)^{2}} \leq \frac{1}{2 x^{2}}$, which is false. To overcome this, one then needs to use the fact that this inequality is approximately correct for small x, which significantly complicates the proof.

[^1]Acknowledgement: We would like to thank the referees for their detailed and helpful comments.

References

[1] Erdős, P. (1942). On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. Math. 43(3): 437-450.
[2] Hardy, G. H., Ramanujan S. (1917). Asymptotic formulae for the distribution of integers of various types. Proc. London Math. Soc. 16(2): 112-132.
[3] Meinardus, G. (1954). Asymptotische Aussagen über Partitionen. Math. Z. 61: 388-398.
[4] Nathanson, M. B. (2002). On Erdős's elementary method in the asymptotic theory of partitions. In: Halász, G., Lovász, L., Simonovits, M., Sós, V. T., eds. Paul Erdős and his Mathematics, I. Bolyai Soc. Math. Stud., volume 11. Budapest: János Bolyai Mathematical Society, pp. 515-531.
[5] Nathanson, M. B. (2000). Elementary Methods in Number Theory. Graduate Texts in Mathematics, vol. 195. Berlin: Springer.
[6] Uspensky, J. V. (1920). Asymptotic expressions of numerical functions occurring in problems concerning the partition of numbers into summands. Bull. Acad. Sci. de Russie. 14(6): 199-218.

[^0]: *School of Mathematical Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. Email: asafc1@tauex.tau.ac.il
 ${ }^{\dagger}$ School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part by ISF Grant 1028/16, ERC Starting Grant 633509 and NSF-BSF Grant 2019679.
 ${ }^{1}$ Nathanson [4] also proves that $\log p_{A}(n) \geq(1-o(1)) \pi \sqrt{2 n|R| / 3 m}$.
 ${ }^{2}$ Indeed, when $m=1$ and $R=\{0\}$, we have $p_{A^{+}}(n)=p(n)$.

[^1]: ${ }^{3}$ The two sides of the first equality count the sum of all integers that appear in all partitions of n using integers from S (there are $p_{S}(n)$ such partitions). As to the third equality, it follows by observing that each partition of n with exactly t occurrences of s contributes 1 to t of the summands $p_{S}^{\prime}(n, s, t)$, namely $p_{S}^{\prime}(n, s, 1), p_{S}^{\prime}(n, s, 2), \ldots, p_{S}^{\prime}(n, s, t)$. See Theorem 15.1 in [5] for a full detailed proof.

