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Abstract

For fixed m and R ⊆ {0, 1, . . . ,m − 1}, take A to be the set of positive integers congruent
modulo m to one of the elements of R, and let pA(n) be the number of ways to write n as a sum
of elements of A. Nathanson proved that log pA(n) ≤ (1 + o(1))π

√
2n|R|/3m using a variant of

a remarkably simple method devised by Erdős in order to bound the partition function. In this
short note we describe a simpler and shorter proof of Nathanson’s bound.

1 Introduction.

A partition of an integer n is a sequence of positive integers a1 ≤ a2 ≤ · · · whose sum is n. Let
p(n) denote the classical partition function of n, namely, the number of ways to write n as a sum
of positive integers. The celebrated Hardy–Ramanujan formula [2] (discovered independently by
Uspensky [6]) states that p(n) ∼ 1

4n
√
3

exp(π
√

2n/3). Erdős [1] later devised a remarkably simple

proof of the slightly weaker upper bound

log p(n) ≤ π
√

2n/3 . (1)

Let N denote the set of positive integers, and suppose S ⊆ N. We define pS(n) to be the number of
partitions of n with all summands in S. For a fixed positive integer m and R ⊆ {0, 1, . . . ,m− 1}, we
take A = A(m,R) to be the set of all positive integers a with a (mod m) ∈ R. Nathanson [4] used
Erdős’s method for proving (1) to obtain1

log pA(n) ≤ (1 + o(1))π
√

2n|R|/3m . (2)

The argument in [4] was more complicated than Erdős’s due to the need to control various error
parameters (but was still simpler than the original proof of this result [3]); see the remark at the end
of the proof.

Our goal in this short note is to give a proof of (2) which is as simple as Erdős’s proof of (1). The
main trick is that, instead of directly bounding pA(n), we will instead bound pA+(n), where given
m and R as above, we take A+ = A \ R, that is, the set of all integers a ≥ m with a (mod m) ∈ R.
Our main result here is the following generalization2 of (1).

Theorem 1. For every A+ as above, log pA+(n) ≤ π
√

2n|R|/3m .
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1Nathanson [4] also proves that log pA(n) ≥ (1− o(1))π

√
2n|R|/3m .

2Indeed, when m = 1 and R = {0}, we have pA+(n) = p(n) .
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It is easy to obtain (2) from the upper bound given by Theorem 1. Indeed, we first note that for
every n′ we have pR+(n′) ≤ (n′ + 1)|R|, where R+ = R \ {0}. This follows immediately from the fact
that in every partition of n′, each of the integers of R+ is used at most n′ times. We thus infer that

pA(n) =
∑

0≤n′≤n
pR+(n′) · pA+(n− n′) ≤ (n+ 1)|R|

∑
0≤n′≤n

ec
√
n−n′ ≤ (n+ 1)|R|+1ec

√
n ,

where c = π
√

2|R|/3m. Taking logs from both sides, we obtain (2).

The proof of Theorem 1 appears in the next section. At the end of that section we briefly explain
why our proof is simpler than that of [4].

2 Proof of Theorem 1.

For a given fixed integer m ≥ 1 and R ⊆ {0, 1, . . . ,m−1}, let A+ denote the set of all integers a ≥ m
with a (mod m) ∈ R. We start with a few observations that extend those used in [1]. We first note
that, for every 0 < t < 1, we have∑

a∈A+

ata =
∑
r∈R

(r +m)tr+m − rt2m+r

(1− tm)2
. (3)

Indeed,
∑

a∈A+ ata =
∑

r∈R
∑

a∈A+
r
ata where A+

r is the set of all integers a ≥ m with a = r (mod m)

(i.e., A+
r = {r +m, r + 2m, r + 3m, . . .}). Hence, without loss of generality we may assume |R| = 1.

Letting r ∈ R, we have∑
a∈A+

r

ata = t
∑
a∈A+

r

d

dt
ta = t · d

dt

∑
a∈A+

r

ta = t · d
dt

tr+m

1− tm
=

(r +m)tr+m − rt2m+r

(1− tm)2
.

This proves (3). We next claim that, if 0 ≤ r ≤ m− 1 is an integer, then for all x > 0, we have

(r +m)e−(r+m)x − re−(2m+r)x

(1− e−mx)2
≤ 1

mx2
. (4)

Indeed, since x > 0, the power series expansion of ex gives

ex/2 − e−x/2 = 2

∞∑
k=0

1

(2k + 1)!

(x
2

)2k+1
= x+ x3

∞∑
k=1

x2k−2

(2k + 1)! · 22k
> x ,

implying that
e−x

(1− e−x)2
=

1

(ex/2 − e−x/2)2
< 1/x2 .

We can thus infer that

(r +m)e−(r+m)x − re−(2m+r)x

(1− e−mx)2
= ((r +m)e−rx − re−(m+r)x)

e−mx

(1− e−mx)2

≤ ((r +m)e−rx − re−(m+r)x)
1

m2x2
.
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It remains to check that the expression in parentheses is bounded by m. Since the derivative of
(r +m)e−rx − re−(m+r)x (which is r(r +m)(e−(m+r)x − e−rx)) is always nonpositive for x ≥ 0, it is
enough to check its value at x = 0 where it attains the value m. This proves (4).

We now note that (3) and (4) imply that, for every x > 0,∑
a∈A+

ae−ax ≤ |R|
mx2

. (5)

The final observation we will need is the well-known fact that, for every set of positive integers
S, we have

n · pS(n) =
∑

s∈S∩[n]

s
∑

1≤k≤n/s

pS(n− sk) , (6)

where we use [n] for the integers {1, . . . , n}. To see this, let pS(n, s, t) and p′S(n, s, t) be the number of
partitions of n with summands in S where s appears exactly t times, and at least t times, respectively.
Then by double counting,3 we have

n · pS(n) =
∑

s∈S,t∈N
s · t · pS(n, s, t) =

∑
s∈S∩[n]

s
∑
t∈N

t · pS(n, s, t)

=
∑

s∈S∩[n]

s
∑
t∈N

p′S(n, s, t) =
∑

s∈S∩[n]

s
∑

1≤k≤n/s

pS(n− sk) .

This proves (6).

We are now ready to complete the proof of Theorem 1. In what follows we set c = π
√

2|R|/3m.
We use induction on n, with the base case trivially holding. We have

n · pA+(n) =
∑

a∈A+∩[n]

a
∑

1≤k≤n/a

pA+(n− ak) ≤
∑

a∈A+∩[n]

a
∑

1≤k≤n/a

ec
√
n−ak

≤ ec
√
n

∑
a∈A+∩[n]

a
∑

1≤k≤n/a

e
− cak

2
√
n ≤ ec

√
n
∞∑
k=1

∑
a∈A+

ae
− cak

2
√
n

≤ ec
√
n
∞∑
k=1

4|R|n
mc2k2

= nec
√
n 4|R|
mc2

∞∑
k=1

1

k2
= n · ec

√
n ,

where the first equality is (6), the first inequality is by the induction hypothesis, the second inequality
uses the elementary fact

√
n− rk ≤

√
n− rk

2
√
n

, and in the last inequality we applied (5) with x = ck
2
√
n

.

Dividing both sides by n we obtain the theorem.

Bounding pA+(n) vs. bounding pA(n). The reader might be wondering why bounding pA+(n)
is so much easier than bounding pA(n). The answer is that the former gives us inequality (4) from
which we obtain the clean inequality (5). To illustrate the complication that arises when working
with pA(n), let us take A to be the set of odd integers. Then, running the same argument, instead of

(4), one would have liked to use the inequality e−x+e−3x

(1−e−2x)2
≤ 1

2x2 , which is false. To overcome this, one

then needs to use the fact that this inequality is approximately correct for small x, which significantly
complicates the proof.

3The two sides of the first equality count the sum of all integers that appear in all partitions of n using integers
from S (there are pS(n) such partitions). As to the third equality, it follows by observing that each partition of n with
exactly t occurrences of s contributes 1 to t of the summands p′S(n, s, t), namely p′S(n, s, 1), p′S(n, s, 2), . . . , p′S(n, s, t).
See Theorem 15.1 in [5] for a full detailed proof.
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Bolyai Soc. Math. Stud., volume 11. Budapest: János Bolyai Mathematical Society, pp. 515–531.

[5] Nathanson, M. B. (2000). Elementary Methods in Number Theory. Graduate Texts in Mathe-
matics, vol. 195. Berlin: Springer.

[6] Uspensky, J. V. (1920). Asymptotic expressions of numerical functions occurring in problems
concerning the partition of numbers into summands. Bull. Acad. Sci. de Russie. 14(6): 199–218.

4


	Introduction.
	Proof of Theorem 1.

