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Abstract

A well known observation of Lovász is that if a hypergraph is not 2-colorable, then at least one pair of

its edges intersect at a single vertex. In this short paper we consider the quantitative version of Lovász’s

criterion. That is, we ask how many pairs of edges intersecting at a single vertex, should belong to a non

2-colorable n-uniform hypergraph? Our main result is an exact answer to this question, which further

characterizes all the extremal hypergraphs. The proof combines Bollobás’s two families theorem with

Pluhar’s randomized coloring algorithm.

1 Introduction

A hypergraph H = (V,E) consists of a vertex set V and a set of edges E where each X ∈ E is a subset

of V . If all edges of H have size n then H is called an n-uniform hypergraph, or n-graph for short. A

hypergraph is 2-colorable if one can assign each vertex v ∈ V one of two colors, say Red/Blue, so that each

X ∈ E contains vertices of both colors. Miller [6], and later Erdős in various papers, referred to this property

as Property B, after F. Bernstein [2] who introduced it in 1907. Since deciding if a hypergraph is 2-colorable

is NP -hard one cannot hope to find a simple characterization of all 2-colorable hypergraphs. Instead, one

looks for general sufficient/necessary conditions for having this property. For example, a famous result of

Seymour [8] states that if H is not 2-colorable then |E| ≥ |V |. Probably the most well studied question

of this type asks for the smallest number of edges in an n-graph that is not 2-colorable. The study of this

quantity, denote m(n), was popularized by Erdős, see [1] for a comprehensive treatment. Despite much effort

by many researchers, even the asymptotic value of m(n) has not been determined yet.

A pair of edges X,Y ∈ E(H) is simple if |X ∩ Y | = 1. Let m2(H) denote the number of ordered

simple pairs of edges of H. A well known observation of Lovász [5] states that if H is not 2-colorable then

m2(H) > 0. Despite its simplicity, this observation underlies the best known bounds for m(n), see [4, 7].

It is natural to ask if one can obtain a quantitative version of Lovász’s observation, that is, estimate how

small can m2(H) be in an n-graph not satisfying property B? Our main result in this paper states that

(somewhat surprisingly), one can give an exact answer to the above extremal question as well as characterize

the extremal n-graphs.

Let Kn
2n−1 denote the complete n-graph on 2n−1 vertices. It is easy to see that Kn

2n−1 is not 2-colorable

and that m2(Kn
2n−1) = n ·

(
2n−1

n

)
. We first observe that this simple upper bound is tight.

Proposition 1.1. If an n-graph is not 2-colorable then m2(H) ≥ n ·
(
2n−1

n

)
.

As with any extremal problem, one would like to know which graphs or hypergraphs are extremal with

respect to this problem. For example, Turán’s theorem states that among all n-vertex graphs not containing

a complete t-vertex subgraph, there is only one graph maximizing the number of edges. In the setting of our
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problem, it is easy to see that Kn
2n−1 is not the only non 2-colorable n-graph satisfying m2(H) = n ·

(
2n−1

n

)
,

since one can take a copy of Kn
2n−1 and add to it more vertices and edges without increasing the number of

simple pairs. Our main result in this paper characterizes the extremal n-graphs, by showing that this is in

fact the only way to construct an n-graph meeting the bound of Proposition 1.1.

Theorem 1. If a non 2-colorable n-graph H satisfies m2(H) = n ·
(
2n−1

n

)
then it contains a copy of Kn

2n−1.

While the proof of Proposition 1.1 is implicit in Pluhar’s [7] argument for bounding m(n), the proof of

Theorem 1 is more intricate, relying on Bollobás’s two families theorem [3] as well as on a refined analysis

of Pluhar’s randomized algorithm for 2-coloring n-graphs.

2 Proof of Proposition 1.1

In this section we describe several preliminary observations regarding a coloring algorithm introduced

in [7], and use them to derive Proposition 1.1. The algorithm is the following:

Algorithm Col(H, π). The input is a hypergraph H = (V,E) and an ordering π : V 7→ {1, . . . , |V |} (that

is, π is a bijection). The output is a 2-coloring of V (not necessarily a proper one). The algorithm runs in

|V | steps, where in each time step 1 ≤ i ≤ |V |, the vertex π−1(i) is being colored Blue if this does not form

any monochromatic Blue edge. Otherwise, π−1(i) is colored Red.

We now state an important property of Col(H, π). For two disjoint subsets X,Y ⊆ V , we use the notation

π(X) < π(Y ) whenever maxx∈X π(x) < miny∈Y π(y), that is, the elements of X precede all the elements

of Y in the ordering π. Suppose (X,Y ) is a simple pair of edges in H with1 X ∩ Y = y. We say that π

separates (X,Y ) if π(X \ y) < π(y) < π(Y \ y).

Claim 2.1. If Col(H, π) fails to properly color H then π separates at least one pair of simple edges.

Proof. We first observe that (by definition) for every ordering π, the algorithm Col(H,π) does not produce

monochromatic Blue edges. Suppose then it produced a Red edge Y ∈ E. Let y be the first vertex of Y

according to the ordering π. If y was colored red, then there must have been an edge X so that y ∈ X, and

all other vertices of X were already colored Blue (otherwise the algorithm would color y Blue). This means

(X,Y ) is simple and that π separates it.

Note that the claim above already shows that if H is not 2-colorable then m2(H) > 0. For the proof of

Proposition 1.1 we will also need the following simple fact.

Claim 2.2. A random permutation separates any given simple pair with probability 1/n
(
2n−1

n

)
.

Proof. Let (X,Y ) be a simple pair, and let X ∩ Y = y. A permutation π separates (X,Y ) if and only if

π(X \ y) < π(y) < π(Y \ y), and this happens with probability exactly

(n− 1)!(n− 1)!

(2n− 1)!
=

1

n
(
2n−1

n

)
as desired.

The above claims suffice for proving Proposition 1.1.

Proof (of Proposition 1.1): Assume m2(H) < n
(
2n−1

n

)
. Suppose we pick a uniformly random π. Then by

the union bound and Claim 2.2, we infer that with positive probability π does not separate any simple pair

edges. Hence, there is a π not separating any simple pair. Claim 2.1 then implies that Col(H, π) will produce

a legal 2-coloring of H.
1Here, and in what follows, we slightly abuse notation by writing y instead of the more appropriate {y}.
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3 Proof of Theorem 1

For the rest of this section fix some non 2-colorable n-graph H = (V,E) satisfying m2(H) = n
(
2n−1

n

)
.

We need to show that H contains a copy of Kn
2n−1. We start with a few preliminary claims regarding H.

First, we show that no π separates more than one simple pair.

Claim 3.1. Every ordering π separates at most one simple pair.

Proof. Suppose π separates two simple pairs. By Claim 2.2, the assumption on m2(H), and by linearity of

expectation, the expected number of simple pairs separated by a random permutation is exactly 1. Hence, if

π separates 2 simple pairs, then there must exist a permutation σ which separates less than 1, and therefore

0, simple pairs. Therefore, by Claim 2.1 we obtain that Col(H, σ) produces a legal 2-coloring of H, which is

a contradiction to the assumption that H is not 2-colorable.

Claim 3.2. If (X,Y ) and (X ′, Y ) are simple pairs, then X ∩ Y 6= X ′ ∩ Y .

Proof. We observe that if X ∩ Y = X ′ ∩ Y = y, then there is a π that separates both (X,Y ) and (X ′, Y ),

and this will contradict Claim 3.1. Indeed, if (X,Y ) and (X ′, Y ) are simple pairs and X ∩ Y = X ′ ∩ Y = y,

then (X ∪X ′) \ y and Y are disjoint. Therefore, any π satisfying

π((X ∪X ′) \ y) < π(y) < π(Y \ y)

separates (X,Y ) and (X ′, Y ). This completes the proof.

In addition to the above observations about H, the last ingredient we will need is the following theorem

of Bollobás [3].

Lemma 3.3. Let I be an index set. For all i ∈ I, let Ai and Bi be subsets of a set V of p elements satisfying

the following conditions:

i. Ai ∩Bi = ∅ for all i ∈ I, and

ii. Aj * Ai ∪Bi for all i 6= j ∈ I.

Then, we have ∑
i∈I

1(
p−|Bi|
|Ai|

) ≤ 1,

with equality if and only if Bi = B for all i ∈ I and the sets Ai are all the q-tuples of the set P \B for some

value of q.

Let us now show how to use Lemma 3.3 in order to derive Theorem 1. Recall that V is the vertex set of

H and set p := |V |. Let M(H) be a collection of simple pairs (X,Y ) defined as follows; out of all the simple

pairs (X,Y ) with the same “second” set Y , put in M(H) one of these pairs. Observe that by Claim 3.2

each Y belongs to at most |Y | = n simple pairs of the form (X,Y ) (i.e, with Y as the second set), implying

that t := |M(H)| ≥ 1
n ·m2(H) =

(
2n−1

n

)
. We now define a collection F consisting of pairs of subsets of V

as follows: For every simple pair s := (X,Y ) ∈ M(H), define As = X \ Y and Bs = V \ (X ∪ Y ), and let

F = {(As, Bs) : s ∈M(H)}. For convenience, let us rename the pairs in F as (Ai, Bi) with 1 ≤ i ≤ t.
Now we wish to show that F satisfies the conditions in Lemma 3.3. Observe that if it does, then since

t∑
i=1

1(
p−|Bi|
|Ai|

) =

t∑
i=1

1(
2n−1
n−1

) ≥ 1,

it follows by the first part of Lemma 3.3 that the last inequality is in fact an equality. Therefore, by the

second part of Lemma 3.3, we conclude that all the Bi’s are the same set B, and the set of all the Ai’s

3



consists of all n − 1 subsets of a ground set of size 2n − 1. That is, let B = Bi and U = V \ B. Then we

have that |U | = 2n − 1, and that the sets Ai are all the n − 1 subsets of U . Since by construction we have

that U \ Ai ∈ E(H) for all i, we conclude that H restricted to the set U is a copy of Kn
2n−1 as desired. It

thus remains to show the following:

Claim 3.4. F satisfies the conditions in Lemma 3.3

Proof. The first condition Ai∩Bi = ∅ for all i is trivially satisfied by construction. For the second condition,

let (A,B) and (A′, B′) be two elements in F coming from simple pairs (X,Y ) and (X ′, Y ′) belonging to

M(H), respectively. Recall that by the way we defined M(H) and F we have Y 6= Y ′. Let us use y and y′ to

denote the unique elements in X ∩ Y and X ′ ∩ Y ′, respectively. We wish to show that A * A′ ∪B′, which,

by construction, is implied by (X \ y) ∩ Y ′ 6= ∅. Assuming (X \ y) ∩ Y ′ = ∅, we will derive a contradiction

to Claim 3.1 by showing that there is a permutation π separating two distinct simple pairs.

Observe that it cannot be that y ∈ Y ′. Indeed, if it was the case, then together with the assumption

that (X \ y) ∩ Y ′ = ∅ we would infer that (X,Y ) and (X,Y ′) are both simple pairs intersecting at y (and

distinct as Y 6= Y ′), contradicting Claim 3.2. Assume then that y 6∈ Y ′ (so in particular y 6= y′). We claim

that we can find a π satisfying

π(X \ y) < π(y) < π((X ′ \ y′) \X) < π(y′) < π((Y ∪ Y ′) \ (X ∪X ′)).

Indeed, the only thing that needs to be justified is the ability to place y′ as above, which follows from the

fact that y′ ∈ Y ′ and the assumption (X \ y)∩Y ′ = ∅ which together imply that y′ 6∈ X. Observe that since

π first places X \ y and then y, the pair (X,Y ) is separated by π. Such a π clearly places X ′ \ y′ before y′

and the assumption (X \ y) ∩ Y ′ = ∅ together with the fact that y 6∈ Y ′ imply that such a π places all of

Y ′ \ y′ after y′, so it separates (X ′, Y ′) as well, giving us the desired contradiction.

This completes the proof of Theorem 1.
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