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Abstract

The regularity lemma of Szemerédi gives a concise approximate description of a graph via
a so called regular partition of its vertex set. In this paper we address the following problem:
can a graph have two “distinct” regular partitions? It turns out that (as observed by several
researchers) for the standard notion of a regular partition, one can construct a graph that has
very distinct regular partitions. On the other hand we show that for the stronger notion of a
regular partition that has been recently studied, all such regular partitions of the same graph
must be very “similar”.

En route, we also give a short argument for deriving a recent variant of the regularity lemma
obtained independently by Rödl and Schacht ([11]) and Lovász and Szegedy ([9],[10]), from a
previously known variant of the regularity lemma due to Alon et al. [2]. The proof also provides
a deterministic polynomial time algorithm for finding such partitions.

1 Introduction

We start with some of the basic definitions of regularity and state the regularity lemmas that we
refer to in this paper. For a comprehensive survey on the regularity lemma the reader is referred to
[7]. For a set of vertices A ⊆ V , we denote by E(A) the set of edges of the graph induced by A in
G, and by e(A) the size of E(A). Similarly, if A ⊆ V and B ⊆ V are two vertex sets, then E(A,B)
stands for the set of edges of G connecting vertices in A and B, and e(A,B) denotes the number
of ordered pairs (a, b) such that a ∈ A, b ∈ B and ab is an edge of G. Note that if A and B are
disjoint this is simply the number of edges of G that connect a vertex of A with a vertex of B, that
is e(A,B) = |E(A, B)|. The edge density of the pair (A, B) is defined as d(A,B) = e(A,B)/|A||B|.
When several graphs on the same set of vertices are involved, we write dG(A,B) to specify the graph
to which we refer.
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Definition 1.1 (ε-Regular Pair). A pair (A,B) is ε-regular, if for any two subsets A′ ⊆ A and
B′ ⊆ B, satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|, the inequality |d(A′, B′)− d(A, B)| ≤ ε holds.

A partition A = {Vi : 1 ≤ i ≤ k} of the vertex set of a graph is called an equipartition if |Vi| and
|Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so in particular each Vi has one of two possible
sizes). For the sake of brevity, we will henceforth use the term partition to denote an equipartition.
We call the number of sets in a partition (k above) the order of the partition.

Definition 1.2 (ε-Regular partition). A partition V = {Vi : 1 ≤ i ≤ k} of V (G) for which all but
at most ε

(
k
2

)
of the pairs (Vi, Vj) are ε-regular is called an ε-regular partition of V (G).

The Regularity Lemma of Szemerédi can be formulated as follows.

Lemma 1.3 ([13]). For every m and ε > 0 there exists an integer T = T1.3(m, ε) with the following
property: Any graph G on n ≥ T vertices, has an ε-regular partition V = {Vi : 1 ≤ i ≤ k} with
m ≤ k ≤ T .

The main drawback of the regularity-lemma is that the bounds on the integer T , and hence on
the order of V, have an enormous dependency on 1/ε. The current bounds are towers of exponents
of height O(1/ε5). This means that the regularity measure (ε in Lemma 1.3) is very large compared
to the inverse of the order of the partition (k in Lemma 1.3). In some cases, however, we would like
the regularity measure between the pairs to have some (strong) relation to the order of the partition.
This leads to the following definition.

Definition 1.4 (f -Regular partition). For a function f : N→ (0, 1), a partition V = {Vi : 1 ≤ i ≤
k} of V (G) is said to be f -regular if all pairs (Vi, Vj), 1 ≤ i < j ≤ k, are f(k)-regular.

Note that as opposed to Definition 1.2, in the above definition, the order of the partition and the
regularity measure between the sets of the partition go “hand in hand” via the function f . One can
(more or less) rephrase Lemma 1.3 as saying that every graph has a (log∗(k))−1/5-regular partition
1. Furthermore, Gowers [5] showed that this is close to being tight. Therefore, one cannot guarantee
that a general graph has an f -regular partition for a function f approaching zero faster than roughly
1/ log∗(k). One should thus look for certain variants of this notion and still be able to show that any
graph has a similar partition.

A step in this direction was first taken by Alon, Fischer, Krivelevich and Szegedy [2] who proved
a stronger variant of the regularity lemma. See Lemma 2.3 below for the precise statement. The
following is yet another variant of the regularity lemma that was recently proved independently by
Rödl and Schacht [11] (where it is called “the regular approximation lemma”) and by Lovász [9]
(implicitly following a result of Lovász and Szegedy in [10]). This lemma does not guarantee that
for any f we can find an f -regular partition of any given graph. Rather, it shows that any graph is
“close” to a graph that has an f -regular partition.

1This is not accurate because Definition 1.4 requires all pairs to be f(k)-regular, while Lemma 1.3 guarantees that

only most pairs are regular.

2



Theorem 1 ([11], [9]). For every m, ε > 0 and non-increasing function f : N → (0, 1), there is an
integer T = T1(f, ε, m) so that given a graph G with at least T vertices, one can add-to/remove-from
G at most εn2 edges and thus get a graph G′ that has an f-regular partition of order k for some k

with m ≤ k ≤ T .

Our first result in this paper is a new short proof of the above theorem. The proof is a simple
application of the variant of the regularity lemma of [2] mentioned above. Basing the proof on this
method provides both explicit bounds and a polynomial time algorithm for finding the partition and
the necessary modifications. Section 2 consists of the proof of Theorem 1 and in Section 3 we describe
a deterministic polynomial time algorithm for finding a regular partition and a set of modifications
that are guaranteed by this theorem.

We now turn to the second result of this paper. In many cases, one applies the regularity lemma
on a graph G, to get an ε-regular partition V = {Vi : 1 ≤ i ≤ k} and then defines a weighted
complete graph on k vertices {1, . . . , k}, in which the weight of the edge connecting vertices (i, j)
is d(Vi, Vj). This relatively small weighted graph, sometimes called the regularity-graph (or reduced
graph) of G, carries a lot of information on G. For example, it can be used to approximately count
the number of copies of any fixed small graph in G, and to approximate the size of the maximum-cut
of G. A natural question, which was suggested to us by Madhu Sudan [12], is how different can two
regularity-graphs of the same graph be. We turn to define what it means for two regularity graphs,
or equivalently for two regular partitions, to be ε-isomorphic.

Definition 1.5 (ε-Isomorphic). We say that two partitions U = {Ui : 1 ≤ i ≤ k} and V =
{Vi : 1 ≤ i ≤ k} of a graph G are ε-isomorphic if there is a permutation σ : [k] → [k], such that for
all but at most ε

(
k
2

)
pairs 1 ≤ i < j ≤ k, we have |d(Ui, Uj)− d(Vσ(i), Vσ(j))| ≤ ε.

We first show that if one considers the standard notion of an ε-regular partitions (as in Definition
1.2), then ε-regular partitions of the same graph are not necessarily similar. In fact, as the following
theorem shows, even f(k)-regular partitions of the same graph, where f(k) = 1/kδ, are not necessarily
similar. A variant of this theorem has been proved by Lovász [9].

Theorem 2. Let f(k) = 1/k1/4. For infinitely many k, and for every n > n2(k) there is a graph
G = (V,E) on n vertices with two f -regular partitions of order k that are not 1

4 -isomorphic.

The proof of Theorem 2 provides explicit examples. We note that an inexplicit probabilistic proof
shows that the assertion of the theorem holds even for f(k) = Θ( log1/3 k

k1/3 ). See Section 4 for more
details.

Using the terminology of Definition 1.2, the above theorem and its proof can be restated as saying
that for any (small) ε > 0 and all large enough n > n0(ε), there exists an n vertex graph that has
two ε-regular partitions of order ε−4, that are not 1

4 -similar. Therefore, ε-regular partitions of the
same graph may be very far from isomorphic.

Recall now that Theorem 1 guarantees that for any function f , any graph can be slightly modified
in a way that the new graph admits an f -regular partition. As the following theorem shows, whenever
f(k) < 1/2k2 all the regular partitions of the new graph must be close to isomorphic.
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Theorem 3. Let f(k) be any function satisfying f(k) ≤ min{1/2k2, 1
8ε}, and suppose U and V are

two f-regular partitions of some graph G on n ≥ k
8ε vertices. Then U and V are ε-isomorphic.

This theorem illustrates the power of f -regular partitions, showing that (for f(k) < 1/2k2) they
enjoy properties that do not hold for usual regular partitions. Observe that the above results imply
that when, e.g., f(k) = ω( log1/3 k

k1/3 ), then two f -regular partitions of the same graph are not necessarily
similar, whereas whenever f(k) < 1/2k2 they are. It may be interesting to find a tight threshold for
f that guarantees ε-isomorphism between f -regular partitions of the same graph. It should also be
interesting to find a similar threshold assuring that partitions of two close graphs are similar.

2 Proof of Theorem 1

In this section we show how to derive Theorem 1 from a variant of the regularity lemma due to Alon
et al. [2]. Before we get to the proof we observe the following three simple facts. First, a standard
probabilistic argument shows that for every δ and η, and for every large enough n > n0(δ) there
exists a δ-regular pair (A,B) with |A| = |B| = n and d(A,B) = η. 2 The additional two facts we
need are given in the following two claims, where we use the notation x = y ± ε to denote the fact
that y − ε ≤ x ≤ y + ε.

Claim 2.1. Let δ and γ be fixed positive reals and let n > n0(δ, γ) be a large enough integer. Suppose
(A,B) is a δ-regular pair satisfying d(A, B) = η±γ and |A| = |B| = n. Then, one can add or remove
at most 2γn2 edges from (A,B) and thus turn it into a 3δ-regular pair satisfying d(A,B) = η ± δ.

Proof: Let us assume that d(A,B) = η + γ. The general case where η − γ ≤ d(A,B) ≤ η + γ is
similar. Suppose we delete each of the edges connecting A and B with probability γ

η+γ . Clearly the
expected value of d(A,B) after these modifications is η and assuming n is large enough, we get from
a standard application of Chernoff’s bound that the probability that the new density deviates from
η by more than δ is at most 1

4 . Also, the expected number of edges removed is γn2 and again, if n

is large enough, the probability that we removed more than 2γn2 edges is at most 1
4 . Consider now

two subsets A′ ⊆ A and B′ ⊂ B each of size δn. As (A,B) was initially δ-regular we initially had
d(A′, B′) = (η+γ)±δ. As each edge is removed with probability γ

η+γ the expected value of d(A′, B′)
after these modifications is η± δη

η+γ = η± δ. By Chernoff’s bound we get that for large enough n, for
every such pair (A′, B′) the probability that d(A′, B′) deviates from η± δ by more than δ is bounded
by 2−4n. As there are less than 22n choices for (A′, B′) we get that with probability at least 3

4 all
pairs (A′, B′) have density η±2δ. To recap, we get that with probability at least 1

4 we made at most
2γn2 modifications, d(A,B) = η ± δ and d(A′, B′) = η ± 2δ, implying that (A,B) is 3δ-regular.

Claim 2.2. Let (A,B) be a pair of vertex sets with |A| = |B| = n. Suppose A and B are parti-
tioned into subsets A1, . . . , Al and B1, . . . , Bl such that all pairs (Ai, Bj) are 1

4δ2-regular and satisfy
d(Ai, Bj) = d(A,B)± 1

4δ. Then (A,B) is δ-regular.

2Here and throughout the rest of the paper, we say that d(A, B) = η if |e(A, B) − η|A||B| | ≤ 1. This avoids

rounding problems arising from the fact that η|A||B| may be non-integral.
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Proof: Consider two subsets A′ ⊆ A and B′ ⊆ B of size δn each, and set A′i = A′ ∩ Ai and
B′

i = B′ ∩Bi. The number of pairs (a ∈ A′, b ∈ B′), where a ∈ A′i, b ∈ B′
j , and either |B′

j | < 1
4δ2|Bj |

or |A′i| < 1
4δ2|Ai| is bounded by 1

2δ3n2. Therefore, the possible contribution of such pairs to d(A′, B′)
is bounded by 1

2δ.
Consider now the pairs (A′i, B

′
j) satisfying |B′

j | ≥ 1
4δ2|Bj | and |A′i| ≥ 1

4δ2|Ai|. As (Ai, Bj) is
1
4δ2-regular we have d(A′i, B

′
j) = d(Ai, Bj) ± 1

4δ. As d(Ai, Bj) = d(A,B) ± 1
4δ we conclude that

d(A′i, B
′
j) = d(A,B) ± 1

2δ. As the pairs discussed in the preceding paragraph can change d(A′, B′)
by at most 1

2δ, we conclude that d(A′, B′) = d(A,B)± δ, as needed.

The following is the strengthened version of the regularity lemma, due to Alon et al. [2], from
which we will deduce Theorem 1.

Lemma 2.3 ([2]). For every integer m and function f : N → (0, 1) there exists an integer T =
T2.3(m, f) with the following property: If G is a graph with n ≥ T vertices, then there exists a
partition A = {Vi : 1 ≤ i ≤ k} and a refinement B = {Vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} of A that
satisfy:

1. |A| = k ≥ m but |B| = kl ≤ T .

2. For all 1 ≤ i < i′ ≤ k, for all 1 ≤ j, j′ ≤ l but at most f(k)l2 of them, the pair (Vi,j , Vi′,j′) is
f(k)-regular.

3. All 1 ≤ i < i′ ≤ k but at most f(0)
(
k
2

)
of them are such that for all 1 ≤ j, j′ ≤ l but at most

f(0)l2 of them, |d(Vi, Vi′)− d(Vi,j , Vi′,j′)| < f(0) holds.

Proof of Theorem 1: Given a graph G, an integer m, a real ε and some function f : N 7→ (0, 1)
as an input to Theorem 1, let us apply Lemma 2.3 with the function f ′(k) = min{f2(k)/12, ε/8} and
with m′ = m. By Lemma 2.3, if G has more than T = T2.3(m′, f ′) vertices, then G has two partitions
A = {Vi : 1 ≤ i ≤ k} and B = {Vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l} satisfying the three assertions of the
lemma. We claim that we can make less than εn2 modifications in a way that all pairs (Vi, Vj) will
become f(k)-regular.

We start by considering the pairs (Vi,j , Vi′,j′), with i < i′, which are not f ′(k)-regular. Every such
pair is simply replaced by an f ′(k)-regular bipartite graph of density d(Vi,j , Vi′,j′). Such a pair exists
by the discussion at the beginning of this section. The number of edge modifications needed for each
such pair is at most (n/kl)2 and by the second assertion of Lemma 2.3 we get that the total number
of modifications we make at this stage over all pairs (Vi, Vj) is bounded by

(
k
2

)·f ′(k)l2 ·(n/kl)2 ≤ ε
8n2.

We now consider the pairs (Vi, Vi′) that do not satisfy the third assertion of Lemma 2.3, that is,
those for which there are more than f ′(0)l2 pairs 1 ≤ j, j′ ≤ l satisfying |d(Vi, Vi′)− d(Vi,j , Vi′,j′)| ≥
f ′(0). For every such pair (Vi, Vi′) we simply remove all edges connecting Vi and Vi′ . As by the third
assertion there are at most f ′(0)

(
k
2

)
< ε

8k2 such pairs, the total number of edge modifications we
make is bounded by ε

8n2.
We finally consider the pairs (Vi, Vi′) that satisfy the third assertion of Lemma 2.3. Let us denote

d = d(Vi, Vi′). We start with pairs (Vi,j , Vi′,j′) satisfying |d − d(Vi,j , Vi′,j′)| ≥ f ′(0). Each such pair
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is replaced with an f ′(k)-regular pair of density d. As there are at most f ′(0)l2 ≤ ε
8 l2 such pairs in

each pair (Vi, Vj), the total number of modifications made in the whole graph due to such pairs is
bounded by ε

8n2. Let us now consider the pairs (Vi,j , Vi′,j′) satisfying |d − d(Vi,j , Vi′,j′)| ≤ f ′(0). If
d(Vi,j , Vi′,j′) = d ± f ′(k) we do nothing. Otherwise, we apply Claim 2.1 on (Vi,j , Vi′,j′) with η = d,
γ = |d − d(Vi,j , Vi′,j′)| and δ = f ′(k). Note that here we are guaranteed to have γ ≤ f ′(0) ≤ 1

8ε.
Claim 2.1 guarantees that we can make at most 2γ(n/kl)2 ≤ 1

4ε(n/kl)2 modifications and thus turn
(Vi,j , Vi′,j′) into a 3f ′(k)-regular pair with density d± f ′(k). The total number of modifications over
the entire graph is bounded by ε

4n2.
To conclude, the overall number of modifications we have made in the above stages is less than

εn2, as needed. Moreover, at this stage all the pairs (Vi,j , Vi′,j′) satisfy |d(Vi,j , Vi′,j′) − d(Vi, Vi′)| ≤
f ′(k) ≤ 1

4f(k)2 and they are all 1
4f2(k)-regular. Therefore, by Claim 2.2 all pairs (Vi, Vj) are f(k)-

regular, as needed.

3 Deterministic algorithmic version of Theorem 1

As mentioned before, we show that it is also possible to obtain an algorithmic version of Theorem 1.
Here is a rough sketch, following the proof of Theorem 1 step by step. As described in [2], one can
obtain the partition of Lemma 2.3 in polynomial time. In order to find the modifications that make
it f -regular, the random graphs can be replaced by appropriate pseudo-random bipartite graphs.
The last ingredient we need is an algorithm for finding the modifications to a bipartite graph (A,B)
that are guaranteed by Claim 2.1. The algorithm we describe here combines the use of conditional
probabilities (see, e.g., [3]) with a certain local condition that ensures regularity. We first describe
such a condition.

Given a bipartite graph on a pair of vertex sets (A,B) we denote by dC4(A,B) the density of
four-cycles in (A,B), namely, the number of copies of C4 divided by

(|A|
2

)(|B|
2

)
. A pair (A,B) is said

to be ε-quad-regular if dC4(A,B) = d4(A,B)± ε. This local condition indeed ensures ε-regularity, as
detailed in the following Lemma. The proof of the lemma appears in [6] and is based on the results
of [1].

Lemma 3.1 ([6]). Let (A, B) be a bipartite graph on A and B where |A| = |B| = n and δ > 0.
Then:

1. If (A,B) is 1
4δ10-quad-regular then it is δ-regular.

2. If (A,B) is δ-regular then it is 8δ-quad-regular.

We shall design a deterministic algorithm for the following slightly weaker version of Claim 2.1.

Claim 3.2. There is a deterministic polynomial time algorithm that given a 1
200δ20-regular pair

(A,B) with n vertices in each part (with n large enough) and d(A,B) = η ± γ, modifies up to 2γn2

edges and thus turns the bipartite graph into a 2δ-regular pair with edge density d′(A,B) = η ± δ .
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Note that the polynomial loss in the regularity measure with respect to Claim 2.1 can be evened
by modifying the definition of f ′ in the proof of Theorem 1 so that f ′(k) = min{f2(k)/8, ε20/2000}.
Hence Claim 3.2 indeed implies an algorithm for finding the modifications and partition guaranteed
by Theorem 1.

Proof of Claim 3.2: Assume d(A,B) = η+γ and γ > δ. The case d(A,B) = η−γ can be treated
similarly.

Consider an arbitrary ordering of the edges of (A,B) and a random process in which each edge
is deleted independently with probability γ

η+γ . We first consider this setting and later show that a
sequence of deterministic choices of the deletions can be applied so that the resulting graph satisfies
the desired properties.

Define the indicator random variable Xi, 1 ≤ i ≤ t = ηn2, for the event of not deleting the i’th
edge. Denote the number of four cycles in (A,B) by s = dC4(A,B)

(
n
2

)2, and arbitrarily index them
by 1, . . . , s. For every C4 in (A,B) define the indicator Yi, 1 ≤ i ≤ s, for the event of its survival
(i.e., none of its edges being deleted). Also let X =

∑t
i=1 Xi and Y =

∑s
i=1 Yi which account

for the numbers of edges and four-cycles (respectively) at the end of this process. Now define the
following conditional expectations for i = 0, 1, . . . , t, where the expectation is taken over the random
independent choice of Xi described above.

fi(x1, . . . , xi) = EXi+1,...,Xt

[
n4(X − ηn2)2 + (Y − η4(n

2)
2)2 | X1 = x1, . . . , Xi = xi

]
(1)

We first obtain an upper bound on f0. Since X ∼ B((η + γ)n2, η
η+γ ), hence E[(X − ηn2)2] =

V (X) = O(n2) and thus the first term in the expression for f0 is O(n6). The expectation of the
second term is

E[(Y − η4(n
2)

2)2] = E[Y 2]− 2E[Y ]η4(n
2)

2 + η8(n
2)

4

For the linear term we have E[Y ] =
∑s

i=1 E[Yi] = s( η
η+γ )4. As for the quadratic term, for any

pair 1 ≤ i < j ≤ s of four-cycles which share no common edge, the corresponding Yi and Yj are
independent and hence E[YiYj ] = ( η

η+γ )8. There are only O(n6) non-disjoint pairs of C4s, thus
E[Y 2] = E[

∑
1≤i,j≤s YiYj ] = s2( η

η+γ )8 ±O(n6). By Lemma 3.1, dC4(A, B) = (η + γ)4 ± 1
25δ20 and so

s = ((η + γ)4 ± 1
25δ20)

(
n
2

)2. Therefore, we conclude that

E[(Y − η4(n
2)

2)2] = s2( η
η+γ

)8 ±O(n6)− 2s( η
η+γ

)4η4(n
2)

2 + η8(n
2)

4

≤ 1
5
δ20(n

2)
4 + O(n6)

This implies that altogether, for a large enough n, f0 ≤ 1
4δ20

(
n
2

)4.

Each fi(x1, . . . , xi) is a convex combination of fi+1(x1, . . . , xi, 0) and fi+1(x1, . . . , xi, 1). Thus,
for some choice xi+1 for Xi+1 we get that fi+1(x1, . . . , xi+1) ≤ fi(x1, . . . , xi). Therefore, choosing an
xi+1 that minimizes fi+1 sequentially for i = 0, . . . , t−1 results in an assignment of (x1, . . . , xt) such
that ft(x1, . . . , xt) ≤ f0 ≤ 1

4δ20
(
n
2

)4. In order to apply this process, one needs to be able to efficiently
compute fi. But this is straightforward, since for any partial assignment of values to the Xis, the
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mutual distribution of any pair Yi, Yj can be calculated in time O(1). Therefore, since there are
at most O(n8) pairs of four-cycles, computing the expected value of the sum in (1) requires O(n8)
operations. Repeating this for each edge accumulates to O(n10) . 3

To complete the proof of the claim, we only need to show that the modifications we obtained
above, namely such that (x1, . . . , xt) satisfy ft(x1, . . . , xt) ≤ 1

4δ20
(
n
2

)4, are guaranteed to satisfy the
conditions of the claim. Indeed, in this case, each of the two addends which sum up to ft is bounded
by 1

4δ20
(
n
2

)4. By the first addend, the new edge density d′ is d′ = η ± 1
2δ10. Thus, with much room

to spare, the conditions on the edge density and the number of modifications are fulfilled. Note that
it also follows that d′4 = η4 ± 3δ10 (for, e.g., δ < 1

4), and the second addend implies that the new
four-cycles density is η4± 1

2δ10 = d′4± 4δ10. By Lemma 3.1 the pair is now 41/5δ-regular, and hence
the modified graph attains all the desired properties.

Remark: Another possible proof of Claim 3.2 can be obtained by using an appropriate 8-wise
independent space for finding (x1, . . . , xt) such that ft attains at most its expected value.

4 Isomorphism of regular partitions

In this section we prove Theorems 2 and 3. In order to simplify the presentation, we omit all floor
and ceiling signs whenever these are not crucial. We start with the proof of Theorem 2. The basic
ingredient of the construction is a pseudo-random graph which satisfies the following conditions.

Lemma 4.1. Let k be a square of a prime power, then there exists a graph F = (V, E) on |V | = k

vertices such that

1. F is bk/2c-regular, and hence d(V, V ) = bk/2c
k

2. For any pair of vertex sets A and B, if |A| ≥ k
3
4 and |B| ≥ k

3
4 , then d(A,B) = d(V, V )± k−

1
4

Proof: We use some known pseudo-random graphs as follows, see the survey [8] for further defini-
tions and details. An (n, d, λ)-graph is a d-regular graph on n vertices all of whose eigenvalues, except
the first one, are at most λ in their absolute values. It is well known that if λ is much smaller than
d, then such graphs have strong pseudo-random properties. In particular, (see, e.g., [3], Chapter 9),
in this case for any two sets of vertices A and B of G: d(A,B) = d

n ± λ(|A||B|)− 1
2 . Thus, it is easy

to verify that a (k, bk
2c,

√
k)-graph would satisfy the assertions of the lemma.

There are many known explicit constructions of (n, d, λ)-graphs. Specifically, we use the graph
constructed by Delsarte and Goethals and by Turyn (see [8]). In this graph the vertex set V (G)
consists of all elements of the two dimensional vector space over GF (q), where q is a prime power, so
G has k = q2 vertices. To define the edges of G we fix a set L of q+1

2 lines through the origin. Two

3Note that each edge effects only at most O(n6) pairs of four cycles, thus the complexity can easily be reduced to

O(n8), and in fact can be further reduced by a more careful implementation.
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vertices x and y of the graph G are adjacent if x − y is parallel to a line in L. It is easy to check
that this graph is (q+1)(q−1)

2 = q2−1
2 -regular. Moreover, because it is a strongly regular graph, one

can compute its eigenvalues precisely and show that besides the first one they all are either − q+1
2 or

q−1
2 . Therefore, indeed, we obtain an (k, bk

2c, λ)-graph with λ <
√

k as necessary.

Proof of Theorem 2: We construct our example as follows. Pick a graph F on k vertices V (F ) =
{1, . . . , k} which satisfies the conditions of Lemma 4.1. Suppose n ≥ k2. The graph on n vertices G

will be an n
k blow-up of F : every vertex of F is replaced by an independent set of size n

k , and each
edge is replaced by a complete bipartite graph connecting the corresponding independent sets. Every
non-edge corresponds to an empty bipartite graph between the parts. Let U = {Ui : 1 ≤ i ≤ k}
be the partition of V (G) where Ui is an independent set which corresponds to the vertex i in F .
It follows from the construction that for any 1 ≤ i < j ≤ k the edge density of (Ui, Uj) is either
0 or 1, and (Ui, Uj) is ε-regular for any ε > 0. The second partition V is generated by arbitrarily
splitting every Ui into k equal-sized sets Wi,t, 1 ≤ t ≤ k, and setting Vt =

⋃k
i=1 Wi,t. Note that

for any 1 ≤ i < j ≤ k the edge density dG(Vi, Vj) is exactly dF (V (F ), V (F )). Yet by Lemma 4.1,
dF (V (F ), V (F )) = 2e(F )

k2 = bk/2c
k , which for k ≥ 2 is strictly between 1

4 and 3
4 . Hence U and V are

not 1
4 -similar, as |d(Ui, Uj)− d(Vi′ , Vj′)| > 1

4 for all pairs i < j and i′ < j′.
Thus, we complete the proof of the theorem by showing that all pairs (Vi, Vj) are k−

1
4 -regular.

Suppose, towards a contradiction and without loss of generality, that there are subsets A ⊆ V1 and
B ⊆ V2 such that |A| ≥ k−

1
4 |V1|, |B| ≥ k−

1
4 |V2| and |d(A,B)− d(V1, V2)| > k−

1
4 .

For any 1 ≤ i ≤ k we denote Ai = A ∩ Wi,1 and Bi = B ∩ Wi,2. For any vertex x ∈ A,
let the fractional degree of x with respect to B be defined by dB(x) = e({x}, B)/|B|. Note that
d(A,B) = 1

|A|Σx∈AdB(x) and that if x1 and x2 come from the same Wi,1, then dB(x1) = dB(x2).
Therefore, d(A,B) is a convex combination

d(A, B) =
k∑

i=1

|Ai|
|A| dB(xi)

of (at most) k possible fractional degrees of vertices in A, where for 1 ≤ i ≤ k, xi is an arbitrary
member of Wi,1.

First assume that d(A,B) > d(V1, V2)+k−
1
4 . We sort the vertices of A by their fractional degrees

with respect to B, and consider a subset Â of V1 which consists of the union of the k
3
4 sets Wi,1 which

have the highest fractional degrees with respect to B. Since |A| > k−
1
4 |V1| = |Â|, it follows that

d(Â, B) ≥ d(A, B). Similarly, by considering the fractional degrees of the vertices of B with respect
to the new subset Â, we may obtain a subset B̂ of V2 such that d(Â, B̂) ≥ d(Â, B) ≥ d(A,B) >

d(V1, V2)+k−
1
4 . It also follows that both Â and B̂ are unions of sets Wi,1 and Wi,2 respectively. Thus,

the edge density d(Â, B̂) is exactly the edge density of the corresponding vertex sets in F (both of size
k

3
4 ). By Lemma 4.1, we get that d(Â, B̂) ≤ dF (V (F ), V (F )) + k−

1
4 = dG(V1, V2) + k−

1
4 , which leads

to a contradiction and completes the proof of Theorem. 2. The case where d(A,B) < d(V1, V2)−k−
1
4

can be treated similarly.
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Remark: By using the random graph G(k, 1
2) one could establish an inexplicit probabilistic proof

for an analog of Lemma 4.1. The proof applies standard Chernoff bounds on the number of edges
between any pair of small vertex sets. This extends the result for any k > 2 and with a stronger
regularity constraint. Repeating the proof of Theorem 2 with such a graph F implies that Theorem
2 holds even for f(k) = Θ( log1/3 k

k1/3 ).

We conclude this section with the proof of Theorem 3.

Proof of Theorem 3: First assume that n, the number of vertices in the graph G, is divisible by
k, and consider two f -regular partitions U = {Ui : 1 ≤ i ≤ k} and V = {Vi : 1 ≤ i ≤ k} of order k.
Let Wi,j denote Vi∩Uj . Consider a matrix A where Ai,j = |Wi,j |

|Vi| is the fraction of vertices of Vi in Uj ,
and note that A is doubly stochastic, that is, the sum of entries in each column and row is precisely
1. A well known (and easy) theorem of Birkhoff [4] guarantees that A is a convex combination of
(less than) k2 permutation matrices. In other words, there are k2 permutations σ1, . . . , σk2 of the
elements {1, . . . , k}, and k2 reals 0 ≤ λ1, . . . , λk2 ≤ 1 such that

∑
t λt = 1 and A =

∑
t λtAσt , where

Aσ is the permutation matrix corresponding to σ. Let λp be the largest of these k2 coefficients.
Clearly λp ≥ 1/k2, and observe that as A is a convex combinations of the matrices Aσt , this means
that for every 1 ≤ i ≤ k we have |Wi,σp(i)| ≥ 1

k2 |Vi| and similarly |Wi,σp(i)| ≥ 1
k2 |Uσp(i)|. As both

V and U are assumed to be f(k)-regular and f(k) < min{1/k2, ε/4}, this guarantees that for all
1 ≤ i < j ≤ k we have

|d(Vi, Vj)− d(Uσp(i), Uσp(j))| ≤

|d(Vi, Vj)− d(Wi,σp(i),Wj,σp(j))|+ |d(Wi,σp(i), Wj,σp(j))− d(Uσp(i), Uσp(j))| ≤
ε

2
,

completing the proof for this case.
We now justify our assumption that n is divisible by k: if this is not the case, we add (n

mod k) < k isolated vertices to G and denote the new graph by G′. Now, consider partitions U ′ and
V ′ of G′, in which all sets have the same size dn

k e, by adding at most one isolated vertex to each
cluster in U and V. Since U and V are f(k)-regular, it is not difficult to verify that U ′ and V ′ are
min{1/k2, ε/4}-regular. Applying the above argument on G′ with U ′ and V ′, we get that U ′ and V ′
are 1

2ε-isomorphic. However, for any 1 ≤ i < j ≤ k the edge densities d(Vi, Vj) and d(V ′
i , V ′

j ) differ by
at most 2

|V ′i | ≤
2k
n ≤ 1

4ε, and the same holds for U and U ′. Therefore, we conclude that the partitions
U and V of the original graph G are ε-isomorphic.

Acknowledgments: We would like to thank Madhu Sudan for a conversation that initiated this
study, and Laci Lovász for fruitful discussions. We would also like to thank the anonymous referee
for helpful comments.

10



References
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322–337.
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