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Abstract

A system of ` linear equations in p unknowns Mx = b is said to have the removal property if
every set S ⊆ {1, . . . , n} which contains o(np−`) solutions of Mx = b can be turned into a set S′

containing no solution of Mx = b, by the removal of o(n) elements. Green [GAFA 2005] proved
that a single homogenous linear equation always has the removal property, and conjectured that
every set of homogenous linear equations has the removal property. In this paper we confirm
Green’s conjecture by showing that every set of linear equations (even non-homogenous) has the
removal property.

We also discuss some applications of our result in theoretical computer science, and in particu-
lar, use it to resolve a conjecture of Bhattacharyya, Chen, Sudan and Xie [9] related to algorithms
for testing properties of boolean functions.

MSC-2000 classification: 05C35, 11P99 ,68R99

1 Introduction

1.1 Background

The (triangle) removal lemma of Ruzsa and Szemerédi [30], which is by now a cornerstone result
in combinatorics, states that a graph on n vertices that contains only o(n3) triangles can be made
triangle free by the removal of only o(n2) edges. Or in other words, if a graph has asymptotically
few triangles then it is asymptotically close to being triangle free. While the lemma was proved
in [30] for triangles, an analogous result for any fixed graph can be obtained using the same proof
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idea. Actually, the main tool for obtaining the removal lemma is Szemerédi’s regularity lemma for
graphs [36], another landmark result in combinatorics. The removal lemma has many applications in
different areas like extremal graph theory, additive number theory and theoretical computer science.
Perhaps its most well known application appears already in [30] where it is shown that an ingenious
application of it gives a very short and elegant proof of Roth’s Theorem [27], which states that if
S ⊆ [n] = {1, . . . , n} has no 3-term arithmetic progression then |S| = o(n).

Recall that an r-uniform hypergraph H = (V, E) has a set of vertices V and a set of edges E,
where each edge e ∈ E contains r distinct vertices from V . So a graph is a 2-uniform hypergraph.
Szemerédi’s famous theorem [35] extends Roth’s theorem by showing that for every fixed k, if S ⊆ [n]
contains no k-term arithmetic progression then |S| = o(n). Motivated by the fact that a removal
lemma for graphs can be used to prove Roth’s theorem, Frankl and Rödl [13] showed that a re-
moval lemma for r-uniform hypergraphs could be used to prove Szemerédi’s theorem on (r +1)-term
arithmetic progressions. They further developed a regularity lemma, as well as a corresponding
removal lemma, for 3-uniform hypergraphs thus obtaining a new proof of Szemerédi’s theorem for
4-term arithmetic progressions. In recent years there have been many exciting results in this area, in
particular the results of Gowers [16] and of Nagle, Rödl, Schacht and Skokan [25, 26], who indepen-
dently obtained regularity lemmas and removal lemmas for r-uniform hypergraphs, thus providing
alternative combinatorial proofs of Szemerédi’s Theorem [35] and some of it generalizations, notably
those of Furstenberg and Katznelson [14]. Tao [37] and Ishigami [19] later obtained another proof
of the hypergraph removal lemma and of its many corollaries mentioned above. For more details see
[17, 21].

In this paper we will use the above mentioned hypergraph removal lemma in order to resolve a
conjecture of Green [18] regarding the removal properties of sets of linear equations. Let Mx = b be
a set of linear equations, and let us say that a set of integers S is (M, b)-free if it contains no solution
to Mx = b, that is, if there is no vector x, whose entries all belong to S, which satisfies Mx = b.
Just as the removal lemma for graphs states that a graph that has few copies of H is close to being
H-free, a removal lemma for sets of linear equations Mx = b should say that a subset of the integers
[n] that contains few solutions to Mx = b is close to being (M, b)-free. Let us start by defining this
notion precisely.

Definition 1.1 (Removal Property) Let M be an `×p matrix of integers and let b ∈ N`. The set
of linear equations Mx = b has the removal property if for every δ > 0 there is an ε = ε(δ,M, b) > 0
with the following property: if S ⊆ [n] is such that there are at most εnp−` vectors x ∈ Sp satisfying
Mx = b, then one can remove from S at most δn elements to obtain an (M, b)-free set.

We note that in the above definition, as well as throughout the paper, we assume that the `× p

matrix M of a set of linear equations has rank `.
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Green [18] has initiated the study of the removal properties of sets of linear equations. His main
result was the following:

Theorem 1 (Green [18]) Any single homogenous linear equation has the removal property.

The main result of Green actually holds over any abelian group. To prove this result, Green devel-
oped a regularity lemma for abelian groups, which is somewhat analogous to Szemerédi’s regularity
lemma for graphs [36]. Although the application of the group regularity lemma for proving Theorem
1 was similar to the derivation of the graph removal lemma from the graph regularity lemma, the
proof of the group regularity lemma was far from trivial. One of the main conjectures raised in [18]
is that a natural generalization of Theorem 1 should also hold (Conjecture 9.4 in [18]).

Conjecture 1 (Green [18]) Any system of homogenous linear equations Mx = 0 has the removal
property.

We note that besides being a natural generalization of Theorem 1, Conjecture 1 was also raised
in [18] with relation to a conjecture of Bergelson, Host, Kra and Ruzsa [7] regarding the number of
k-term arithmetic progressions with a common difference in subsets of [n]. See Section 5 for more
details.

1.2 Recent progress on Green’s Conjecture and our main result

Very recently, Král’, Serra and Vena [23] gave a surprisingly simple proof of Theorem 1, which
completely avoided the use of Green’s regularity lemma for groups. In fact, their proof is an elegant
and simple application of the removal lemma for directed graphs [2], which is a simple variant
of the graph removal lemma that we have previously discussed. The proof given in [23] actually
extends Theorem 1 to any single non-homogenous linear equation over arbitrary groups. Král’, Serra
and Vena [23] also show that Conjecture 1 holds when M is a 0/1 matrix, which satisfies certain
conditions. But these conditions are not satisfied even by all 0/1 matrices.

Let us now mention some results that have all been obtained independently of ours. Bhat-
tacharyya, Chen, Sudan and Xie [9] showed that Conjecture 1 holds when the system of equations
can be realized as a graphical matroid, see [9] for the exact details. The proof of the main result
of [9] is mainly analytic, and applies Green’s regularity lemma for groups [18] mentioned above.
Bhattacharyya et al. stated that extending their result to the full generality of Conjecture 1 “seems
to pose significant technical hurdles”. They further posed as a challenging open problem to show
that the system of homogenous linear equations x1 +x2 +x4 = 0, x2 +x3 +x5 = 0, x3 +x1 +x6 = 0,
x1 + x2 + x3 + x7 = 0 has the removal property. In another recent result, Candela [11] showed
that Conjecture 1 holds for every system of ` homogenous linear equations Mx = 0 in which every
` columns of M are linearly independent. See more details in Subsection 2.1. A similar result to
Candela’s [11], was also obtained by Král’, Serra and Vena [24].
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In this paper we confirm Green’s conjecture for every homogenous set of linear equations. In
fact, we prove the following more general result.

Theorem 2 (Main Result) Any set of linear equations (even non homogenous) Mx = b has the
removal property.

1.3 Applications to testing properties of boolean functions

Besides being a natural problem from the perspective of additive number theory, it turns out that
Theorem 2 has some applications in Theoretical Computer Science, in the area of Property Testing.
Property testers are fast randomized algorithms that can distinguish between objects satisfying a
certain property P and objects that are “far” from satisfying it. In an attempt to prove a general
sufficient condition that would guarantee that certain properties of boolean functions have efficient
testing algorithms, Bhattacharyya, Chen, Sudan and Xie [9] conjectured that certain properties of
boolean functions (that are related to the notion of being (M, b)-free) can be efficiently tested. As
we show in Section 4, our main result gives a positive answer to their open problem.

1.4 Organization

The rest of the paper is organized as follows. In the next section we give an overview of the proof
of Theorem 2. As we show in that section, Theorem 2 also holds over any finite field, that is when
S ⊆ Fn, where Fn is the field of size n. In fact it is easy to modify the proof so that it works over any
field, but we will not do so here. The proof of Theorem 2 has two main steps: the first one, described
in Lemma 2.3, applies the main idea from [23] in order to show that if a set of linear equations can
be “represented” by a hypergraph then Theorem 2 would follow from a variant of the hypergraph
removal lemma. So the second, and most challenging, step of the proof is showing that every set of
linear equations can be represented as a hypergraph. The proof of this result, stated in Lemma 2.4,
appears in Section 3. In Section 4 we describe the applications of our main result to devising efficient
testing algorithms for properties of boolean functions. Finally, in Section 5 we give some concluding
remarks and discuss some open problems.

More recent results: After our paper appeared on the arXiv we have learned that independently
of our work here, Král’, Serra and Vena managed to improve upon their results in [23, 24] and obtain
a proof of Conjecture 1.

2 Proof Overview

It will be more convenient to deduce Theorem 2 from an analogous result over the finite field Fn

of size n (for n a prime power). In fact, somewhat surprisingly, we will actually need to prove a
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stronger claim than the one asserted in Theorem 2. This more general variant, stated in Theorem
3, allows each of the variables xi to have its own subset Si ⊆ Fn. We note that a proof of this
variant of Theorem 2 for the case of a single equation was already proved in [18] and [23], but in
those papers it was not necessary to go through this more general result. As we will explain later
(see Claims 3.1 and 3.3), the fact that we are considering a more general problem will allow us to
overcome some degeneracies in the system of equations by allowing us to remove certain equations.
This manipulation can be performed when one considers the generalized removal property (defined
below) but there is no natural way of performing these manipulations when considering the standard
removal property. Therefore, proving this extended result is essential for our proof strategy.

In what follows and throughout the paper, whenever x is a vector, xi will denote its ith entry.
Similarly, if x1, . . . , xp are elements in a field, then x will be the vector whose entries are x1, . . . , xp.
We say that a collection of p subsets S1, . . . , Sp ⊆ Fn is (M, b)-free if there are no x1 ∈ S1, . . . , xp ∈ Sp

which satisfy Mx = b.

Definition 2.1 (Generalized Removal Property over Finite Fields) Let Fn be the field of size
n, let M be an `×p matrix over Fn and let b ∈ F`

n. The system Mx = b is said to have the generalized
removal property if for every δ > 0 there is an ε = ε(δ, p) > 0 such that if S1, . . . , Sp ⊆ Fn contain
less than εnp−` solutions to Mx = b with each xi ∈ Si, then one can remove from each Si at most
δn elements to obtain sets S′1, . . . , S

′
p which are (M, b)-free.

By taking all sets Si to be the same set S we, of course, get the standard notion of the removal
property from Definition 1.1 so we may indeed work with this generalized definition. We will deduce
Theorem 2 from the following theorem.

Theorem 3 Every set of linear equations Mx = b over a finite field has the generalized removal
property.

In order to prove Theorem 3 we will need to apply the hypergraph removal lemma. We will
actually need a variant of the hypergraph removal lemma which works for colored hypergraphs. Let
us first recall some basic definitions. An r-uniform hypergraph is simple if it has no parallel edges,
that is, if different edges contain different subsets of vertices of size r. We say that a set of vertices U

in an r-uniform hypergraph H = (VH , EH) spans a copy of an r-uniform hypergraph K = (VK , EK)
if there is an injective mapping φ from VK to U such that if v1, . . . , vr form an edge in K then
φ(v1), . . . , φ(vr) form an edge in U ⊆ VH . We say that a hypergraph is c-colored if its edges are
colored by {1, . . . , c}. If K and H are c-colored, then U is said to span a colored copy of K if the
above mapping φ sends edges of K of color i to edges of H (in U) of the same color i. We stress that
the coloring of the edges does not have to satisfy any constraints that are usually associated with
edge colorings. Finally, the number of colored copies of K in H is the number of subsets U ⊆ VH of
size |VK | which span a colored copy of K.
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The following variant of the hypergraph removal lemma was proved in [19] Theorem 4.1, and is
also a special case of Theorem 1.2 in [5].1

Theorem 4 (Austin and Tao [5], Ishigami [19]) Let K be a fixed r-uniform c-colored hyper-
graph on k vertices. For every δ > 0 there is an ε = ε(δ, k) > 0 such that if H is an r-uniform
c-colored simple hypergraph with less than εnk colored copies of K, then one can remove from H at
most δnr edges and obtain a hypergraph that contains no colored copy of K.

In order to use Theorem 4 for the proof of Theorem 3, we will need to represent the solutions of
Mx = b as colored copies of a certain “small” hypergraph K in a certain “large” hypergraph H. The
following notion of hypergraph representability specifies the requirements from such a representation
that suffice for allowing us to deduce Theorem 3 from Theorem 4.

Definition 2.2 (Hypergraph Representation) Let Fn be the field of size n, let M be an ` × p

matrix over Fn. The system of linear equations Mx = b is said to be hypergraph representable if
there is an integer r = r(M, b) ≤ p2 and an r-uniform p-colored hypergraph K with k = r− 1 + p− `

vertices and p edges, such that for any S1, . . . , Sp ⊆ Fn there is an r-uniform hypergraph H on kn

vertices which satisfies the following:

1. H is simple and each edge with color i is labeled by one of the elements of Si.

2. If x1 ∈ S1, . . . , xp ∈ Sp satisfy Mx = b then H contains nr−1 p-colored copies of K. In each
of these copies, the edge with color i has the label xi. These colored copies of K should also be
edge disjoint.

3. If S1, . . . , Sp contain at most T solutions to Mx = b with xi ∈ Si then H contains at most
Tnr−1 colored copies of K.

We note that the notion of hypergraph representation we defined above is a variant of other
representations that have been previously used in order to obtain some previous result. Ruzsa and
Szemerédi [30], in their proof of Roth’s Theorem [27], where the first to represent the solution of a
linear equation using a graph. Frankl and Rödl [13] used an extension of the Ruzsa and Szemerédi
construction in their hypergraph approach to the proof of Szemerédi’s Theorem. Finally, the recent
proof of Král et al. [23] that a single linear equation has the removal property used another variant
of this representation. Although our proof here is self contained a reader who is unfamiliar with this
approach may benefit from consulting the short proof in [23].

The following lemma shows that a hypergraph representation can allow us to prove Theorem 3
using the hypergraph removal lemma.

1As noted to us by Terry Tao, this variant of the hypergraph removal lemma can probably be extracted from the

previous proofs of the hypergraph removal lemma [16, 25, 26, 37], just like the colored removal lemma for graphs can

be extracted from the proof of the graph removal lemma, see [22].
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Lemma 2.3 If Mx = b has a hypergraph representation then it has the generalized removal property.

Proof: Suppose Mx = b is a system of ` linear equations in p unknowns. Let S1, . . . , Sp be p

subsets of Fn and let H = (V,E) be the hypergraph guaranteed by Definition 2.2. We claim that
we can take ε(δ, p) in Definition 2.1 to be the value ε = ε(δ/pkr, k) from Theorem 4. Indeed, if
S1, . . . , Sp contain only εnp−` solutions to Mx = b then by item 3 of Definition 2.2 we get that H

contains at most εnp−` · nr−1 = εnk colored copies of K. As H is simple2, we can apply the removal
lemma for colored hypergraphs (Theorem 4) to conclude that one can remove a set Ẽ of at most

δ
pkr (kn)r = δ

pnr edges from H and thus destroy all the colored copies of K in H (recall that H has
kn vertices). Note that since r, k ≤ 2p2, we have that ε = ε(δ/pkr, k) is bounded by a function of δ

and p only, as required by Definition 2.1.
To show that we can turn S1, . . . , Sp into a collection of (M, b)-free sets by removing only δn

elements from each Si, let us remove an element s from Si if Ẽ contains at least nr−1/p edges that
are colored with i and labeled with s. As each edge has one label (because H has no parallel edges),
and |Ẽ| ≤ δ

pnr this means that we remove only δn elements from each Si. To see that we thus
turn S1, . . . , Sp into (M, b)-free sets, suppose that the new sets S′1, . . . , S

′
p still contain a solution

s1 ∈ S1, . . . , sp ∈ Sp to Mx = b. By item 2 of Definition 2.2, this solution defines nr−1 edge disjoint
p-colored copies of K in H, with the property that in every colored copy, the edge with color i is
labeled with the same element si ∈ Si. As Ẽ must contain at least one edge from each of these
colored copies (as it should destroy all such copies), there must be some 1 ≤ i ≤ p for which Ẽ

contains at least nr−1/p edges that are colored i and labeled with si. But this contradicts the fact
that si should have been removed from Si.

We note that the above lemma generalizes a similar lemma for the case of representing a single
equation using a graph, which was implicit in [23]. In fact, as we have mentioned earlier, [23] also
show that a set of homogenous linear equations Mx = 0, with M being a 0/1 matrix, that satisfies
certain conditions also has the removal lemma. One of these conditions essentially says that the
system of equations is graph representable. However, there are even some 0/1 matrices for which
Mx = 0 is not graph representable (in the sense of [23]). Lemma 2.4 below shows that any set of
linear equations has a hypergraph representation. This lemma is proved in the next section and it is
the most challenging part of this paper.

Lemma 2.4 Every set of linear equations Mx = b over a finite field is hypergraph representable.

The above two lemmas give the following.
2We note that it is important to require H to be simple since in general one cannot apply Theorem 4 to graphs (or

hypergraphs) with parallel edges, see [33].
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Proof of Theorem 3: Immediate from Lemmas 2.3 and 2.4.

As we have mentioned before, Theorem 2 is now an easy application of Theorem 3.

Proof of Theorem 2: Given a set of linear equations Mx = b in p unknowns, let c be the
maximum absolute value of the entries of M and b. Given an integer n let q = q(n) be the smallest
prime larger than cp2n. It is well known that q ≤ 2cp2n (in fact, much better bounds are known). It
is clear that for a vector x ∈ [n]p we have Mx = b over R if and only if Mx = b over Fq. So if Mx = b

has o(np−`) solutions with xi ∈ Si over R, it also has o(qp−`) solutions with xi ∈ Si ⊆ Fq over Fq. By
Theorem 3 we can remove o(q) elements from each Si and obtain sets S′i that are (M, b)-free. But as
q = O(n) we infer that the removal of the same o(q) = o(n) elements also guarantees that the sets
are (M, b)-free over R.

2.1 Overview of the Proof of Lemma 2.4

Let us start by noting that Lemma 2.4 for the case of a single equation was (implicitly) proven in [23],
where they show that one can take r = 2, in other words, they represent a single equation as a graph
K, in a graph H. Actually, the graph K in the proof of [23] is a cycle of length p. The proof in [23]
is very short and elegant, and we recommend reading it to better understand the intuition behind
our proof. Another related result is the proof of Szemerédi’s theorem [35] using the hypergraph
removal lemma [13], which can be interpreted as (essentially) showing that the set of p − 2 linear
equations which define a p-term arithmetic progression3 are hypergraph representable with K being
the complete (p−1)-uniform hypergraph of size p. “Interpolating” these two special cases of Lemma
2.4 suggests that a hypergraph representation of a set of ` linear equations in p unknowns should
involve an (` + 1)-uniform hypergraph K of size p. And indeed, we initially found a (relatively)
simple way to achieve this for p− 2 equations in p unknowns, thus extending the representability of
the arithmetic progression set of linear equations.

However, somewhat surprisingly, when 1 < ` < p − 2 the situation becomes much more com-
plicated and we did not manage to find a simple representation along the lines of the above two
cases. The problem with trying to extend the previous approaches to larger sets of equations is that
obtaining all the requirements of Definition 2.2 turns out to be very complicated when M has a set
of ` columns that are not linearly independent. Let us mention again that Candela [11] has recently
considered linear equations Mx = 0 in which every ` columns are linearly independent, and showed
that Conjecture 1 holds in these cases.

The way we overcome the above complications is by using a representation involving hypergraphs
of a much larger degree of uniformity (that is, larger edges), which is roughly the number of non-zero
entries of M after we perform certain manipulations on it. We note that specializing our proof to

3These linear equations are x1 + x3 = 2x2, x2 + x4 = 2x3, . . . , xp−2 + xp = 2xp−1.
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either the case ` = 1 or to the case ` = p − 2 does not give proofs that are identical to the ones
(implicit) in [13] or [23]. For example, our proof for the case of a single equation in p unknowns uses
a (p− 1)-uniform hypergraph, rather than a graph as in [23].

So let us give a brief overview of the proof. Given a set of ` linear equations in p unknowns, we
need to find a “small” hypergraph K with p edges, whose copies, within another “large” hypergraph
H, will represent the solutions to Mx = b. Each edge of H, and therefore also K, will have a color
1 ≤ i ≤ p and a label s ∈ Si. The system Mx = b has p unknowns and K has p edges and it may
certainly be the case that all the entries of M are non-zero. It is apparent that using all the edges of
K to “deduce” a linear equation of Mx = b is not a good idea because in that way we will only be
able to extract one equation from a copy of K and we need to extract ` such equations. Therefore,
we will first “diagonalize” an ` × ` sub-matrix of M to get an equivalent set of equations (which
we still denote by Mx = b) which has the property that p − ` of its unknowns x1, . . . , xp−` (can)
appear in all the equations and the rest of the ` unknowns xp−`+1, . . . , xp each appear in precisely one
equation. This suggests the idea of extracting equation i from (some of) the edges corresponding to
x1, . . . , xp−` and one of the edges corresponding to xp−`+1, . . . , xp. The hypergraph K first contains
p− ` edges that do not depend on the structure of M . The other ` edges do depend on the structure
of M and use the previous p− ` edges in order to “construct” the equations of Mx = b. The way to
think about this is that for any copy of K in H the first p− ` edges will have a special vertex that
will hold a value from Si (this will be the vertex in one of the sets U1, . . . , Up−` defined in Section
3). The other ` edges will include some of these special vertices, depending on the equation we are
trying to build. The way we will deduce an equation from a copy of K in H is that we will argue
that the fact that two edges have a common vertex means that a certain equation holds. See Claim
3.4.

But there is another complication here because the linear equation we obtain in the above process
will contain many other variables not from the sets Si, which will need to vanish from such an
equation, in order to allow us to extract the linear equations we are really interested in. The reason
for these “extra” variables is that by item (2) of Definition 2.2, H needs to contain nr−1 edge disjoint
copies of K for every solution of Mx = b. Hence, an edge of H will actually be parameterized by
several other elements from Fn (these are the elements x1, . . . , xr−1 that are used after Claim 3.2).
So we will need to make sure that these extra variables vanish in the linear equation which we extract
from a copy of K. To make sure this happens we will need to carefully choose the vertices of each
edge within H.

A final complication arises from the fact that while we want H to contain relatively few copies
of K (item (3) of Definition 2.2), we also want it to contain many edge disjoint copies of K for
every solution of Mx = b (item (2) of Definition 2.2). To this end we will think of each vertex of
H as a linear equation and we will want the linear equations corresponding to the vertices of an
edge to be linearly independent. The reason why it is hard to prove Lemma 2.4 using an (` + 1)-
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uniform hypergraph (as the results of [23] and [13] may suggest) is that it seems very hard to obtain
all the above requirements simultaneously. The fact that we are considering hypergraphs with a
larger degree of uniformity will allow us (in some sense) to break the dependencies between these
requirements.

3 Proof of Lemma 2.4

Let Mx = b be the set of linear equation, where M is an `×p matrix over Fn and b ∈ F`
n. We will first

perform a series of operations on M and b which will help us in proving Lemma 2.4. For convenience,
we will continue to refer to the transformed matrix and vector as M and b. Suppose, without loss of
generality, that the last ` columns of M are linearly independent. We can thus transform M (and
accordingly also b) into an equivalent set of equations in which the last ` columns form an identity
matrix. For a row Mi of M let mi be the largest index 1 ≤ j ≤ p− ` for which Mi,j is non-zero. Let
Wi denote the set of indices 1 ≤ j ≤ mi − 1 for which Mi,j is non-zero. Therefore, Mi has |Wi|+ 2
non-zero entries. We will need the following claim, in which we make use of the fact that we are
actually proving that every set of equations has the generalized removal property and not just the
removal property.

Claim 3.1 Suppose that every set of `− 1 equations in p− 1 unknowns over Fn has the generalized
removal property. Suppose that the matrix M defined above has a row with less than 3 non-zero
entries. Then Mx = b has the generalized removal property as well.

Proof: Suppose that (say) the first row of M has at most 2 non-zero entries. If this row has two
non-zero elements then we can assume without loss of generality that it is of the form x1 = q− a ·xj

where p − ` + 1 ≤ j ≤ p. But then we can get an equivalent set of linear equations M ′x = b′ by
removing the first row from M , removing the column in which xj appears (because xj does not appear
in other rows), removing the first entry of b and updating S1 to be S′1 = S1 ∩ {q − a · s : s ∈ Sj}.
We thus get an instance M ′x = b′ with ` − 1 equations and p − 1 unknowns, hence we can use the
assumption of the claim because: (i) The number of solutions of Mx = b with xi ∈ Si is precisely the
number of solutions of M ′x = b′ with x1 ∈ S′1, x2 ∈ S2, . . . , xj−1 ∈ Sj−1, xj+1 ∈ Sj+1, . . . , xp ∈ Sp

(ii) if we can remove δn elements from each of the sets of the new instance and thus obtain sets with
no solution of M ′x = b′ then the removal of the same elements from the original sets Si would also
give sets with no solution of Mx = b.

If the first row of M has just one non-zero entry, then this equation is of the form xj = q for
some p− ` + 1 ≤ j ≤ p and q ∈ Fn. If q /∈ Sj then the sets contain no solution to Mx = b and there
is nothing to prove. If q ∈ Sj then the number of solutions to Mx = b is the number of solutions of
the set of equations M ′x = b′ where M ′ is obtained by removing the row and column to which xj
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belongs and by removing the first entry of b. As in the previous case we can now use the assumption
of the claim.

Claim 3.1 implies that we can assume without loss of generality that none of the sets W1, . . . , W`

is empty, because if one of them is empty then the corresponding row of M contains less than 3
non-zero entries. In that case we can iteratively remove equations from M until we either: (i) get
a set of linear equations in which none of the rows has less than 3 non-zero entries, in which case
we can use the fact that the result holds for such sets of equations as we will next show, or (ii) we
get a single equation with only 2 unknowns with a non-zero coefficient4. It is now easy to see that
such an equation has the removal property. Indeed, suppose the equation has p unknowns and only
x1 and x2 have a non-zero coefficient. So the equation is a1 · x1 + a2 · x2 +

∑p
i=3 0 · xi = b. In this

case the number of solutions to the equation from sets S1, . . . , Sp is the number of solutions to the
equation a1x1 + a2x2 = b with x1 ∈ S1, x2 ∈ S2 multiplied by

∏p
i=3 |Si|. Therefore, if S1, . . . , Sp

contain o(np−1) solutions, then either (i) one of the sets S3, . . . , Sp is of size o(n), so we can remove
all the elements from this set, or (ii) S1, S2 contain o(n) solutions to a1 · x1 + a2 · x2 = b, but in
this case, for every solution (s1, s2) we can remove s1 from S1. In either case the new sets S′1, . . . , S

′
p

contain no solution of the equation, as needed.
We now return to the proof of Lemma 2.4, with the assumption that none of the sets Wi is empty.

Let us multiply each of the rows of M by M−1
i,mi

so that for every 1 ≤ i ≤ ` we have Mi,mi = 1. For
every 1 ≤ i ≤ ` let di ∈ {p− `+1, . . . , p} denote the index of the unique non-zero entry of Mi within
the last ` columns of M . Using the notation which we have introduced thus far, the system of linear
equations Mx = b can be written as the set of ` equations L1, . . . , L`, where Li is the equation

xmi + Mi,di
· xdi

+
∑

j∈Wi

Mi,j · xj = bi . (1)

Let us set
r = 1 +

∑

1≤i≤`

|Wi| .

Observe that as required by Definition 2.2 we indeed have r ≤ p2.
We now define an r-uniform p-colored hypergraph K, which will help us in proving that Mx = b

is hypergraph representable as in Definition 2.2. The hypergraph K has k = r − 1 + p − ` vertices
(as required by Definition 2.2) which we denote by v1, . . . , vr−1, u1, . . . , up−`. As for K’s edges, it
first contains p − ` edges denoted e1, . . . , ep−`, where ei contains the vertices v1, . . . , vr−1, ui. Note
that these edges do not depend on the system Mx = b. As we will see later, these edges will help us
to “build” the actual representation of the linear equations of Mx = b. So in addition to the above
p − ` edges, K also contains ` edges fp−`+1, . . . , fp, where edge fdi

will5 represent (in some sense)

4Note that this process can result in having unknowns with a zero coefficient in all the remaining equations.
5Note that we are using the fact that d1, . . . , d` are distinct numbers in {p− ` + 1, . . . , p}.

11



equation Li, defined in (1). To define these ` edges it will be convenient to partition the set [r − 1]
into ` subsets I1, . . . , I` such that I1 contains the numbers 1, . . . , |W1|, and I2 contains the numbers
|W1| + 1, . . . , |W1| + |W2| and so on. With this partition we define for every 1 ≤ i ≤ ` edge fdi to
contain the vertices {vj : j ∈ [r − 1] \ Ii}, the vertices {uj : j ∈ Wi} as well as vertex umi . Note
that as |Ii| = |Wi| the hypergraph K is indeed r-uniform. As for the coloring of the edges of K, for
every 1 ≤ i ≤ p− ` edge ei is colored i and for every p− ` + 1 ≤ di ≤ p edge fdi is colored di.

We now turn to define certain p − ` vectors a1, . . . , ap−` ∈ Fr−1
n which will be used later in the

construction of the hypergraph H. We think of a1, . . . , ap−` as the p− ` rows of a (p− `)× (r − 1)
matrix A. Furthermore, for every 1 ≤ i ≤ ` let Ai be the sub-matrix of A which contains the
columns whose indices belong to Ii (which was defined above). We now take the (square) sub-matrix
of Ai which contains the rows whose indices belong to Wi to be the identity matrix (over Fn). More
precisely, if the elements of Wi are j1 < j2 < . . . < j|Wi| then A′jg ,g = 1 for every 1 ≤ g ≤ |Wi|, and 0
otherwise6. For future reference, let’s denote by A′i this square sub-matrix of Ai. We finally set row
mi of Ai to be the vector whose gth entry is −Mi,jg , where as above jg is the gth element of Wi. If Ai

has any other rows besides the ones defined above, we set them to 0. As each column of A belongs
to one of the matrices Ai we have thus defined A and therefore also the vectors a1, . . . , ap−`.

Let us make two simple observations regarding the above defined vectors which we will use later.
First, let 1 ≤ i ≤ ` and t ∈ Ii and suppose t is the gth element of Ii. Then7

∑

j∈Wi

aj
t ·Mi,j = (Ai)jg ,g ·Mi,jg = Mi,jg = −(Ai)mi,g = −ami

t , (2)

where the first equality is due to the fact that the only non-zero entries within column g of Ai and
the rows from Wi appears in row jg. The second equality uses the fact that this entry is in fact 1.
The third equality uses the definition of row mi of Ai.

The second observation we will need is the following.

Claim 3.2 For 1 ≤ i ≤ `, let Bi be the following r − 1× r − 1 matrix: for every j ∈ [r − 1] \ Ii we
have (Bi)j,j = 1 and (Bi)j,t = 0 for t 6= j. The other |Ii| rows of Bi are the |Wi| (= |Ii|) vectors
{at : t ∈ Wi}. Then, for every 1 ≤ i ≤ ` the matrix Bi is non-singular.

Proof: To show that Bi is non-singular it is clearly enough to show that its |Ii| × |Ii| minor B′
i,

which is determined by Ii, is non-singular. But observe that this fact follows from the way we have
defined the vectors a1, . . . , ap−` above because B′

i is just A′i, which is in fact the identity matrix.

We are now ready to define, for every set of subsets S1, . . . , Sp ⊆ Fn, the hypergraph H which will
establish that Mx = b is hypergraph representable. The vertex set of H consists of k (= r−1+p−`)

6Note that the second index of A′jg,g refers to the column number within Ai, not A.
7Note that t is an index of a column of A, while g is an index of a column of Ai.
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disjoint sets V1, . . . , Vr−1, U1, . . . , Up−`, where each of these sets contains n vertices and we think of
the elements of each of these sets as the elements of Fn. As for the edges of H, we first put for
1 ≤ i ≤ p− ` and every choice of r− 1 vertices x1 ∈ V1, . . . , xr−1 ∈ Vr−1 and element s ∈ Si, an edge
with color i and label s, which contains the vertices x1, . . . , xr−1 as well as vertex y ∈ Ui, where

y = s +
r−1∑

j=1

ai
jxj , (3)

and the values ai
j were defined above. These edges will later play the role of the edges e1, . . . , ep−`

of K defined above. Note that these edges are defined irrespectively of the set of equations Mx = b.
We now define the edges of H which will “simulate” the linear equations of Mx = b. For every

1 ≤ i ≤ `, and for every choice of an element s ∈ Sdi , for every choice of r − 1 − |Ii| vertices
{xt ∈ Vt : t ∈ [r− 1] \ Ii} and for every choice of |Wi| (= |Ii|) vertices {yj ∈ Uj : j ∈ Wi} we have
an edge with color di and label s, which contains the vertices {xt : t ∈ [r−1]\ Ii} and {yj : j ∈ Wi}
as well as vertex y ∈ Umi , where

y = bi −Mi,di
· s−

∑

j∈Wi

Mi,j · yj +
∑

t∈[r−1]\Ii

xt · (ami
t +

∑

j∈Wi

aj
t ·Mi,j) . (4)

Let us first note that as required by Lemma 2.4, each edge of H has a color i and is labeled by
an element s ∈ Si. In fact, for each 1 ≤ i ≤ p and for each s ∈ Si, the hypergraph H has nr−1

edges that are colored i and labeled with s. We now turn to establish the first property required by
Definition 2.2.

Claim 3.3 H is a simple hypergraph, that is, it contains no parallel edges.

Proof: Observe that edges of H with different colors have a single vertex from a different subset of
r of the sets V1, . . . , Vr−1, U1, . . . , Up−`. Indeed, edges with color 1 ≤ i ≤ p− ` contain a vertex from
each of the sets V1, . . . , Vr−1 and another vertex from Ui, while an edge with color p− ` + 1 ≤ di ≤ p

contains vertices from the sets {Vt : t ∈ [r − 1] \ Ii} as well as vertices from some of the sets
U1, . . . , Up−`. Note that the sets I1, . . . , I` are disjoint and non-empty, as none of the sets Wi is
empty, a fact which (as noted previously) follows from Claim 3.1. Observe that if Wi was empty,
then edges with color di would have had parallel edges with color mi.

As for edges with the same color 1 ≤ i ≤ p− `, recall that they are defined in terms of a different
combination of x1, . . . , xr−1 ∈ Fn and s ∈ Si. So if one edge is defined in terms of x1, . . . , xr−1 ∈ Fn

and s ∈ Si and another using x′1, . . . , x
′
r−1 ∈ Fn and s′ ∈ Si then consider the following two cases;

(i) xj 6= x′j for some 1 ≤ j ≤ r − 1: in this case the edges have a different vertex in Vj ; (ii) xj = x′j
for all 1 ≤ j ≤ r − 1: In this case s 6= s′. Therefore the edges have a different vertex in Ui by the
way we chose the vertex in this set in (3).
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The case of edges with the same color p − ` + 1 ≤ di ≤ p is similar. Recall that such edges are
defined in terms of a different combination of {xt : t ∈ [r − 1] \ Ii}, {yj : j ∈ Wi} and s ∈ Sdi

.
So if one edge is defined in terms of {xt : t ∈ [r − 1] \ Ii}, {yj : j ∈ Wi} and s ∈ Sdi and another
using {x′t : t ∈ [r − 1] \ Ii}, {y′j : j ∈ Wi} and s′ ∈ Sdi then consider the following three cases; (i)
xt 6= x′t for some t ∈ [r − 1] \ Ii: in this case the edges have a different vertex in Vt; (ii) yj 6= y′j for
some j ∈ Wi: in this case the edges have a different vertex in Uj (iii) xt = x′t for all t ∈ [r − 1] \ Ii,
and yj = y′j for all j ∈ Wi: In this case s 6= s′ and therefore the edges have a different vertex in Umi

by the way we chose the vertex in this set in (4) and from the fact that we chose di in away that
Mi,di 6= 0 (recall the paragraph preceding equation (1)).

We now turn to establish the second and third properties required by Definition 2.2. Fix arbitrary
elements s1 ∈ S1, . . . , sp−` ∈ Sp−`. For every choice of r − 1 (not necessarily distinct) elements
x1, . . . xr−1 ∈ Fn, let Kx be the set of vertices x1 ∈ V1, . . . , xr−1 ∈ Vr−1, y1 ∈ U1, . . . , yp−` ∈ Up−`,
where for every 1 ≤ j ≤ p− `

yj = sj +
r−1∑

t=1

aj
t · xt . (5)

We will need the following important claim regarding the vertices of Kx. Getting back to the
overview of the proof given in Subsection 2.1, this is where we extract one of the linear equations
Li (defined above) from a certain combination of edges of a copy of K. We also note that the
linear equation we “initially” obtain (see (6)) includes also the elements xi, but the way we have
constructed H guarantees that the xi’s vanish and we eventually get a linear equation involving only
elements from the sets Si. We will then use this claim to show that H contains many edge disjoint
copies of K when s1, . . . , sp−` determine a solution to Mx = b, and in the other direction, that H

cannot contain too many copies of K. For what follows we remind the reader that for 1 ≤ i ≤ ` we
have p− ` + 1 ≤ di ≤ p and that for i < i′ we have di 6= di′ . Returning to the overview of the proof
given in Subsection 2.1, we are now going to use the fact that edges with colors di and mi have a
common vertex in Umi in order to deduce the linear equation Li. For the next claim recall that we
have fixed elements s1 ∈ S1, . . . , sp−` ∈ Sp−` and we consider an arbitrary set Kx as defined above.

Claim 3.4 Let 1 ≤ i ≤ `. Then the vertices {xt : t ∈ [r − 1] \ Ii} ∪ {yj : j ∈ Wi} ∪ ymi span an
edge (of color di) if and only if there is an element sdi ∈ Sdi such that {sj : j ∈ Wi} ∪ smi ∪ sdi

satisfy equation Li (defined in (1)).

Proof: H contains an edge containing the vertices {xt : t ∈ [r − 1] \ Ii} ∪ {yj : j ∈ Wi} ∪ ymi if
and only if (recall (4)) there is an sdi ∈ Sdi such that

ymi = bi −Mi,di · sdi −
∑

j∈Wi

Mi,j · yj +
∑

t∈[r−1]\Ii

xt · (ami
t +

∑

j∈Wi

aj
t ·Mi,j) (6)
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Using (5) this is equivalent to requiring that

smi +
r−1∑

t=1

ami
t · xt = bi −Mi,di

· sdi
−

∑

j∈Wi

Mi,j · (sj +
r−1∑

t=1

aj
t · xt)

+
∑

t∈[r−1]\Ii

xt · (ami
t +

∑

j∈Wi

aj
t ·Mi,j)

= bi −Mi,di · sdi −
∑

j∈Wi

Mi,j · sj −
r−1∑

t=1

xt ·

 ∑

j∈Wi

aj
t ·Mi,j




+
∑

t∈[r−1]\Ii

xt · (ami
t +

∑

j∈Wi

aj
t ·Mi,j)

= bi −Mi,di · sdi −
∑

j∈Wi

Mi,j · sj −
∑

t∈Ii

xt ·

 ∑

j∈Wi

aj
t ·Mi,j




+
∑

t∈[r−1]\Ii

xt · ami
t .

Using (2) in the last row above, we can write the above requirement as

smi +
r−1∑

t=1

ami
t · xt = bi −Mi,di

· sdi
−

∑

j∈Wi

Mi,j · sj +
r−1∑

t=1

ami
t · xt ,

or equivalently that
smi + Mi,di · sdi +

∑

j∈Wi

Mi,j · sj = bi ,

which is precisely equation Li.

For the next two claims, let us recall that we assume that the last ` columns of M form a diagonal
matrix. Therefore, a solution to Mx = b is determined by the first p− ` elements of x.

Claim 3.5 Suppose s1, . . . , sp−` determine a solution s1, . . . , sp to Mx = b. Then, any set Kx

(defined above) spans a colored copy of K. In particular, for every solution s1, . . . , sp to Mx = b, H

has nr−1 colored copies of K, in which the edge of color i is labeled with si.

Proof: We claim that Kx spans a colored copy of K, where for every 1 ≤ i ≤ r − 1 vertex vi of K

is mapped to vertex xi of H, and for every 1 ≤ j ≤ p − ` vertex uj of K is mapped to vertex yj of
H. To see that the above is a valid mapping of the colored edges of K to colored edges of H, we first
note that the way we have defined H in (3) and the vertices y1, . . . , yp−` in (5), guarantees that for
every 1 ≤ j ≤ p − ` we have an edge with color i which contains the vertices x1, . . . , xr−1, yj . This
is actually true even if s1, . . . , sp−` do not determine a solution.
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As for edges with color p−`+1 ≤ di ≤ p, the fact that the vertices {xt : t ∈ [r−1]\Ii}∪{yj : j ∈
Wi} ∪ ymi span such an edge follows from Claim 3.4, because we assume that s1, . . . , sp−` determine
a solution to Mx = b, so for every 1 ≤ i ≤ ` there exists an element sdi ∈ Sdi as required by Claim
3.4. We thus conclude that x1, . . . , xr−1, y1, . . . , yp−` span a colored copy of K. Finally, note that
by the way we have defined H, the edge of Kx which is colored i is indeed labeled with the element
si ∈ Si.

Claim 3.6 If s1, . . . , sp−` determine a solution to Mx = b, then the nr−1 colored copies of K spanned
by the sets Kx (defined above) are edge disjoint.

Proof: Let us consider two colored copies Kx and Ky for some x 6= y (Claim 3.5 guarantees that
Kx and Ky indeed span a colored copy of K). Clearly Kx and Ky cannot share edges with color
1 ≤ i ≤ p− `, because the vertices of such edges within V1, . . . , Vr−1 are uniquely determined by the
coordinates of x and y.

We now consider an edge of Kx with color di ∈ {p− `+1, . . . , p}. Let j1 < j2 < . . . < j|Wi| be the
elements of Wi, and let Bi be the matrix defined in Claim 3.2. Recall that Bi satisfies the following8:
(i) for j ∈ [r − 1] \ Ii we have (Bi)j,j = 1 and (Bi)j,t = 0 when t 6= j, and (ii) if j ∈ Ii is the gth

element of Ii, then the jth row of Bi is the vector ajg (where jg is the gth element of Wi). Let us also
define an r− 1 dimensional vector c as follows: for every j ∈ [r− 1] \ Ii we have cj = 0, and for every
j ∈ Ii, if j is the gth element of Ii then cj = sjg . The key observation now is that the vertices of the
edge whose color is di ∈ {p− `+1, . . . , p} within the r−1 sets {Vj : j ∈ [r−1]\Ii}∪{Uj : j ∈ Wi}
are given by Bix+ c. More precisely, for every j ∈ [r−1]\ Ii the vertex of the edge of color di within
Vj is given by (Bix + c)j . Also, for every jg ∈ Wi, if j ∈ Ii is the gth element of Ii, then the vertex
of this edge within Ujg is given by (Bix + c)j . Claim 3.2 asserts that Bi is non-singular, so we can
conclude that the edges with color di of Kx and Ky can share at most r − 2 of their r − 1 vertices
within the sets {Vj : j ∈ [r− 1] \ Ii} ∪ {Uj : j ∈ Wi}. So any pair of edges of color di can share at
most r − 1 vertices, and therefore Kx and Ky are edge disjoint 9.

Claim 3.7 If S1, . . . , Sp contain at most T solutions to Mx = b with xi ∈ Si then H contains at
most Tnr−1 colored copies of K.

Proof: Recall that we assume that the last ` columns of M form a diagonal matrix. Therefore, the
number of solutions T to Mx = b is just the number of choices of s1 ∈ S1, . . . , sp−` ∈ Sp−` that can
be extended to a solution of Mx = b by choosing appropriate values sp−`+1 ∈ Sp−`+1, . . . , sp ∈ Sp.

8We remark that when we have defined the matrices Bi in Claim 3.2 we did not “impose” the ordering of the rows

that correspond to Wi as we do here, but this ordering, of course, does not affect the rank of Bi.
9We note that the way we have defined H does not (necessarily) guarantee that edges of the same color cannot

share r − 1 vertices. That is, edges of color i may share the vertex in the set Umi and r − 2 of the r − 1 vertices from

the sets {Vj : j ∈ [r − 1] \ Ii} ∪ {Uj : j ∈ Wi}.
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Therefore, it is enough to show that every colored copy of K in H is given by a choice of r−1 vertices
x1 ∈ V1, . . . , xr−1 ∈ Vr−1 and a choice of p − ` elements s1 ∈ S1, . . . , sp−` ∈ Sp−` that determine a
solution to Mx = b. So let us consider a colored copy of K in H. This copy must contain edges with
the colors 1, . . . , p− `. By the way we have defined H this means that this copy must contain r − 1
vertices x1 ∈ V1, . . . , xr−1 ∈ Vr−1 as well as p− ` vertices y1 ∈ U1, . . . , yp−` ∈ Up−`. Furthermore, for
1 ≤ j ≤ p− ` we have

yj = sj +
r−1∑

t=1

aj
t · xt (7)

for some choice of sj ∈ Sj . So the vertex set of such a copy is determined by the choice of x1, . . . , xr−1

and s1, . . . , sp−`. Note that the set of vertices is just the set Kx defined before Claim 3.4, for
x1, . . . , xr−1 and s1, . . . , sp−`. Therefore, we can apply Claim 3.4 on this set of vertices.

So our goal now is to show that there are elements sp−`+1, . . . , sp which together with s1, . . . , sp−`

form a solution of Mx = b. Consider any 1 ≤ i ≤ `. As the vertices at hand span a colored copy
of K they must span an edge with color di. This edge must10 contain the vertices {xt : t ∈
[r− 1] \ Ii} ∪ {yj : j ∈ Wi} ∪ ymi . But by Claim 3.4 if these vertices span an edge (of color di) then
there is an element sdi ∈ Sdi such that {sj : j ∈ Wi} ∪ smi ∪ sdi satisfy equation Li. As this holds
for every 1 ≤ i ≤ ` we deduce that s1, . . . , sp satisfy Mx = b.

The proof of Lemma 2.4 now follows from Claims 3.3, 3.5, 3.6 and 3.7.

4 Testing Properties of Boolean Functions

Property testing algorithms, or testers for short, are fast randomized algorithms for distinguishing
between objects satisfying a property and those that are “far” from satisfying it. For example, if the
object we are interested in is a boolean function f : D 7→ {0, 1}, for some domain D, then we say
that f is δ-far from satisfying a property P if one should edit the truth table of f in at least δ|D|
places to get a function satisfying the property. As another example, if the object we are interested
in is a subset S of some finite field F, then we say that S is δ-far from satisfying a property P if one
should add to or delete from S at least δ|F| elements to get a set satisfying the property. As opposed
to algorithms for (exactly) deciding if a given object satisfies a property, δ-testing algorithms, or
testers for short, are only required to distinguish with high probability (say, 2/3) between objects
satisfying the property and those that are δ-far from satisfying the property. The ultimate goal
is to devise a testing algorithm whose running time depends only on the error parameter δ, and
is independent of the size of the input. This area of research was first defined in [10, 28], where
properties of boolean functions (such as linearity) were studied. It was further studied later in [15]
in the context of combinatorial structures. See [12] for a recent survey and references.

10Because only vertices from this combination of r of the sets V1, . . . , Vr−1, U1, . . . , Up−` spans an edge with color di.
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Our investigation thus far was about properties of combinatorial structures, but the main result
has applications to the study of properties of boolean functions. One of the most interesting questions
in the area of property testing is which properties have efficient testing algorithms, that is, algorithms
whose running time is a function of the error parameter δ. Such problems were extensively studied in
the context of testing properties of graphs, see, e.g., [3] and [15]. But there are no such general results
on testing properties of boolean functions. In an attempt to find such a general result Bhattacharyya,
Chen, Sudan and Xie [9], following an earlier result of Kaufman and Sudan [20], formulated a family
of properties of boolean functions, and conjectured that any property that belongs to this family
can be efficiently tested. As it turns out, if instead of looking at a boolean functions f : F 7→ {0, 1},
one considers11 subsets S ⊆ F, then the conjecture of [9] is equivalent to showing that for every set
of homogenous linear equations Mx = 0, one can efficiently test the property of subsets S for the
property of being (M, 0)-free. As the following theorem shows, an easy application of Theorem 2
gives that we can actually test even non-homogenous sets of linear equations. For more details on
the relation of our main result to property testing the reader is referred to the conference version of
this paper [32].

Theorem 5 For every set of linear equations Mx = b over Fn, the property of being (M, b)-free has
a constant time testing algorithm.

Proof: Let Mx = b be a set of ` linear equations in p unknowns. Definition 1.1 guarantees that if
this set of equations has the removal property, then for every δ > 0 there is an ε = ε(δ, p), such that
if S is δ-far from being (M, b)-free, then S contains at least εnp−` solutions to Mx = b. As S ⊆ Fn

and |Fn| = n, this means that if we pick a random vector v ∈ Sp−`, then with probability at least ε it
satisfies Mv = b. Hence, it is enough for the δ-tester to pick 4/ε such vectors v and check if any one
of them satisfies Mv = b. If one of them satisfies the linear equations the tester rejects, otherwise it
accepts. The tester clearly accepts with probability 1 any S that is (M, b)-free. Furthermore, if S is
δ-far from being (M, b)-free, then the tester rejects S with probability at least 1− (1− ε)4/ε > 2/3,
as needed. Finally, note that for any fixed set of linear equations, the running time of the algorithm
is O(1/ε), where ε depends only on δ.

5 Concluding Remarks and Open Problems

5.1 The types of bounds we get

Our proof of the removal lemma for sets of linear equations applies the hypergraph removal lemma.
As a consequence, we get extremely poor bounds relating ε and δ. Roughly speaking, the best
current bounds for the graph removal lemma give that ε(δ) grows like Tower(1/δ), that is, a tower

11By simply looking at the characteristic sets Sf = {x ∈ F : f(x) = 1}.
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of exponents of height 1/δ. For 3-uniform hypergraphs, the bounds are given by iterating the Tower
function 1/δ times. More generally, the bounds for r-uniform hypergraphs grow like the rth function
in the Ackermann hierarchy. Therefore, our bounds are also of this type. It seems very interesting
to come up with a proof which would avoid using the removal lemma, and would thus supply tighter
bounds.

5.2 On the possibility of improved bounds

Given the above discussion it is reasonable to ask for which sets of equations Mx = b one can get
a polynomial dependence between ε and δ. More precisely, which sets of linear equations Mx = b

have the property that if one should remove δn elements from S ⊆ [n] in order to make it (M, b)-
free then S contains at least εnp−` solutions to Mx = b, where ε = ε(δ) ≥ δC for some constant
C = C(M, b). Note that Theorem 2 guarantees that for any δ > 0 there is an ε(δ) > 0 satisfying
the above assertion. However, as we have mentioned in the previous subsection, this dependence is
far from being polynomial. This problem seems to be a challenging open problem even for a single
homogenous equation so let us focus on this case.

A solution to a linear equation
∑

aixi = 0 is non-trivial if all the xi are distinct. For a linear
equation L, let rL(n) denote the size of the largest subset of n which contains no non-trivial solution
to L. Problems of this type were studied by Ruzsa [29], see also [31]. By applying an argument
from [29] it can be shown that for certain equations satisfying rL(n) = n1−c for a positive c, we
have ε(δ) ≥ δC . However, characterizing the equations L satisfying rL(n) = n1−c seems like a very
hard problem, see [29]. Furthermore, we do not even know if all the linear equations for which
rL(n) = n1−o(1) do not have a polynomial dependence between δ and ε. For example, a special
case for which we do not know if such a dependence exists is for the linear equation x1 + x2 = x3

(for which rL(n) = Θ(n)). But for at least some of these linear equations, we can rule out such a
polynomial dependence as the following example shows. Recall that x + y = 2z if and only if x, z, y

form a 3-term arithmetic progression. We call this progression trivial if x = y = z.

Proposition 5.1 If L is the linear equation x + y = 2z then we have ε(δ) < δc log 1/δ. That is, for
every δ > 0 there is a set S ⊆ [n] such that one should remove at least δn elements from S in order
to destroy all the (non-trivial) solutions of L in S, and yet S contains only δc log 1/δn2 solutions of L.

Proof: Fix a δ > 0 and let n0 = n0(δ) be large enough that for every n ≥ n0, every X ⊆ [n] of
size δn contains a non-trivial 3-term arithmetic progression. Roth’s Theorem [29] states that such
an n0 exists. Therefore, for every n ≥ n0 and for every X ⊆ [n] of size 2δn we have to remove
at least δn elements from X in order to destroy all 3-term arithmetic progressions. Let m = m(δ)
be the largest integer for which [m] contains a subset of size 4δm, containing no non-trivial 3-term
arithmetic progressions. The well known construction of Behrend [6] shows that there are subsets of
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[n] of size n/2c
√

log n containing no non-trivial 3-term arithmetic progressions. This means that

m = m(δ) ≥ (1/δ)c log(1/δ) . (8)

for some absolute constant c. Let X be a subset of [m] of size 4δm, containing no non-trivial 3-term
arithmetic progressions.

We are now ready to define the set S. For every n ≥ n0, let S ⊆ [n] be the set of integers
with the property that in their base 2m representation, the least significant element belongs to
X. Then clearly |S| = n · |X|2m = 2δn and so one should remove at least δn elements from S to
destroy all 3-term arithmetic progressions. Since there is no carry when adding the least significant
elements of x1, x2 ∈ S, we conclude that if x1, x2, x3 ∈ S form a 3-term arithmetic progression then
the least significant characters of x1, x2, x3 must also form a 3-term arithmetic progression. But as
these characters belong to X we get that they must be identical (that is, this progression is trivial).
Therefore, recalling (8), we infer that the number of 3-term arithmetic progressions in S is at most
n2/m ≤ δc log 1/δn2, thus completing the proof.

We note that it is not difficult to extend the argument in the above proof to any linear equation
in which one variable is a convex combination of the others.

We finally mention that a particularly interesting investigation is when the field we are working
in is Fn

2 . This is related (see Section 4) to testing properties of boolean functions. A fascinating open
problem is whether there is any linear equation (over Fn

2 ) for which the dependence between ε and δ

is super-polynomial. The only result in this direction was obtained recently by Bhattacharyya and
Xie [8] who showed that this relation is super-linear.

5.3 Non-monotone variants of Theorem 2

The property of sets being (M, b)-free is analogous to the graph property of being H-free. Note
that both properties are monotone in the sense that removing elements from a set that is (M, b)-free
results in an (M, b)-free set, just like removing edges from an H-free graph results in an H-free graph.
A non-monotone variant of graphs being H-free is of course the property of being induced H-free.
Alon et al. [1] obtained a removal lemma for the property of being induced H-free. More precisely,
they have shown that for every graph fixed graph H and every δ > 0 there is an ε = ε(δ,H) such
that if G is an n-vertex graph containing less than εnh induced copies of H then one can add to or
remove from G a set of at most δn2 edges and thus obtain a graph with no induced copy of H. It is
now natural to define the following “induced” variant of the property of being (M, b)-free

Definition 5.2 Let Fn be the field of size n, let M be an ` × p matrix over Fn, let b ∈ F`
n and let

I ⊆ [p]. We say that S is (M, b, I)-free if there is no vector v = {v1, . . . , vp} ∈ Fp
n satisfying Mv = b,

where vi ∈ S iff i ∈ I.
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The set of linear equations Mx = b has the induced removal property if for every δ > 0 there is
an ε = ε(δ, p) > 0 with the following property; Let I ⊆ [p] and suppose S ⊆ Fn is such that there are
at most εnp−` vectors v = {v1, . . . , vp} ∈ Fp

n satisfying Mv = b, where vi ∈ S iff i ∈ I, then one can
add to or remove from S at most δn elements to obtain an (M, b, I)-free set.

Observe that one can think of the set I in the above definition as being analogous to the edge
set of the graph H in the property of being induced H-free. Note also that we now allow to both
add and delete elements from S in order to destroy all solutions.

Given the result of [1] mentioned above, it is natural to conjecture that one can strengthen
Theorem 2 by proving the following

Conjecture 2 Every set of linear equations over any field has the induced removal property.

Of course, a positive answer to the above conjecture will result in testing algorithms for the
non-monotone variants of the property of being (M, b)-free via the arguments in Section 4.

5.4 A removal lemma for infinitely many systems of equations

The contrapositive version of our main result says that if one should remove at least δn elements
from S ⊆ [n] in order to destroy all solutions of Mx = b then S contains fM,b(δ)np−` solutions to
Mx = b, where fM,b(δ) > 0 for every δ > 0. The “analogous” result for graphs (or hypergraphs)
is that if one should remove at least δn2 edges from a graph G in order to destroy all the copies of
H then G contains fH(δ)nh copies of H, where h is the number of vertices of H and fH(δ) > 0 for
every δ > 0. The main result of [3] is an “infinite” version of the removal lemma for graphs, which
states that if H is a (possibly infinite) set of graphs, and if one should remove at least δn2 edges
from G in order to destroy all the copies of all the graphs H ∈ H then for some H ∈ H, whose size
h satisfies h ≤ h(δ), the graph G must contain at least fH(δ)nh copies of H.

It seems natural to ask if there is a corresponding “infinite” removal lemma for sets of linear
equations. More precisely, is it the case that for every (possibly infinite) set M = {M1x = b1,M2x =
b2, . . .} of sets of linear equations the following holds: if one should remove at least δn elements from
S ⊆ [n] in order to destroy all the solutions to all the sets of linear equations in M, then for some set
of linear equations Mx = b ∈ M, with p ≤ p(ε) unknowns, S contains at least fM(δ)np−` solutions
to Mx = b.

5.5 A removal lemma over groups

Our removal lemma for sets of linear equations works over any field. For the special case of a single
linear equation, Král’, Serra and Vena [23] (following Green [18]) proved a removal lemma over any
group. It is natural to ask if a similar removal lemma over groups, or even just abelian groups, also
holds for sets of linear equations. See [34] for a related recent result.
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5.6 The Bergelson-Host-Kra Conjecture

Green [18] used the regularity lemma for groups in order to resolve a conjecture of Bergelson, Host,
Kra and Ruzsa [7], which stated that every S ⊆ [n] of size δn contains at least (δ3 − o(1))n 3-
term arithmetic progressions with a common difference. The analogous statement for arithmetic
progressions of length more than 4 was shown to be false in [7]. So the only case left open is whether
any S ⊆ [n] of size δn contains at least (δ4 − o(1))n 4-term arithmetic progressions with a common
difference. Part of the motivation of Green for raising Conjecture 1 was that it may help in resolving
the case of the 4-term arithmetic progression. It seems very interesting to see if Theorem 2 can
indeed help in resolving this conjecture.
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