
Trimming forests is hard (unless they are made of stars)

Lior Gishboliner* Yevgeny Levanzov� Asaf Shapira�

Abstract

Graph modification problems ask for the minimal number of vertex/edge additions/deletions

needed to make a graph satisfy some predetermined property. A (meta) problem of this type,

which was raised by Yannakakis in 1981, asks to determine for which properties P, it is NP-hard

to compute the smallest number of edge deletions needed to make a graph satisfy P. Despite being

extensively studied in the past 40 years, this problem is still wide open. In fact, it is open even

when P is the property of being H-free, for some fixed graph H. In this case we use RemH(G)

to denote the smallest number of edge deletions needed to turn G into an H-free graph.

Alon, Sudakov and Shapira [Annals of Math. 2009] proved that if H is not bipartite, then

computing RemH(G) is NP-hard. They left open the problem of classifying the bipartite graphs

H for which computing RemH(G) is NP-hard. In this paper we resolve this problem when H is

a forest, showing that computing RemH(G) is polynomial-time solvable if H is a star forest and

NP-hard otherwise. Our main innovation in this work lies in introducing a new graph theoretic

approach for Yannakakis’s problem, which differs significantly from all prior works on this subject.

In particular, we prove new results concerning an old and famous conjecture of Erdős and Sós,

which are of independent interest.

1 Introduction

1.1 Background on graph modification problems

Graph modification problems are problems of the following nature: we fix a graph property P and

the type of modifications one is allowed to perform on a graph, such as vertex removal and/or

edge removal/addition. Now, given a graph G, one would like to compute the minimal number of

operations one needs to perform in order to turn G into a graph satisfying P. The systematic study

of problems of this type was introduced by Yannakakis [24, 25] in the late 70’s, and they have been

extensively studied ever since. We should point that besides their intrinsic theoretical importance,

graph modification problems also have various practical applications, see the discussions in [12, 20].

Since graph modification problems have been extensively studied in the past four decades, we

will not be able to cover all the relevant background, but rather mention several selected results.

For example, there are numerous works studying graph modification problems of various specific

*Department of Mathematics, ETH, Zürich, Switzerland. Email: lior.gishboliner@math.ethz.ch. Research supported

in part by SNSF grant 200021 196965.
�School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: yevgenyl@mail.tau.ac.il.
�School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part

by ISF Grant 1028/16 and ERC Starting Grant 633509.

1

properties such as planarity [7], being a cograph [19] or having a certain degree sequence [9, 16, 22].

There are also many results dealing with the FPT aspects of various graph modification problems,

see, e.g., [5, 8, 13, 21] and references therein. More relevant to our investigation here are results

trying to obtain statements regarding general families of properties. One notable result of this type

was obtained by Lewis and Yannakakis [18], who proved that for every (non-trivial) hereditary1

property, it is NP-hard to compute the smallest number of vertices that need to be removed to make

G satisfy P.

In this paper we focus on edge-deletion problems, and denote by RemP(G) the smallest number

of edges whose removal turns G into a graph satisfying P. Yannakakis remarked already in [25] that

“edge-deletion problems do not seem to be amenable in general to a unified approach. It would be

interesting to find classes of properties for which this is possible, that is, classes of properties for

which the edge-deletion problem can be shown NP-complete using a small number of reductions, or

classes of properties for which there is a uniform polynomial algorithm that solves the edge-deletion

problem.” Short of fully resolving Yannakakis’s problem in the form of a precise characterization of

the graph properties for which RemP(G) is NP-hard, one would at least like to answer this question

for a natural subclass of properties. Perhaps the most natural such family is the one consisting of

all monotone graph properties, that is, properties closed under vertex and edge removal2. We thus

advocate the study of the following special case of Yannakakis’s problem.

Problem 1.1. Characterize the monotone properties for which computing RemP(G) is NP-hard.

Since Problem 1.1 seems out of reach at the moment, it is reasonable to focus on a very natural

subfamily of monotone properties, where we fix a graph H and define PH to be the property of being

H-free. To simplify the notation, we use RemH(G) instead of the more appropriate RemPH
(G).

Though it might seem counterintuitive at first, proving that computing RemH(G) is NP-hard becomes

easier when H is more “complicated” (see Subsection 1.4 for more details). Indeed, the first result

concerning this problem was obtained in the 80’s by Asano and Hirata [3, 4], who proved that

RemH(G) is NP-hard whenever H is 3-connected. Another result was obtained by Alon, Shapira

and Sudakov [1], who proved that computing RemH(G) is NP-hard whenever H is not bipartite.

They left open the problem of characterizing the bipartite graphs H for which this task is NP-hard.

In this paper we introduce a new approach for resolving this problem. The relevant background is

given in the next subsection.

1.2 Background on the Erdős-Sós conjecture

One of the oldest and most well-studied topics in graph theory is Turán’s problem, which asks, for

a fixed graph H, what is the maximum number of edges in an n-vertex H-free graph. Denoting this

quantity by ex(n,H), Turán’s theorem states that if H = Kt+1 (i.e., the complete graph on t + 1

vertices) then ex(n,Kt+1) ∼ (1 − 1/t)n
2

2 . In fact, the following stronger statement holds; let Tt,n
denote the complete t-partite graph with all parts of size dn/te or bn/tc (this graph is called the

Turán graph). Then ex(n,Kt+1) is exactly the number of edges of Tt,n, and moreover, Tt,n is the

unique Kt+1-free graph on n vertices with this number of edges. As we mentioned in the previous

1A graph property is hereditary if it is closed under vertex removal.
2Indeed, essentially all the properties studied in [24, 25] are monotone.

2

subsection, Alon, Shapira and Sudakov [1] proved that computing RemH(G) is NP-hard for every

non-bipartite H. One of their main tools was a strengthened version of Turán’s theorem [2]. The

main obstacle that prevents one from extending their approach to bipartite H, is that their reduction

produces graphs with Θ(n2) edges, and so it inevitably creates new copies of every fixed bipartite

graph H.

Our main idea in this paper is that in order to determine the hardness of computing RemH(G) for

bipartite H, one should consider another Turán-type problem. The Erdős-Sós conjecture [10] (see

also [6]), which is one of the oldest problems in extremal graph theory3 states that ex(n, T) ≤ k−2
2 ·n

for every tree T on k vertices. Observe that a simple example meeting this upper bound is the

disjoint union of complete graphs on k − 1 vertices. This motivates the following definition.

Definition 1.2. A k-vertex tree T satisfies the Strong Erdős-Sós conjecture (SESC) if the only T -free

graph with k−2
2 · n edges is the disjoint union of cliques of size k − 1.

It is easy to see that every tree satisfying the SESC, also satisfies the Erdős-Sós conjecture. Note

that although it is clear that stars do satisfy the Erdős-Sós conjecture, a star with k − 1 ≥ 3 leaves

does not satisfy the SESC, since every (k − 2)-regular graph has no copy of this star. Finally, we

remark that a famous theorem of Erdős and Gallai [11] states that paths satisfy the SESC.

1.3 Our main results

Our main graph-theoretic result in this paper is the following contribution to the study of the Erdős-

Sós conjecture.

Theorem 1. Every tree of diameter at most 4 which is not a star satisfies the Strong Erdős-Sós

conjecture.

On a high level, our proof of Theorem 1 follows the strategy used by [23] to prove that trees of

diameter at most 4 satisfy the Erdős-Sós conjecture. However, there are various subtle aspects that

need to be changed in order to obtain our stronger Theorem 1. Perhaps the most significant one is

a randomized process which is a crucial ingredient enabling us to characterize the extremal graphs.

Our main complexity-theoretic result in this paper employs Theorem 1 to obtain the following

contribution to the study of Yannakakis’s problem.

Theorem 2. For every tree T which is not a star, computing RemT (G) is NP-hard.

By a well-known result of Tutte [26], if T is a star then one can compute RemT (G) in polynomial

time using a reduction to the maximum matching problem. Tutte’s argument in fact gives the

following more general result:

Theorem 3 ([26]). There is a polynomial-time algorithm which receives as input a graph G and

a function f : V (G) → {0, . . . , v(G)}, and computes the maximum number of edges in a spanning

subgraph F of G with the property that dF (v) ≤ f(v) for every v ∈ V (G).

3We should point out that a solution to this problem for large enough trees T was announced more than 10 years

by Ajtai, Komlós, Simonovits and Szemerédi, but this result has yet to be published.

3

For completeness, we give the (folklore) proof of Theorem 3 in the appendix.

By the above, Theorem 2 has the following immediate corollary.

Corollary 4. For a tree T , computing RemT (G) is polynomial-time solvable if T is a star and

NP-hard otherwise.

Next, we consider general forests and obtain a classification similar to Corollary 4. We say that

a forest F is a star forest if every connected component of F is a star.

Theorem 5. For a forest F , computing RemF (G) is polynomial-time solvable if F is a star forest

and NP-hard otherwise.

The above theorem motivates us to conjecture that the answer to the question posed by Alon,

Shapira and Sudakov [1] is the following.

Conjecture 1.3. Computing RemH(G) is NP-hard if and only if H is not a star forest.

1.4 Comparison to previous results

It is natural to try and prove that computing RemH(G) is NP-hard using a reduction from vertex

cover, as follows. Given an n-vertex graph G we construct an input G′ to RemH(G′) as follows: First,

we put in G′ a star with n edges, each corresponding to one of the vertices of G. Now, for every edge

(i, j) ∈ E(G) we add to G′ a copy of H which contains the two edges of the star corresponding to the

vertices i and j, and is otherwise disjoint from all other edges/vertices of G′. Let us call the copies

of H we added to G′ the canonical copies. While it is easy to see that if RemH(G′) ≤ k then G has

a vertex cover of size at most k, the other direction seems harder to prove. The main difficultly is

in ensuring that after removing a set of edges from G′ which destroys all the canonical copies of H,

we do not still end up with a copy of H resulting from various “pieces” of canonical copies of H’s

that together create a copy of H. It is thus clear that it should be easier to prove that the above

reduction works when H is more “complicated”. And indeed, it is not hard to see that this reduction

works whenever H is 3-connected (this is basically the proof of [3, 4]). Hence, in some sense, the

graphs which are hardest for the above approach are forests. This explains why we have to use a

completely different approach for handing them. Let us finally mention that the reduction of [1] can

only handle non-bipartite H since it inherently produces graphs with Θ(n2) edges. This approach

fails for bipartite H since graphs with Θ(n2) edges cannot be H-free when H is bipartite.

Paper overview: In the next section we show how to derive Theorem 2 from Theorem 1. We

prove Theorem 2 in Section 3. In Section 4, we prove the positive direction of Theorem 5 by giving

a polynomial-time algorithm for computing RemF (G) for a star forest F . In Section 5 we prove the

negative direction of Theorem 5. Section 6 contains some concluding remarks and open problems.

Notation: For graphs G,H, denote by ex(G,H) the largest number of edges in an H-free subgraph

of G. So ex(G,H) = e(G)− RemH(G). Hence, the problems of computing ex(G,H) and RemH(G)

are equivalent, and sometimes it will be convenient to consider ex(G,H) instead of RemH(G).

4

2 Deriving Theorem 2 from Theorem 1

We first claim that computing RemT (G) is NP-hard for every tree T on at least 4 vertices satisfying

the Strong Erdős-Sós conjecture. Indeed, suppose n is divisible by k− 1 and G is an n-vertex graph

with m edges. Then RemT (G) = m −
(
k−1
2

)
n
k−1 if and only if G contains a Kk−1-factor, that is, a

collection of n
k−1 cliques of size k − 1 covering all its vertices. Since deciding whether a graph has

a Kk−1-factor is well-known to be NP-hard for k ≥ 4 [17], we conclude that computing RemT (G) is

NP-hard for such T .

We now prove Theorem 2 by induction on |V (T)|. Note that by the previous paragraph and

Theorem 1, we already know that computing RemT (G) is NP-hard for every tree of diameter at

most 4 which is not a star4. These trees will form the base of our induction5. Consider now a tree T

of diameter at least 5 and let T0 be the tree obtained by removing all the leaves of T . It is easy to see

that since T has diameter at least 5, then T0 has diameter at least 3 (i.e., T0 is not a star), implying

by induction that computing RemT0(G) is NP-hard. We will now show that computing RemT0(G)

can be reduced to computing RemT (G), which will complete the induction step and thus the proof

of the theorem.

Given an n-vertex graph G as an input to RemT0(G), let G′ be the graph obtained from G

by doing the following: for each v ∈ V (G), add to G a set Lv of
(
n
2

)
+ |V (T)| new vertices and

connect all of them to v (for distinct v, v′ ∈ V (G), the sets Lv, Lv′ are disjoint). We claim that

RemT0(G) = RemT (G′). Indeed, suppose E is a set of edges whose removal turns G into a T0-free

graph, and consider the graph G′−E. Clearly G′−E has no copy of T0 contained within the original

vertices of G. Furthermore, since each of the new vertices we added to G has degree 1, the graph

G′−E has no copy of T . We deduce that RemT (G′) ≤ RemT0(G). We now claim that removing from

G′ less than RemT0(G) edges cannot make it T -free. Indeed, take any set E′ of less than RemT0(G)

edges and consider G′ − E′. Since |E′| < RemT0(G) we know that G′ − E′ still has a copy of T0 on

the original vertices of G. Also, since |E′| < RemT0(G) ≤
(
n
2

)
, in the graph G′ − E′ every vertex of

G still touches at least |V (T)| of the new edges that were connected to it. Hence we can extend the

copy of T0 into a copy of T . We have thus completed the proof that RemT0(G) = RemT (G′).

3 Proof of Theorem 1

We will need the following lemma, which is implicit in [23]. For completeness, we include its proof.

For an n-vertex graph G, we use d(G) to denote the average degree of G, namely d(G) = 2e(G)/n.

Lemma 3.1. For every t ∈ [0, 1] and for every graph G, there is a vertex u ∈ V (G) such that∑
v∈N(u)

(
1− t · d(G)

d(v)

)
≥ (1− t) · d(G).

Proof. Note that
∑

u∈V (G)

∑
v∈N(u)

1
d(v) =

∑
v∈V (G) 1 = n. By using this we get∑

u∈V (G)

∑
v∈N(u)

(
1− t · d(G)

d(v)

)
=

∑
u∈V (G)

d(u)− t · d(G) ·
∑

u∈V (G)

∑
v∈N(u)

1

d(v)

4Note that such a tree T must satisfy |T | = k ≥ 4, and so the NP-hardness of finding a (k − 1)-factor applies.
5Obviously, every (non-star) tree on 4 vertices has diameter at most 4.

5

= n · d(G)− t · d(G) · n
= n · (1− t) · d(G).

By averaging, there must be some u ∈ V (G) for which the assertion holds. �

We will also need the following lemma.

Lemma 3.2. Let p ≥ 1, ` ≥ 2, and γ1 ≤ · · · ≤ γp be nonnegative integers and let s1, . . . , s` be integers

satisfying si ≥ γp + 1 for every 1 ≤ i ≤ ` and s1 + · · ·+ s` ≥
∑p

i=1 (1 + γi) + (`− 1)γp−1, where γp−1
is interpreted as 0 if p = 1. Then there is a partition [p] = J1 ∪ · · · ∪J` such that si ≥

∑
j∈Ji (1 + γj)

for every 1 ≤ i ≤ `.

Proof. We proceed by induction on `. It will be convenient to prove the base case and the induction

step simultaneously. Let 1 ≤ q ≤ p be the minimal integer satisfying s` ≥
∑p

i=q (1 + γi). Note that

q is well-defined since by assumption we have s` ≥ 1 + γp. If q = 1 then we are done, as we can

choose J` = [p], and Ji = ∅ for all 1 ≤ i ≤ `− 1. So suppose that q > 1. By the minimality of q we

have s` <
∑p

i=q−1 (1 + γi) and hence s` ≤
∑p

i=q (1 + γi) + γq−1. Therefore,

s1 + · · ·+ s`−1 ≥
p∑
i=1

(1 + γi) + (`− 1)γp−1 − s` ≥
p∑
i=1

(1 + γi) + (`− 1)γp−1 −
p∑
i=q

(1 + γi)− γq−1

≥
q−1∑
i=1

(1 + γi) + (`− 2)γp−1 ≥
q−1∑
i=1

(1 + γi) + (`− 2)γq−2.

For ` = 2 the above gives s1 ≥
∑q−1

i=1 (1 + γi), so the assertion of the lemma holds with J1 =

{1, . . . , q − 1} and J2 = {q, . . . , p}.
For ` ≥ 3, we have s1+ · · ·+s`−1 ≥

∑q−1
i=1 (1 + γi)+(`−2)γq−2, allowing us to apply the induction

hypothesis for `−1, γ1, . . . , γq−1 and s1, . . . , s`−1. We thus obtain a partition [q−1] = J1∪· · ·∪J`−1
such that si ≥

∑
j∈Ji (1 + γj) for each 1 ≤ i ≤ `−1. Setting J` = {q, . . . , p} completes the proof. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Fix a tree T on k vertices of diameter at most 4 which is not a star. It is

easy to see that there is a vertex6 a ∈ V (T) such that dT (a) ≥ 2 and such that any vertex of T is at

distance at most 2 from a. Let b1, . . . , bp be the neighbors of a in T . For each 1 ≤ i ≤ p, let Ci be the

set of neighbors of bi excluding a, and put γi = |Ci|. Note that V (T) = {a} ∪ {b1, . . . , bp} ∪
⋃p
i=1Ci

(where the union is disjoint) and hence

p∑
i=1

γi = k − p− 1, (1)

and that all vertices in
⋃p
i=1Ci are leaves of T . Moreover, since T is not a star there must be some

1 ≤ i ≤ p for which γi > 0. Suppose, without loss of generality, that γ1 ≤ · · · ≤ γp, and so γp ≥ 1.

6A middle vertex of a longest path in T , whose length is at most 4, satisfies the required properties.

6

Suppose now that G is an n-vertex T -free graph with at least k−2
2 · n edges. We need to prove

that G must be a union of cliques of size k− 1. It suffices to show that if G is connected then it is a

clique7 of size k − 1. Apply Lemma 3.1 to G with t = k−p−1
k−2 to get a vertex u ∈ V (G) with

∑
v∈N(u)

(
1− k − p− 1

d(v)

)
≥ p− 1. (2)

Above we used our assumption that d(G) ≥ k − 2. Let W be the set of vertices v ∈ N(u) with

d(v) ≥ k − p. If d(v) ≤ k − p− 1 then v has a non-positive contribution to the sum in (2). Hence,∑
v∈W

(
1− k − p− 1

d(v)

)
≥ p− 1. (3)

For an ordering σ = (v1, . . . , vm) of the vertices in W , let I = Iσ be the set of all vi (1 ≤ i ≤ m)

such that vi has at least k − p − 1 neighbors which are not in {u, v1, . . . , vi}. We claim that if

|I| ≥ p then G contains a copy of T , thus contradicting our assumption. Indeed, assuming |I| ≥ p

and fixing p vertices vi1 , . . . , vip ∈ I with 1 ≤ i1 < · · · < ip ≤ m, we can embed T in G as

follows. We let u play the role of a, and let vij play the role of bj for each 1 ≤ j ≤ p. We then

choose a set S1 ⊆ N(vi1) \
(
{u, v1, . . . , vi1} ∪ {vi2 , . . . , vip}

)
of size γ1 to play the role of C1; a set

S2 ⊆ N(vi2) \
(
{u, v1, . . . , vi2} ∪ {vi3 , . . . , vip} ∪ S1

)
of size γ2 to play the role of C2, and so on; at

the last step we choose a set Sp ⊆ N(vip) \ ({u, v1, . . . , vip} ∪ S1 ∪ · · · ∪ Sp−1) of size γp to play the

role of Cp. Let us explain why the choice of Sj is possible for each 1 ≤ j ≤ p. If γj = 0 then the

assertion is trivial. So suppose that γj ≥ 1. Then γj+1, . . . , γp ≥ 1 as well. We have∣∣{vij+1 , . . . , vip} ∪ S1 ∪ · · · ∪ Sj−1
∣∣ = p− j + γ1 + · · ·+ γj−1 = p− j + k − p− 1− (γj + · · ·+ γp)

≤ k − p− 1− γj ,

where the second equality uses (1). By the definition of I, we know that vij has at least k − p − 1

neighbors not in {u, v1, . . . , vij}, hence we can always choose a set

Sj ⊆ N(vij) \ ({u, v1, . . . , vij} ∪ {vij+1 , . . . , vip} ∪ S1 ∪ · · · ∪ Sj−1)

of size γj . This gives an embedding of T into G.

We have thus shown that |Iσ| < p for every ordering σ of W . Now choose such an ordering σ at

random. We claim that for every v ∈W ,

P[v ∈ Iσ] ≥ 1− k − p− 1

d(v)
,

with equality only if N(v) ⊆ {u} ∪ W . So fix any v ∈ W and set d1 = |N(v) ∩ W | and d2 =

|N(v) \ ({u} ∪W)|. Then d1 + d2 = d(v) − 1. If d2 ≥ k − p − 1 then P[v ∈ I] = 1 > 1 − k−p−1
d(v) , as

required. Suppose now that d2 < k−p−1. For v to be in Iσ, we need that among the d1 + 1 vertices

7Indeed, if G has r ≥ 2 connected components of sizes n1, . . . , nr, then some component i has at least k−2
2
·ni edges,

and is T -free. Thus, by the claim for connected graphs, component i is a clique of size k − 1. The assertion that G is

a union of cliques now follows by induction.

7

in {v} ∪ (N(v) ∩W), the random permutation would place at least k − p − 1 − d2 vertices after v.

The probability for this is

d1 + d2 + 1− (k − p− 1)

d1 + 1
=
d(v)− (k − p− 1)

d1 + 1
≥ 1− k − p− 1

d(v)
,

with equality only if d1 + 1 = d(v), namely if all neighbors of v are inside {u} ∪W . Here we use the

fact that d(v) ≥ k − p, as v ∈W . This proves our claim. By linearity of expectation, we get

E[|I|] ≥
∑
v∈W

(
1− k − p− 1

d(v)

)
, (4)

with equality only if N(v) ⊆ {u} ∪W for every v ∈ W . By combining (4) with (3), we see that

E[|I|] ≥ p − 1. On the other hand, we saw that |I| < p. This means that |I| is a constant random

variable, attaining the value p− 1 with probability 1. In particular, we have equality in (4). Hence,

N(v) ⊆ {u} ∪W for every v ∈W .

We claim that G[W] is the disjoint union of cliques. If not, then there are distinct vertices

v1, v2, v3 ∈W such that {v1, v2}, {v2, v3} ∈ E(G) but {v1, v3} /∈ E(G). Fix x1, . . . , xk−p−3 ∈ N(v2) \
{u, v1, v3}; these exist because d(v2) ≥ k−p by the definition of W . Also, x1, . . . , xk−p−3 ∈W . Let σ

be an ordering of W ending in v2, v1, v3, x1, . . . , xk−p−3, and let τ be the ordering obtained from σ by

swapping v1, v2; namely, τ ends in v1, v2, v3, x1, . . . , xk−p−3. It is clear that Iσ\{v1, v2} = Iτ \{v1, v2}.
Also, v2 ∈ Iσ, as it has k− p− 1 neighbors following it in σ, but v2 /∈ Iτ because it has only k− p− 2

neighbors following it in τ . Moreover, v1 /∈ Iσ, Iτ because v1 is not adjacent to v3. It follows that

Iτ = Iσ \ {v2}, contradicting the fact that |I| is a constant random variable.

We have thus shown that G[W] is the disjoint union of cliques. Denote these cliques by S1, . . . , S`.

We now show that ` = 1 and |W | = k− 2. We have |S1|, . . . , |S`| ≥ k− p = γ1 + · · ·+ γp + 1 ≥ γp + 1

by the definition of W and by the fact that N(v) ⊆ {u} ∪W for every v ∈W . Also, since G[W] is a

disjoint union of cliques, for every σ we have

p− 1 = |Iσ| =
∑̀
i=1

(
|Si| − (k − p− 1)

)
=
∑̀
i=1

|Si| − `(k − p− 1),

and hence

|W | = |S1|+ · · ·+ |S`| = `(k − p− 1) + p− 1 = `(γ1 + · · ·+ γp) + p− 1. (5)

Suppose by contradiction that ` ≥ 2. Recall that γp ≥ 1. By (5), we have

|S1|+ · · ·+ |S`| ≥
p∑
i=1

(1 + γi)− 1 + (`− 1) · (γp−1 + γp) ≥
p∑
i=1

(1 + γi) + (`− 1)γp−1.

So we can apply Lemma 3.2 with si = |Si| (1 ≤ i ≤ `) to obtain a partition [p] = J1 ∪ · · · ∪ J` such

that |Si| ≥
∑

j∈Ji (1 + γj). But this means that we can embed T into G by mapping a to u and⋃
j∈Ji ({bj} ∪ Cj) to Si for every 1 ≤ i ≤ `. This is a contradiction, and hence ` = 1. This means

that W is a clique. Moreover, plugging ` = 1 into (5) gives |W | = k− 2. Now, W ∪{u} is a clique of

size k− 1. This means that G has no vertices other than W ∪ {u}, as otherwise, by the connectivity

of G, there would be a vertex outside W ∪ {u} adjacent to a vertex in W ∪ {u}, and then we could

embed T into G by using this vertex and W ∪ {u} (we could in fact embed any k-vertex tree in this

case). So G is indeed a clique of size k − 1, completing the proof. �

8

4 A Polynomial Algorithm for Star Forests

In this section we prove the positive direction of Theorem 5, which we rephrase as follows.

Theorem 6. For every star forest H, there is a polynomial-time algorithm that computes ex(G,H).

Let us introduce some notation that we will use throughout the section. Let H be a star forest.

We may assume that H has no isolated vertices; indeed, if we let K be the graph obtained from H by

deleting all isolated vertices, then for every graph G on at least v(H) vertices, we have ex(G,H) =

ex(G,K). Let S1, . . . , Sr denote the components of H, let ti be the number of leaves in Si, and

assume that t1 ≥ · · · ≥ tr ≥ 1. For each 1 ≤ i ≤ r, we denote by Hi the star forest whose connected

components are S1, . . . , Si (so Hr = H). It will be convenient to denote the empty graph by H0. For

a graph G, we use ∆(G) to denote the maximum degree of G.

Lemma 4.1. Let F be an H-free graph, and let 0 ≤ i ≤ r − 1 be the largest integer for which F

contains a copy of Hi. Then F contains at most (∆(F) + 1)v(H) vertices of degree at least ti+1.

Proof. Suppose first that r = 1, and so i = 0. Then H = S1 = K1,t1 , and F contains no vertices of

degree at least t1, because F is H-free. Suppose now that r ≥ 2. By assumption, F contains a copy

of Hi. Let X be the vertex-set of such a copy. Let y1, . . . , y` be the vertices in V (F) \X which have

degree at least ti+1 in F . Since F is Hi+1-free, each yi must have a neighbour in X. By averaging,

there is a vertex x ∈ X adjacent to at least `/|X| of the vertices y1, . . . , y`. Hence, ` ≤ |X| ·∆(F). So

the number of vertices of F of degree at least ti+1 is at most |X|+` = v(Hi)+` ≤ (∆(F)+1)v(H). �

In the following lemma, we prove Theorem 6 in the case that the input graph has bounded

maximum degree.

Lemma 4.2. For each constant C > 0 there is an algorithm which runs in time nO(v(H)·C) and

computes ex(G,H) for input graphs G with ∆(G) ≤ C.

Proof. The algorithm works as follows: Go over all sets U ⊆ V (G) of size at most (C + 1)v(H).

For each such U , go over all (spanning) subgraphs F ′ of G in which V (G) \U is an independent set,

and do the following:

1. Check whether F ′ is H-free. If not, continue to the next graph.

2. Find the maximum 0 ≤ i ≤ r − 1 such that Hi is a subgraph of F ′.

3. Check whether dF ′(w) ≤ ti+1 − 1 for every w ∈ V (G) \ U . If not, continue to the next graph.

4. Let f : V (G) \ U → N be the function f(w) = ti+1 − 1 − dF ′(w) ≥ 0. Use Theorem 3 to

compute the maximum number of edges m in a (spanning) subgraph F ′′ of G[V (G) \ U] with

the property that dF ′′(w) ≤ f(w) for every w ∈ V (G) \ U . Define M(U,F ′) := e(F ′) +m.

Output the maximum of M(U,F ′) over all U,F ′ as above (which pass the tests in Items 1 and 3).

Before proving the correctness of the above algorithm, let us consider its running time. It is easy

to see that for each choice of U,F ′ (as described above), we can execute steps 1-4 in time nO(v(H)).

Also, the number of choices of U is
∑(C+1)v(H)

i=0

(
n
i

)
≤ nO(v(H)·C), and for each choice of U there are

9

only O(1) choices for F ′, because |U | = O(1), ∆(G) ≤ C = O(1), and we require that V (G) \ U is

an independent set in F ′. So the running time of the algorithm is indeed nO(v(H)·C), as required.

Let us now show that the above algorithm correctly computes ex(G,H). First we show that

for every U,F ′ which pass the tests in Items 1 and 3, it holds that M(U,F ′) ≤ ex(G,H). So let

U be a subset of V (G) of size at most (C + 1)v(H) and let F ′ be an H-free subgraph of G such

that F ′[V (G) \ U] is an independent set. Let 0 ≤ i ≤ r − 1 be the largest integer such that Hi

is a subgraph of F ′ (as in Item 2). Suppose that dF ′(w) ≤ ti+1 − 1 for every w ∈ V (G) \ U , and

set f(w) = ti+1 − 1 − dF ′(w). Let F ′′ be a subgraph of G[V (G) \ U] satisfying dF ′′(w) ≤ f(w)

for all w ∈ V (G) \ U , and having the maximum number of edges among all subgraphs with this

property. Then M(U,F ′) = e(F ′) + e(F ′′). Let F be the union of F ′ and F ′′. Then dF (w) =

dF ′(w) +dF ′′(w) ≤ ti+1− 1 for each w ∈ V (G) \U . This implies that for every 1 ≤ j ≤ i+ 1, there is

no copy of K1,tj in F whose center is in V (G) \U . Hence, every copy of Hi+1 in F is also contained

in F ′. But F ′ is Hi+1-free by our choice of i, so F is Hi+1-free and hence also H-free. So we see

that M(U,F ′) = e(F ′) + e(F ′′) = e(F) ≤ ex(G,H). This shows that the value outputted by the

algorithm is at most ex(G,H).

For the other direction, let F be an H-free subgraph of G such that e(F) = ex(G,H). Let

0 ≤ i ≤ r − 1 be the largest integer for which Hi is a subgraph of F , and let U be the set of all

vertices v ∈ V (G) satisfying dF (v) ≥ ti+1. By Lemma 4.1 and the assumption ∆(G) ≤ C, we have

that |U | ≤ (∆(F) + 1)v(H) ≤ (C + 1)v(H). Let F ′ be the subgraph of F obtained by deleting

all edges of F which are contained in V (G) \ U . Clearly, F ′ ⊆ F is Hi+1-free, and hence H-free.

Also, dF ′(w) ≤ dF (w) ≤ ti+1 − 1 for every w ∈ V (G) \ U . By the choice of i, F contains a copy

of Hi. Also, for each 1 ≤ j ≤ i, there is no copy of K1,tj in F whose center is in V (G) \ U .

Therefore, this copy of Hi is also contained in F ′. It follows that i is also the largest integer for

which F ′ contains a copy of Hi. Hence, the pair (U,F ′) passes the tests in Items 1 and 3. Now,

setting f(w) = ti+1 − 1 − dF ′(w) for each w ∈ V (G) \ U , we see that F ′′ := F [V (G) \ U] is a

subgraph of G[V (G) \ U] satisfying dF ′′(w) ≤ f(w) for each w ∈ V (G) \ U . This implies that

M(U,F ′) ≥ e(F ′) + e(F ′′) = e(F) = ex(G,H). So we see that the value outputted by the algorithm

is at least ex(G,H). This completes the proof. �

To handle input graphs with large maximum degree, we need the following lemma. Let H ′ denote

the star forest with components S2, . . . , Sr (i.e. H ′ = H − S1).

Lemma 4.3. There is D = D(H) such that for every graph G with ∆(G) ≥ D and for every H-free

spanning subgraph F of G satisfying e(F) = ex(G,H) and ∆(F) ≥ t1, there is a vertex v ∈ V (G)

such that F − v is H ′-free.

Proof. We prove the proposition with

D = D(H) := d(d+ 1)v(H) + d,

where d := v(H)−1 = v(H ′)+t1. Let w ∈ V (G) be a vertex of maximum degree, i.e., dG(w) = ∆(G).

By assumption, dG(w) ≥ D. Let F be anH-free (spanning) subgraph ofG satisfying e(F) = ex(G,H)

and ∆(F) ≥ t1. First we show that ∆(F) ≥ d. Suppose otherwise. Let 1 ≤ i ≤ r − 1 be the largest

integer for which Hi is a subgraph of F (note that i is well-defined since by assumption we have

10

H1 = S1 ⊆ F as ∆(F) ≥ t1). Let

U = {u ∈ V (G) \ {w} : dF (u) ≥ ti+1}.

By Lemma 4.1 we have |U | ≤ (∆(F)+1)v(H) < (d+1)v(H). Now let F ′ be the graph obtained from

F by deleting all edges incident to vertices of U , and then adding all edges of G incident to w. Then

e(F ′) > e(F)− d|U |+ (dG(w)− d) > e(F)− d(d+ 1)v(H) + (D − d) = e(F),

where in the first two inequalities we used the assumptions ∆(F) < d and dG(w) ≥ D, and in the

equality we used our choice of D. As e(F ′) > e(F) = ex(G,H), F ′ must contain a copy of H.

Note, however, that if u ∈ V (G) satisfies dF ′(u) ≥ ti+1 then either u = w, or dF ′(u) = ti+1 and

wu ∈ E(F ′). Hence, every copy of K1,ti+1 in F ′ must contain w, so F ′ does not contain two disjoint

copies of K1,ti+1 . But this means that F ′ is H-free, because H contains the disjoint union of K1,ti

and K1,ti+1 and ti ≥ ti+1. This contradiction shows that ∆(F) ≥ d, as claimed.

Let v ∈ V (F) with dF (v) ≥ d. Suppose by contradiction that F − v contains a copy of H ′. As

dF (v) ≥ d = v(H ′) + t1, we can find t1 neighbors of v which do no participate in this copy of H ′.

This gives a copy of H in F , a contradiction. This completes the proof of the lemma. �

Proof of Theorem 6. The proof is by induction on r. The base case r = 1 follows from Theorem

3. Suppose now that r ≥ 2. Let D = D(H) be the constant given by Lemma 4.3. The algorithm

computes ∆(G) and proceeds as follows:

� If ∆(G) < D then compute ex(G,H) using the algorithm given by Lemma 4.2.

� If ∆(G) ≥ D, compute M1 := ex(G,K1,t1) (namely, the maximum number of edges in a sub-

graph ofG with maximum degree at most t1−1), andM2 := maxu∈V (G) [dG(u) + ex(G− u,H ′)].
Output M := max{M1,M2}. Note that M1 can be computed in polynomial time by Theorem

3, and M2 can be computed in polynomial time by the induction hypothesis for r − 1.

Let us show that the above algorithm correctly computes ex(G,H). In the first item this is clearly

the case. So suppose that ∆(G) ≥ D. Our goal is to show that ex(G,H) = M . As every K1,t1-free

graph is also H-free, it follows that ex(G,H) ≥ M1. Now, for each u ∈ V (G), let F ′u be an H ′-free

subgraph of G−u with e(F ′u) = ex(G−u,H ′). Let Fu be the subgraph of G consisting of F ′u and all

edges of G touching u. So e(Fu) = dG(u) + ex(G− u,H ′). Then Fu is H-free, because F ′u = Fu − u
is H ′-free. Hence, ex(G,H) ≥ e(Fu). This shows that ex(G,H) ≥ maxu∈V (G) e(Fu) = M2. We

conclude that ex(G,H) ≥ max{M1,M2} = M .

Next we show that M ≥ ex(G,H). Let F be a spanning H-free subgraph of G with e(F) =

ex(G,H). If ∆(F) ≤ t1 − 1 then e(F) ≤ ex(G,K1,t1) = M1 ≤ M . Suppose now that ∆(F) ≥ t1.

Then by Lemma 4.3, there is v ∈ V (G) such that F − v is H ′-free. This implies that e(F) ≤
dG(v) + ex(G− v,H ′) ≤M2 ≤M . We conclude that ex(G,H) = e(F) ≤M , as required. �

5 Hardness for Forests

In this section we prove the negative direction of Theorem 5, which we rephrase as follows.

11

Theorem 7. Let H be a forest one of whose connected components is not a star. Then computing

ex(G,H) is NP-hard.

For a graph G and an integer k, denote by kG the disjoint union of k copies of G.

Lemma 5.1. Let C be a connected graph and k ≥ 2. Then for every graph G, it holds that

ex(kG, kC) = ex((k − 1)G, kC) + ex(G,C).

Proof. Denote by G1, . . . , Gk the disjoint copies of G in kG. If we destroy all copies of kC in

G1 ∪ · · · ∪ Gk−1 and all copies of C in Gk, then the resulting graph is kC-free (as C is connected).

Hence ex(kG, kC) ≥ ex((k−1)G, kC)+ex(G,C). In the other direction, let F be a kC-free subgraph

of kG satisfying e(F) = ex(kG, kC). Since F is kC-free, there must be some 1 ≤ i ≤ k for which

F [V (Gi)] is C-free. Assume without loss of generality that i = k, namely that F ′′ := F [V (Gk)] is

C-free. Since F ′ := F [V (G1) ∪ · · · ∪ V (Gk−1)] is clearly kC-free, we have

ex(kG, kC) = e(F) = e(F ′) + e(F ′′) ≤ ex((k − 1)G, kC) + ex(G,C),

as required. �

It will be convenient to first prove Theorem 7 in the case that all connected components of H are

isomorphic, namely that H = kT for some tree T and integer k ≥ 1.

Lemma 5.2. For every tree T which is not a star, and for every integer k ≥ 1, computing ex(G, kT)

is NP-hard.

Proof. Lemma 5.1 shows that if we could compute ex(G,H) = ex(G, kT) in polynomial time for

every graph G, then we could also compute ex(G,T) in polynomial time for every graph G, as

ex(G,T) = ex(kG, kT)− ex((k − 1)G, kT). But computing ex(G,T) is NP-hard by Theorem 2. �

Proof of Theorem 7. Let T1, . . . , T` be the connected components of H. Suppose, without loss

of generality, that T1 is not a star and has the largest number of edges among the Ti’s which are

not stars. By permuting the indices, we can also assume that T1, . . . , Tk are isomorphic to T1, while

Tk+1, . . . , T` are not isomorphic to T1. Observe that T1 is not a subgraph of Ti for any k+ 1 ≤ i ≤ `,
because either Ti is a star (and hence cannot contain T1), or e(Ti) ≤ e(T1) and Ti, T1 are not

isomorphic.

We reduce the problem of computing ex(G, kT1) to the problem of computing ex(G,H); the former

problem is NP-hard by Lemma 5.2. Let G be an input graph with n vertices. Let G′ be the graph

obtained from G by adding to it, for each k+ 1 ≤ i ≤ `, a collection of n2 disjoint copies of Ti (which

are also disjoint from G). We show that

ex(G′, H) = e(G′)− e(G) + ex(G, kT1),

which will prove the correctness of the reduction. First, observe that if we destroy all copies of

kT1 in G′[V (G)] then the resulting subgraph of G′ will be kT1-free (as T1 is connected and none

of Tk+1, . . . , T` contain T1 as a subgraph). Hence, this subgraph of G′ is H-free. This shows that

ex(G′, H) ≥ e(G′)− e(G) + ex(G, kT1). Note that in particular ex(G′, H) ≥ e(G′)−
(
n
2

)
.

12

In the other direction, let F ′ be an H-free subgraph of G′ with e(F ′) = ex(G′, H). Since e(F ′) ≥
e(G′) −

(
n
2

)
, F ′ must contain (at least) one of the n2 disjoint copies of Ti added to G′ for each

k + 1 ≤ i ≤ `. But then F ′[V (G)] must be kT1-free, as otherwise F ′ would contain a copy of H.

Hence ex(G′, H) = e(F ′) ≤ e(G′)− e(G) + ex(G, kT1), as required. This completes the proof. �

6 Concluding Remarks and Open Problems

As we discussed in Section 1, an important special case of Yannakakis’s problem which is still open,

asks to characterize the connected graphs H for which computing RemH(G) is NP-hard. Combining

the result of [1] (who proved that RemH(G) is NP-hard for every non-bipartite H) and Theorem 2,

it remains to handle the case of bipartite graphs H which are not trees. In our proof of Theorem 2

in Section 2, we actually showed that if T is a tree with diameter at most 4 which is not a star, then

it is NP-hard to tell whether an n-vertex graph G satisfies RemT (G) = |E(G)|−ex(n, T). Namely, it

is NP-hard to decide if G contains an extremal T -free graph. It is thus natural to try and extend our

approach in order to prove that computing RemH(G) is NP-hard for every non-star bipartite graph

H. This raises the question of the complexity of deciding whether RemH(G) = |E(G)| − ex(n,H)

for other bipartite graphs H.

Before addressing the case of bipartite H, we first observe that when H is the triangle K3, we

can in fact decide in polynomial time whether RemK3(G) = |E(G)| − ex(n,K3). Indeed, Mantel’s

theorem [15] states that ex(n,K3) = bn2

4 c and that the only graph meeting this bound is the balanced

complete bipartite graph Kbn
2
c,dn

2
e. Hence, deciding if RemK3(G) = |E(G)| − ex(n,K3) is equivalent

to deciding if G contains Kbn
2
c,dn

2
e. To see why this problem is solvable in polynomial time, suppose

that G’s complement graph has m connected components of sizes a1, . . . , am. It is easy to see that

G contains Kbn
2
c,dn

2
e if and only if there is S ⊆ [m] so that

∑
i∈S ai = bn2 c. But this latter task can

be easily solved in polynomial time using dynamic programming. A similar argument shows that if

H is a non-bipartite edge-critical8 graph then deciding whether RemH(G) = |E(G)| − ex(n,H) can

be done in polynomial time. This follows from the fact that for such graphs H, the only n-vertex

H-free graph with ex(n,H) edges is the Turán graph with χ(H)− 1 parts, see [15].

Since the hardness of computing RemH(G) is still open only for bipartite H, it is more relevant

to our investigation here to determine whether it is NP-hard to tell if RemH(G) = |E(G)|− ex(n,H)

for such H. Unfortunately, as opposed to the cases when H is a tree or a graph of chromatic number

at least 3, we have a very poor understating of ex(n,H), let alone of the extremal graphs meeting

this bound, see [15] for more details. The only case which is relatively well-understood is when H is

the 4-cycle C4. In this case Füredi [14] proved that if q > 13 is a prime power and n = q2 + q + 1,

then ex(n,C4) = 1
2q(q + 1)2. He further proved (see [15]) that there is a unique graph meeting this

bound (the so called polarity graph). It would be very interesting to decide if these facts can be used

to show that deciding if RemC4(G) = |E(G)|−ex(n,C4) is NP-hard (at least when n is as in Füredi’s

theorem). Again, this is equivalent to deciding whether an input graph on n = q2 + q + 1 vertices

contains a copy of the polarity graph.

Finally, note that the algorithm described in Lemma 4.2 works in time O(nB) for a somewhat

large B = B(H), i.e., B = Θ(v(H)4). It may be interesting to improve this dependence of the

8A graph is called edge-critical if it contains an edge whose deletion decreases the chromatic number.

13

exponent on H.

References

[1] N. Alon, A. Shapira and B. Sudakov, Additive approximation for edge-deletion problems, Ann.

Math. 170 (2009), 371–411.

[2] B. Andrásfai, P. Erdős and V. T. Sós, On the connection between chromatic number, maximal

clique and minimal degree of a graph, Discrete Math. 8 (1974), 205-–218

[3] T. Asano and A. Hirata, Edge-deletion and edge-contraction problems, in Proc. of STOC 1982,

245–254.

[4] T. Asano, An application of duality to edge-deletion problems, SIAM J. Comput. 16 (1987),

312—331.

[5] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary properties,

Inf. Process. Lett. 58 (1996), 171—176.

[6] F. Chung and R. Graham, Erdős on Graphs: His Legacy of Unsolved Problems, AK

Peters, Natick, MA, 1999.

[7] J. Chuzhoy, S. Mahabadi and Z. Tan, Towards better approximation of graph crossing number,

Proc. of FOCS 2020, 73–84.

[8] C. Crespelle, P. G. Drange, F. V. Fomin and P. A. Golovach, A survey of parameterized algo-

rithms and the complexity of edge modification, Arxiv paper 2001.06867.

[9] M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk and I. Schlotter, Parameterized complexity of

Eulerian deletion problems, Algorithmica 68 (2014), 41–61.

[10] P. Erdős, Some problems in graph theory, Theory of Graphs and Its Applications (1965), 29–36.

[11] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar.

10 (1959), 337–356.

[12] A. Fritz, M. Hellmuth, P. F. Stadler and N. Wieseke, Cograph editing: merging modules is

equivalent to editing P4s, Art Discret. Appl. Math. 3 (2020).

[13] F. V. Fomin, P. A. Golovach and D. M. Thilikos, On the parameterized complexity of graph

modification to first-order logic properties, Theory Comput. Syst. 64 (2020), 251–271.

[14] Z. Füredi, On the number of edges of quadrilateral-free graphs, J. Combin. Theory Ser. B 68

(1996), 1–6.

[15] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems,

In Erds̋ centennial, volume 25 of Bolyai Soc. Math. Stud., pages 169–264. János Bolyai Math.

Soc., Budapest, 2013.

14

[16] P. A. Golovach, Editing to a graph of given degreess, Theor. Comput. Sci. 591 (2015), 72–84.

[17] D. G. Kirkpatrick and P. Hell, On the completeness of a generalized matching problem. In

Proceedings of the tenth annual ACM Symposium on Theory of Computing, pp. 240-245, 1978.

[18] J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties is NP-

complete, J. Comput. Syst. Sci. 20 (1980), 219–230.

[19] D. Lokshtanov, F. Mancini and C. Papadopoulos, Characterizing and computing minimal co-

graph completions, Discret. Appl. Math. 158 (2010), 755–764.

[20] F. Mancini, Graph modification problems related to graph classes, PhD Thesis, University of

Bergen, 2008.

[21] D. Marx and R. B. Sandeep, Incompressibility of H-free edge modification problems, J. Comput.

Syst. Sci. 125 (2022), 25–58.

[22] L. Mathieson and S. Szeider, Editing graphs to satisfy degree constraints: A parameterized

approach. Journal of Computer and System Sciences, 78(1), 179–191, 2012.

[23] A. McLennan, The Erdős-Sós Conjecture for trees of diameter four, J. Graph Theory 49 (2005),

291–301.

[24] M. Yannakakis, Node- and edge-deletion NP-complete problems, Proc. of STOC 1978, 253–264.

[25] M. Yannakakis, Edge-deletion problems, SIAM J. Comput. 10 (1981), 297–309.

[26] W.T. Tutte, A short proof of the factor theorem for finite graphs. Canadian Journal of mathe-

matics, 6, pp. 347-352, 1954.

A Tutte’s reduction

Proof of Theorem 3. Let G be a graph and let f : V (G)→ {0, . . . , v(G)}. By replacing f(v) with

min{d(v), f(v)}, we can assume that f(v) ≤ d(v). Denote by m the maximum number of edges in

a spanning subgraph F of G such that dF (v) ≤ f(v) for every v ∈ V (G). Construct a graph G′ as

follows. For each e = xy ∈ E(G), add two new vertices ex, ey and connect them with an edge. Next,

for each x ∈ V (G), add d(x)− f(x) new vertices x1, . . . , xd(x)−f(x) and connect them to ex for every

edge e ∈ E(G) with x ∈ e. The resulting graph is G′. Note that the edge-set {exey : e = xy ∈ E(G)}
forms a matching in G′. We claim that ν(G′) = m+

∑
x∈V (G)(d(x)− f(x)), where ν(G′) is the size

of a largest matching in G′.

First, let F be a spanning subgraph of G with m edges and with dF (v) ≤ f(v) for every v ∈ V (G).

Construct a matching M of G′ as follows. For each e = xy ∈ E(F), add the edge exey ∈ E(G′) to

M . Next, for each x ∈ V (G), let S(x) be the set of edges e ∈ E(G) \ E(F) which touch x. Then

|S(x)| ≥ d(x)− f(x) because dF (x) ≤ f(x). Also, for each e ∈ S(x), ex is not covered by M . Take a

matching between the sets {x1, . . . , xd(x)−f(x)} and {ex : e ∈ S(x)} which saturates the former (this

is possible as |S(x)| ≥ d(x) − f(x)), and add this matching to M . The resulting matching M has

size m+
∑

x∈V (G)(d(x)− f(x)).

15

In the other direction, let M be a maximum matching in G′. For each x ∈ V (G) and 1 ≤ i ≤
d(x)− f(x), if xi is not covered by M then take an arbitrary edge e = xy ∈ E(G) containing x and

replace M with M − exey + exxi. This retains M a matching and does not decrease its size. Hence,

we can assume that xi is covered by M for each x ∈ V (G) and 1 ≤ i ≤ d(x) − f(x). Let F be

the subgraph of G consisting of all edges e = xy ∈ E(G) such that exey ∈ M . For each x ∈ V (G),

consider the set E(x) = {ex : e ∈ E(G), x ∈ e}. In M there are d(x) − f(x) edges which connect a

vertex from E(x) with a vertex from {x1, . . . , xd(x)−f(x)}. Hence, at most f(x) edges in M connect

a vertex in E(x) with a vertex in E(y) for some other y. So dF (x) ≤ f(x). This also shows that

|E(F)| = |M | −
∑

x∈V (G)(d(x)− f(x)). This completes the proof. �

16

	Introduction
	Background on graph modification problems
	Background on the Erdos-Sós conjecture
	Our main results
	Comparison to previous results

	Deriving Theorem 2 from Theorem 1
	Proof of Theorem 1
	A Polynomial Algorithm for Star Forests
	Hardness for Forests
	Concluding Remarks and Open Problems
	Tutte's reduction

