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Abstract

A fundamental result of Mader from 1972 asserts that a graph of high average degree contains

a highly connected subgraph with roughly the same average degree. We prove a lemma showing

that one can strengthen Mader’s result by replacing the notion of high connectivity by the notion

of vertex expansion.

Another well known result in graph theory states that for every integer t there is a smallest real

c(t), such that every n-vertex graph with c(t)n edges contains a Kt-minor. Fiorini, Joret, Theis

and Wood asked whether every n-vertex graph G that has at least (c(t)+ ε)n edges, must contain a

Kt-minor of order at most C(ε) log n. We use our extension of Mader’s theorem to prove that such

a graph G must contain a Kt-minor of order at most C(ε) log n log log n. Known constructions of

graphs with high girth show that this result is tight up to the log log n factor.

1 Introduction

1.1 Graph minors and the main result

All graphs considered here are finite and have no loops or parallel edges. The order of a graph is the

number of its vertices. A graph H is a minor of a graph G if H can be obtained from G by a sequence

of edge deletions, vertex deletions and edge contractions. In this case we say that G has an H-minor.

Let Kt denote the complete graph on t vertices. Since we will be mainly interested in Kt-minors it will

be easier for us to use the following equivalent definition of a Kt-minor. A graph G has a Kt-minor

if G contains t vertex disjoint connected subgraphs S1, . . . , St and
(
t
2

)
paths (Pi,j)1≤i<j≤t, such that

Pi,j connects Si to Sj , each path Pi,j is disjoint from all sets Sk with k 6= i, j, and the paths Pi,j are

internally vertex disjoint, that is, Pi,j can only intersect with Pi,j′ or Pi′,j at its endpoint vertices.

This Kt-minor is called topological if each subgraph Si consists of a single vertex.

The notion of minor is undoubtedly one of the most well studied topics in graph theory. A central

result in this area states that a linear number of edges is enough to force the appearance of a Kt-minor.

Formally, for every integer t ≥ 3 define

c(t) = min{c : d(G) ≥ c implies that G has a Kt-minor} , (1)

where d(G) = |E(G)|/|V (G)|. Mader [16] has shown that the displayed set does indeed have a

minimum (that is, its infimum is a member of the set) and that c(t) ≤ 2t−3. He later [17] obtained
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the improved bound c(t) ≤ 16t log t (all logarithms in this paper are base 2). His result was improved

by Kostochka [12] and Thomason [22] who proved that c(t) = Θ(t
√

log t). Thomason [23] later proved

an even sharper bound, showing that c(t) = (α + o(1))t
√

log t for some explicit constant α, with the

o(1) term going to 0 as t→∞.

Fiorini, Joret, Theis and Wood [6] raised the following problem: how many edges suffice to guar-

antee that a graph contains not only a Kt-minor, but one which has few vertices? Observe that

graphs with logarithmic girth (which can be constructed by deleting short cycles from random graph

G(n, p), p = c/n or explicitly see, e.g., [15]) show that for any constant C, there is a graph G with

d(G) ≥ C and no K3 minor of order o(log n). We also need d(G) ≥ c(t) = (α + o(1))t
√

log t to

guarantee some Kt-minor. So the question boils down to finding the smallest constant c > c(t), such

that any graph G with d(G) ≥ c contains a Kt-minor of order O(log n). Fiorini et al. [6] proved that

if d(G) ≥ 2t−2 + ε then G has a Kt-minor of order C(ε) log n. Note that the average degree here is

exponentially larger than the one needed to guarantee a Kt-minor. This motivated Fiorini et al. [6] to

ask if in fact any graph G with d(G) ≥ c(t) + ε contains a Kt-minor of order C(ε) log n. That is, while

c(t)n edges are sufficient (and necessary) to guarantee some Kt-minor, adding only o(n) additional

edges should force the appearance of the (asymptotically) smallest Kt-minor one can force even with

Cn edges, for any constant C. Our main result in this paper comes very close to answering their

question positively.

Theorem 1 For every ε > 0 and integer t ≥ 3 there exist n0 = n0(ε, t), such that every n-vertex

graph G with n ≥ n0 and d(G) ≥ c(t) + ε contains a Kt-minor of order O( c(t)t
2

ε log n log logn).

As we mentioned above, Thomason [23] has shown that c(t) = (α+o(1))t
√

log t. The easier half of

his result shows that a random graph (on an appropriate number of vertices) with d(G) = (1− ε)c(t)
has no Kt-minor. Myers [18] has later strengthened his result (see [18] for the precise condition where

this fact holds) by showing that n-vertex graphs of density p that do not contain a Kt-minor larger

than the one we expect to find in a random graph G(n, p) must be quasi-random. So roughly speaking,

random graphs are extremal with respect to the critical density where one expects to find a Kt-minor

in arbitrary graphs. A positive answer to the problem of Fiorini et al. [6] would thus show that random

graphs are also in some sense extremal with respect to the actual order of the Kt-minor we expect to

find. Specifically, it is possible to show that the smallest Kt-minor in a random graph G(n, p), p = c/n

such that d(G) = c/2 > c(t) has order O(log n). The problem if [6] can thus be phrased as asking if

in fact, appropriate random graphs maximize the order of the smallest Kt-minor among all graphs of

density c(t) + ε.

Let us finally mention an old conjecture of Erdős, stating that a graph with n1+ε edges contains a

non-planar subgraph of size C(ε). This conjecture was confirmed (in a very strong sense) by Kostochka

and Pyber [11] who proved that any graph with 4t
2
n1+ε edges contains a topological Kt-minor of size

O(t2 log t/ε). So the problem of [6] that we study here is in some sense a strengthening of the conjecture

of Erdős for ε = 1/ log n. Furthermore, as noted in [6], one can adapt the argument of [11] to show

that a graph G with d(G) ≥ 16t contains a Kt-minor of size O(log n).
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1.2 Expansion in graphs, proof overview and the key lemma

We believe that an important aspect of this paper is the proof technique we employ here which relies on

the notion of expansion in graphs and might be applicable in other settings. Perhaps a good perspective

on our approach comes from dense graphs, that is graphs with cn2 edges. Probably the most powerful

tool one has at his disposal when studying dense graphs is Szemerédi’s regularity lemma [21], which

asserts that any dense graph can be approximated by a graph consisting of a bounded number of

quasi-random graphs. Since quasi-random graphs are much easier to work with, this lemma allows

one to reduce a problem on arbitrary graphs to the same problem on quasi-random graphs. We refer

the reader to [10] for more details on the regularity lemma and its applications.

When it comes to sparse graphs, there is no analogue of the regularity lemma. But in recent years,

a parallel paradigm has emerged, the underlying idea of which can be thought of as stating that any

sparse graph is close to being the disjoint union of expander graphs. While the regularity lemma

supplies one notion of approximation/quasi-randomness for all applications involving dense graphs,

it seems like for sparse graphs different applications call for different notions of approximation and

expansion. We refer the reader to [2, 7, 24] for some examples where this paradigm was applied.

Just like graph minors, expansion is one of the most well studied topics in graph theory, with

a remarkable number of applications in diverse areas such as theoretical computer science, additive

number theory and information theory (just to name a few). We will thus refrain from giving a detailed

account and instead refer the reader to the surveys [8, 13] for more details. There are several known

results connecting expansion and existence of Kt-minors in graphs, see, e.g., [1, 19, 9, 14]. In all these

papers the goal was to maximize the value of t. Our task here is quite different, we want to minimize

the number of vertices in the minor, keeping t fixed.

For the proof of Theorem 1 we will need a very strong notion of expansion. The price will be that

we will ask for a very weak notion of approximation1, which will turn out to be sufficient for proving

Theorem 1. In what follows, for a set of vertices S we use N(S) to denote the neighborhood of S, that

is the set of vertices not in S that are connected to at least one vertex in S. The notion of expansion

we will use is the following:

Definition 1.1 (δ-Expander) An m-vertex graph H is said to be a δ-expander if for every integer

0 ≤ d ≤ log logm− 1 and S ⊆ V (H) of order |S| ≤ m/22d we have

|N(S)| ≥ δ2d

logm(log logm)2
|S| (2)

Observe that (disregarding the (log logm)2 term) if G is an m-vertex δ-expander then sets of

vertices of size cm have vertex expansion about 1/ logm while sets of vertices of size mc have vertex

expansion Θ(1). The following lemma shows that we can indeed find a δ-expander in any graph with

sufficiently many edges.

Lemma 1.2 (Key Lemma) If G satisfies d(G) = c, then for every 0 < δ ≤ 1
256 we can find in G a

subgraph H, such that d(H) ≥ (1− δ)c and H is a δ-expander.

1In fact, what we will ask for in Lemma 1.2 is just one subgraph with very good expansion properties, so this can

hardly be called an approximation. In Section 5 we will suggest a possible strengthening of Lemma 1.2, involving a

stronger notion of approximation, and the possible applications of such a lemma.
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Remark 1.3 Note that the only lower bound on the order of H supplied by the lemma is 2(1 − δ)c
which follows from the fact that |V (H)| ≥ 2d(H) ≥ 2(1 − δ)c. Up to the δ error this is all that one

can hope for since the graph might be a disjoint union of cliques of order 2c.

In a nutshell, the proof of Theorem 1 proceeds by first invoking Lemma 1.2 on the graph G thus

obtaining a graph H satisfying the expansion properties of Definition 1.1. We then show (see Lemma

3.2) how one can find a small Kt-minor inside H, a task which is much easier given the fact that

H has strong expansion properties. As we noted above, one can come up with different notions of

expansion when studying sparse graphs. And indeed, in order to prove Theorem 1 we will actually

have to prove another variant of Lemma 1.2, which uses a slightly different notion of expansion than

the one defined in (2). It might very well be possible to prove other variants of Lemma 1.2, suitable

for tackling other problems. See the concluding remarks for another possible variant which might have

interesting applications.

As we mentioned in the abstract, Lemma 1.2 can be thought of as a strengthening of Mader’s

Theorem (see [4], Theorem 1.4.3). Indeed, Mader’s Theorem states that any graph G with d(G) ≥ 2k

has a k-connected subgraph H satisfying d(H) ≥ k. So Lemma 1.2 gives a similar conclusion only it

replaces the notion of k-connectivity with the stronger notion of vertex expansion.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we prove Lemma 1.2. As we mentioned

earlier, the proof can be easily adapted to other settings, and indeed in Section 4 we will prove another

variant of this lemma. In Section 3 we prove a weaker version of Theorem 1, giving a bound of order

O(log n(log log n)3). Then, in Section 4, we “boost” this weaker bound by removing a (log log n)2

factor thus obtaining the bound stated in Theorem 1. Section 5 contains some concluding remarks

and open problems.

2 Proof of Key Lemma

In this section we prove Lemma 1.2. Given a graph G and a subset of its vertices U , G[U ] denotes the

subgraph of G induced by the set U . We start with the following simple yet crucial observation.

Claim 2.1 If G is an n-vertex graph satisfying d(G) = c, and S ⊂ V (G) is such that |N(S)| < γ|S|,
then either d(G[V \ S]) ≥ c or d(G[S ∪N(S)]) ≥ (1− γ)c.

Proof: Indeed, if d(G[V \ S]) < c, d(G[S ∪N(S)]) < (1− γ)c and |N(S)| < γ|S| then we can bound

the number of edges in G as follows,

e(G) < c(n− |S|) + (1− γ)c(|S|+ |N(S)|) ≤ cn− γc|S|+ c|N(S)| ≤ cn ,

contradicting the assumption that G has cn edges.

In what follows, we say that a graph G = (V,E) fails to be a δ-expander at scale d if there is a

vertex set S ⊆ V of size at most m/22
d

violating (2).
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Proof of Lemma 1.2: Set G0 = G and consider the following iterative process; if either |Gt| ≤ 256

or if Gt is a δ-expander the process stops. Otherwise, set m = |Gt| and dt = d(Gt). Since Gt is not

a δ-expander, there must be some 0 ≤ d ≤ log logm − 1 and a set St ⊆ V (Gt) of size at most m/22
d

violating (2). We can deduce via Claim 2.1 (with c = dt and γ = δ2d

logm(log logm)2
) that in this case

either d(G[V (Gt) \ St]) ≥ dt or d(G[St ∪ N(St)]) ≥ (1 − δ2d

logm(log logm)2
)dt. In the former case we set

Gt+1 = G[V (Gt) \ St] and in the latter we set Gt+1 = G[St ∪ N(St)]. For brevity, in what follows

we call the above two cases, Case 1 and Case 2. Let G′ be the graph returned at the end of the

process. We shall show that d(G′) ≥ (1− δ)c, but we first note that this will finish the proof. Indeed,

if |G′| > 256 then by definition of the process we get that G′ must be a δ-expander, so G′ satisfies

the requirements of the lemma. If |G′| ≤ 256 then one of its connected components, call it G′′, must

also satisfy d(G′′) ≥ (1 − δ)c. Since δ ≤ 1/256 and G′′ is connected, we get that G′′ is (trivially) a

δ-expander, so we can return G′′.

We now show that d(G′) ≥ (1−δ)c. Recall that for each of the graphs Gt in the process dt = d(Gt)

(so d0 = c). Note that at each iteration either dt+1 ≥ dt (in Case 1) or dt+1 = γtdt for some γt > 0.

Fix some 4 ≤ k ≤ log log n and suppose r < r′ are such that Gr is the first graph in the process whose

order is in the range [22
k−1

, 22
k
] and Gr′ is the last such graph in the process. We wish to compute

a lower bound on dr′+1/dr, that is, a lower bound on the fraction of edge loss that can occur when

“passing” through the interval [22
k−1

, 22
k
]. Observe that if at some iteration r ≤ t ≤ r′ of the process,

the graph Gt fails to be a δ-expander at scale d, then either γt ≥ 1 (Case 1), or |Gt+1| ≤ |Gt|/22
d
. For

each 0 ≤ d ≤ k let ad be the number of times Case 2 occurred due to Gt failing to be a δ-expander at

scale d. Then we have

1 ≤ |Gr′+1| ≤ |Gr|/
k∏
d=0

2ad2
d ≤ 22

k
/

k∏
d=0

2ad2
d
,

implying that
k∑
d=0

ad2
d ≤ 2k . (3)

As noted in the first paragraph of the proof, if at some iteration r ≤ t ≤ r′ Case 2 happened due to

the fact that Gt failed to be a δ-expander at scale d, then we know that γt ≥ 1−δ2d/ logm(log logm)2

(recall that m denotes the order of Gt). Since we are considering the case where 22
k−1 ≤ m ≤ 22

k
this

means that in this range we have

γt ≥ 1− δ2d/2k−1(k − 1)2 . (4)

Using that ad was the number of times γt satisfied (4), we have that

dr′+1/dr =

r′∏
t=r

γt ≥
k∏
d=0

(
1− δ2d

2k−1(k − 1)2

)ad
≥

(
1− δ

k∑
d=0

ad2
d

2k−1(k − 1)2

)

≥
(

1− 2δ

(k − 1)2

)
,

where the last inequality follows from (3). We have thus established that dt goes down by a factor

of at most 1 − 2δ/(k − 1)2 when the process passes through the interval [22
k−1

, 22
k
]. Since we stop
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the process when |Gt| ≤ 256, we only need to consider k ≥ 4. Hence, altogether dt can decrease by a

factor of at most

log logn∏
k=4

(
1− 2δ

(k − 1)2

)
≥ 1− 2δ

log logn∑
k=4

1

(k − 1)2
≥ 1− δ. (5)

So when the process ends we indeed obtain a δ-expander Gt′ satisfying d(Gt′) ≥ c(1− δ).

3 A Weaker Bound

As mentioned above, our goal in this section is to prove the following slightly weaker version of Theorem

1.

Lemma 3.1 The following holds for every ε > 0, integer t ≥ 3 and large enough n ≥ n1(ε, t). Every

n-vertex graph satisfying d(G) ≥ c(t) + ε has a Kt-minor of order O( c(t)t
2

ε log n(log log n)3).

The main lemma we will use to prove Lemma 3.1 is the following result, which shows that one can

find small Kt-minors in δ-expanders.

Lemma 3.2 The following holds for all δ > 0 integer t and large enough m ≥ m0(δ, t). If H is a

δ-expander on m vertices, then it has a Kt-minor of order O( t
2

δ logm(log logm)3).

Let us first show how can one derive Lemma 3.1 from Lemma 3.2

Proof of Lemma 3.1: We can clearly assume that ε < c(t) (otherwise we can replace ε with (say)

1/2, which is smaller than c(t) for all t ≥ 3). Let G be an n-vertex graph satisfying d(G) = c(t) + ε.

Applying Lemma 1.2 to G with δ = ε/3c(t) we obtain a subgraph H satisfying

d(H) ≥ (1− δ)(c(t) + ε) > c(t) .

Hence, if |V (H)| < m0(δ, t) we get from the definition of c(t) in (1) that H has a Kt-minor of order at

most2 m0(δ, t) = m0(ε/3c(t), t) ≤ log(n). If |V (H)| ≥ m0(δ, t) then we get from the second assertion

of Lemma 1.2 that H must be an ε
3c(t) -expander. Hence, we can apply Lemma 3.2 to find in H a

Kt-minor of order O( c(t)t
2

ε log n(log log n)3).

We now turn to prove Lemma 3.2. For a subset of vertices U of a graph G we denote by Bk(U)

the ball of radius k around U , i.e., the set of all vertices of G which can be reached by a path of length

at most k from some vertex in U . We start with the following simple observation:

Claim 3.3 Suppose U and V are two vertex sets in an m-vertex graph G such that the following

condition holds for every integer 0 ≤ d ≤ log logm− 1; whenever |Bk(U)| ≤ m/22d we have

|N(Bk+1(U))| ≥ δ2d

10 logm(log logm)2
|Bk(U)| , (6)

and a similar condition holds with respect to V . Then there is a path connecting U to V of length at

most 20
δ logm(log logm)3.

2Here we use the assumption that n ≥ n1(ε). Specifically, we need to take n1(ε) = 2m0(ε/3c(t),t).
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Proof: It is clearly enough to show that |Bk(U)| > m/2 for some k ≤ 10
δ logm(log logm)3. So

suppose m/22
d ≤ |Bk(U)| ≤ m/22d−1

. Then by (6) we either have |Bk+t(U)| > m/22
d−1

or

m/22
d−1 ≥ |Bk+t(U)| ≥ |Bk(U)|

(
1 +

δ2d−1

10 logm(log logm)2

)t
≥ m/22

d− δt2d−1

10 logm(log logm)2 . (7)

It is easy to check that the RHS of (7) is larger than the LHS when t ≥ 10
δ logm(log logm)2. In other

words, within at most 10
δ logm(log logm)2 steps, the neighborhood around U jumps from size larger

than m/22
d

to size larger than m/22
d−1

. Since there are only log logm intervals [m/22
d
,m/22

d−1
] we

see that |Bk(U)| > m/2 for some k ≤ 10
δ logm(log logm)3.

Definition 3.4 (γ-Expanding Ball) Let v be a vertex in a graph G. We say that Bk(v) is a γ-

expanding ball if for every 1 ≤ i ≤ k − 1 we have |Bi+1(v)| ≥ |Bi(v)|(1 + γ). We also call v the

center of the ball and k the radius. A set of vertices is said to be a γ-expanding ball if it is equal to

an expanding ball Bk(v) for some center v and radius k.

Claim 3.5 The following holds for all δ > 0 integer t and large enough m ≥ m0(δ, t). If G is a

δ-expander on m vertices then one of the following holds;

1. G has t vertices v1, . . . , vt each of degree at least log4m.

2. Set γ = δ/5(log logm)2. Then G contains t disjoint vertex sets S1, . . . , St such that G[Si] is a

γ-expanding ball, m1/5 ≤ |Si| ≤ m1/4 and every vertex in G[Si] has degree at most log4m.

Proof: If G has t vertices v1, . . . , vt each of degree larger than log4m then we have the first case of

the lemma. So suppose for the rest of the proof that G has at most t vertices of degree larger than

log4m. We need to show that we can pick sets S1, . . . , St satisfying the second condition of the lemma.

Let T be the set containing the vertices of degree larger than log4m. Let us also say that a set S is

nice if G[S] is a γ-expanding ball and m1/5 ≤ |S| ≤ m1/4. Note that a nice set in G \ T satisfies the

second condition of the lemma.

It is clearly enough to show that for any set W ⊇ T of at most m1/3 vertices, we can find in G \W
a nice set S. Once we know this, we can simply iteratively pick the sets Si one after the other where

at iteration i we will pick Si from G \Wi with Wi = (
⋃
j<i Sj) ∪ T . Since |T |, |S1|, . . . , |Si−1| � m1/3

this set has size smaller than m1/3.

So suppose to the contrary that there is a W ⊇ T of size m1/3 such that G \W has no nice set S

and set G0 = G \W . As we assume that W ⊇ T , all the vertices in G0 have degree at most log4m.

So pick a vertex v1 ∈ G0 and let Bk(v1) be the vertices at distance at most k from v1 in G0. Let k1
be the smallest integer such that |Bk1+1(v)| < |Bk1(v)|(1 + γ). We claim that |Bk1+1(v)| < m1/4. To

see this observe that the fact that all the vertices in G0 have degree at most log4m implies that for

every k ≤ k1 we have |Bk−1(v)| ≥ |Bk(v)|/ log4m so if |Bk1+1(v)| ≥ m1/4 then there must be a k′1,

such that m1/5 ≤ |Bk′1(v)| ≤ m1/4 and |Bi+1(v)| ≥ |Bi(v)|(1 + γ) for all 1 ≤ i ≤ k′1. But in this case

Bk′1(v) would be a nice set. So setting T1 = Bk1(v1) we have |T1| < m1/4 and |NG0(T1)| < γ|T1|.
Let G1 = G0 \ T1. Take now another vertex v2 ∈ G1 and repeat the above process. We will

eventually end up with a set T2 = Bk2(v2) of size smaller than m1/4 satisfying |NG1(T2)| < γ|T2|.
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Define G2 = G1 \ T2. We continue picking sets Ti ⊂ Gi−1 until the first time |
⋃
i Ti| >

√
m/2. Since

each set Ti is of size at most m1/4 ≤
√
m/2 this means that

√
m/2 ≤ |

⋃
i Ti| ≤

√
m. Now, the fact

that each of the sets Ti satisfies |NGi−1(Ti)| < γ|Ti| along with the facts that Gi = Gi−1 \ Ti and

|
⋃
i Ti| ≤

√
m implies that∣∣∣∣∣NG0

(⋃
i

Ti

)∣∣∣∣∣ ≤∑
i

|NGi−1(Ti)| <
∑
i

γ|Ti| ≤ γ
√
m = δ

√
m/5(log logm)2 . (8)

Now recall that G was assumed to be a δ-expander and since
√
m/2 ≤ | ∪ Ti| ≤

√
m we must have

(using d = log logm− 1 in (2))∣∣∣∣∣NG

(⋃
i

Ti

)∣∣∣∣∣ ≥ δ
∣∣∣∣∣⋃
i

Ti

∣∣∣∣∣ /(log logm)2 ≥ δ
√
m/4(log logm)2 . (9)

Let us now recall that G0 was obtained from G by removing a set W of no more than m1/3 vertices.

Hence, recalling (8) we see∣∣∣∣∣NG

(⋃
i

Ti

)∣∣∣∣∣ ≤ |W |+
∣∣∣∣∣NG0

(⋃
i

Ti

)∣∣∣∣∣ ≤ m1/3 + δ
√
m/5(log logm)2 < δ

√
m/4(log logm)2 ,

which contradicts (9).

Claim 3.6 The following holds for all δ > 0 integer t and large enough m ≥ m0(δ, t). If G is a

δ-expander of order m that has t vertices as in the first case of Claim 3.5 then it has a Kt-minor of

order O( t
2

δ logm(log logm)3).

Proof: Let v1, . . . , vt be the vertices satisfying the first assertion of Claim 3.5. We will show that in

this case G has a topological Kt-minor of the required order. To do this, we show that we can find
(
t
2

)
paths Pi,j , where each path connects vi to vj , has length at most 20

δ logm(log logm)3 and is internally

disjoint from all other paths. Our plan is to successively find these paths by invoking Claim 3.3. All

we need to do is show that for any vi, vj and any set W of size at most log2m the sets {vi}, {vj} satisfy

(6) with respect to the graph G \W . Once we establish this fact, we will be able successively pick the

paths Pi,j via Claim 3.3 where at each iteration we will take W to consist of the vertices vt, t 6= i, j,

together with the internal vertices of the paths Pi′,j′ we have already picked.

We turn to show that {vi} satisfies (6) in the graph G′ = G \W (the proof for {vj} is identical).

We first recall the assumption of the lemma that vi has degree log4m in G. Since we assume that

|W | ≤ log2m we clearly have

NG′(vi) ≥ NG(vi)− |W | ≥ log4m− log2m ≥ 1

2
log4m .

Hence, for all k ≥ 1 we have

|Bk(vi)| ≥ |B1(vi)| ≥
1

2
log4m . (10)
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Suppose now that |Bk(vi)| ≤ m/22
d
. Since we assume that G is a δ-expander we deduce that

|NG′(Bk(vi))| ≥ |NG(Bk(vi))| − |W | ≥
δ2d

logm(log logm)2
|Bk(vi)| − log2m

≥ δ2d

2 logm(log logm)2
|Bk(vi)| ,

where the last inequality follows from (10). We thus get that G′ satisfies (6) with U = {vi} and

V = {vj} so we can indeed find a path connecting vi to vj of length at most 20
δ logm(log logm)3.

Claim 3.7 The following holds for all δ > 0 integer t and large enough m ≥ m0(δ, t). If G is a

δ-expander of order m that has t sets as in the second case of Claim 3.5 then it has a Kt-minor of

order O( t
2

δ logm(log logm)3).

Proof: Let S1, . . . , St be the sets satisfying the second condition of Claim 3.5. Recall that in this

case each set Si is a γ-expanding ball around a vertex vi in the induced subgraph G[Si]. Also recall

that m1/5 ≤ |Si| ≤ m1/4 and that all the vertices of G[Si] have degree at most log4m. This means that

there is some ki, such that the ball around vi in the graph G[Si] satisfies log4m ≤ |Bki(vi)| ≤ log8m.

For every 1 ≤ i ≤ t set Ci = Bki(vi) and note that Ci is also a γ-expanding ball in G[Si] around the

same center vi.

We will shortly show that one can find
(
t
2

)
internally vertex disjoint paths Pi,j , where each Pi,j

connects Ci to Cj , has length at most 20
δ logm(log logm)3 and avoids all the sets C`, ` 6= i, j. But

let us first observe why this will conclude the proof. For each 1 ≤ i 6= j ≤ t let Qi,j be some path

connecting vi to the unique vertex of Pi,j that belongs to Ci. For each 1 ≤ i ≤ t set Vi = ∪jQi,j .
Then each set Vi is connected in G and the paths Pi,j are internally vertex disjoint and avoid the sets

V`, ` 6= i, j so contracting the sets Vi indeed gives us a Kt-minor in G. As to the order of this minor,

note that since Ci is a γ-expanding-ball (with γ = δ/5(log logm)3) of size at most log8m its radius is

bounded by

log1+γ |Ci| ≤
2 log(log8m)

γ
≤ 80(log logm)4/δ ,

so each of the paths Qi,j is of length o(logm). Hence the total size of the sets Vi is much smaller

than logm. Thus, once we show how to find the above mentioned paths Pi,j with lengths bounded by
20
δ logm(log logm)3 we obtain a Kt-minor of order at most

logm+
20t2

δ
logm(log logm)3 = O

( t2
δ

logm(log logm)3
)
.

Our plan is to show that one can simply iteratively pick the paths Pi,j by successive applications

of Claim 3.3. To this end, we need to show that after picking some of the paths, we can still find in

the remaining graph another path. Since each of the paths is of length at most 20
δ logm(log logm)2 �

log2m, it is enough to show that for any set of vertices W of size at most log2m, that is disjoint from

each of the sets C1, . . . , Ct, and such that for any i 6= j, the sets Ci and Cj satisfy (6) with respect to

the graph

G′ = G \ (W ∪
⋃
` 6=i,j

C`) . (11)
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Once we know this, we will iteratively pick the paths Pi,j , where at each iteration we will take W to

be the union of the internal vertices of the paths we have already picked. To establish (6) we will need

to consider two “regimes” of growth; the first is when Ci grows within the set Si, and the second,

when it grows out of Si.

Let us first make a simple (but crucial) observation about the sets Ci. Recall that Si = Bk′i(vi)

in G[Si] for some vertex vi and k′i, that |Si| ≥ m1/5 and that each vertex in Si has degree at most

log4m. This means that k′i ≥ logm/20 log logm. We also recall that |Ci| ≤ log8m and since Si is

a γ-expanding ball with γ ≥ δ/5(log logm)3 this means that in the induced subgraph G[Si] we have

that Ci = Bki(vi) for some ki ≤ 80
δ (log logm)4. Combining the above facts about ki and k′i and setting

ri = logm/30 log logm we have in graph G[Si]

Bri(Ci) ⊆ Si . (12)

We now turn to show that Ci satisfies (6) with respect to G′ defined in (11). Since Si is a γ-

expanding ball we get from (12) that |NG[Si](Ci)| ≥ δ|Ci|/5(log logm)2. Recall now that Si is disjoint

from
⋃
r 6=i,j Cr, and that (12) implies that NG[Si](Ci) ⊆ Si. Hence

|NG′(Ci)| ≥ |NG[Si](Ci)| − |W | ≥ δ|Ci|/5(log logm)2 − log2m

≥ δ|Ci|/10(log logm)2 ,

where the last inequality uses the fact that |Ci| ≥ log4m. In other words, we have in G′

|B1(Ci)| ≥
(

1 +
δ

10(log logm)2

)
|Ci| . (13)

Recalling (12) we can continue inductively and get that for all k ≤ ri we have

|NG′(Bk(Ci))| ≥ |NG[Si](Bk(Ci))| − |W | ≥ δ|Bk(Ci)|/5(log logm)2 − log2m

≥ δ|Bk(Ci)|/10(log logm)2 , (14)

where in the last inequality we use the fact that |Bk(Ci)| ≥ |Ci| ≥ log4m. It follows that Ci satisfies

(6) for all k ≤ ri (in the graph G′). To see this, note that by (12) Bk(Ci) ⊂ Bri(Ci) ⊆ Si implying

that |Bk(Ci)| �
√
m. This means that in (6) the relevant d is log logm− 1, implying that we should

show that |NG′(Bk(Ci))| ≥ δ|Bk(Ci)|/20(log logm)2 as we indeed derived in (14). From (14) we also

have

|Bri(Ci)| ≥ |Ci|
(

1 +
δ

10(log logm)2

)ri
≥
(

1 +
δ

10(log logm)2

) logm
30 log logm

≥ log10m . (15)

Consider now some k > ri and suppose |Bk(Ci)| ≤ m/22
d
. Then since G is assumed to be a δ-expander

we have

|NG′(Bk(Ci))| ≥ |NG(Bk(Ci))| − |W | −
∑
`

|C`| ≥ δ2d|Bk(Ci)|/(log logm)2 − log9m

≥ δ2d|Bk(Ci)|/2(log logm)2 ,

where the last inequality follows from (15) which tells us that for any k ≥ ri we have |Bk(Ci)| ≥
|Bri(Ci)| ≥ log10m. So Ci satisfies (6) for all d.

10



Proof of Lemma 3.2: Immediate from Claims 3.5, 3.6 and 3.7.

4 Proof of Theorem 1

As discussed in Section 1, one can come up with different variants of Lemma 1.2 involving different

notions of expansion. And indeed, to prove Theorem 1 we will need to redo most of Section 3 with a

different notion of expansion, defined as follows.

Definition 4.1 ((δ, n)-Expander) An m-vertex graph H is said to be a (δ, n)-expander if for every

integer 0 ≤ d ≤ log logm− 1 and S ⊆ V (H) of size |S| ≤ m/22d we have

|N(S)| ≥ δ2d

log n
|S| (16)

To apply the above notion of expansion we will need the following two lemmas, which are appro-

priate variants of Lemmas 1.2 and 3.2.

Lemma 4.2 Let G be an n-vertex graph satisfying d(G) = c. Then for every δ > 0, the graph G has

a subgraph G′, such that d(G′) ≥ (1− 2δ)c and G′ is a (δ, n)-expander

Lemma 4.3 The following holds for all 0 < δ < 1/4 integer t and large enough m ≥ m0(δ, t). If G is

an m-vertex (δ, n)-expander with 2logn/(log logn)
2 ≤ m ≤ n, then G contains a Kt-minor with at most

O( c(t)t
2

ε log n log logn) vertices.

Let us first show how to derive Theorem 1 from the above two lemmas and the result of the previous

section.

Proof of Theorem 1: We can clearly assume that ε < c(t) (otherwise we can replace ε with

(say) 1/2, which is smaller than c(t) for all t ≥ 3). Let G be an n-vertex graph satisfying d(G) =

c(t) + ε. Apply Lemma 4.2 on G with δ = ε/8c(t). Suppose first that the graph G′ returned

by the lemma is of order m ≤ 2logn/(log logn)
2
. Then the assertion of the lemma guarantees that

d(G′) ≥ (1 − 2δ)(c(t) + ε) ≥ c(t) + ε/2. If m ≤ n1(ε/2, t) we return G′. The definition of c(t) then

guarantees that G′ has a Kt-minor, whose order is at most3 n1(ε/2, t) ≤ log n and we are done. If

n1(ε/2, t) ≤ m ≤ 2logn/(log logn)
2

then Lemma 3.1 guarantees that G′ contains a Kt-minor of order

at most O( c(t)t
2

ε logm(log logm)3) = O( c(t)t
2

ε log n log logn) as needed. Finally, if m ≥ 2logn/(log logn)
2

then the fact that G′ must be a (δ, n) expander guarantees, together with Lemma4 4.3, that G′ contains

a Kt-minor of order O( c(t)t
2

ε log n log logn) thus completing the proof.

Let us now turn to prove Lemmas 4.2 and 4.3. In what follows, we say that a graph G = (V,E)

fails to be a (δ, n)-expander at scale d if there is a vertex set S ⊆ V of size at most m/22
d

violating

(16).

3Here we use the assumption that n ≥ n0(ε, t). Specifically, we take n0(ε, t) = 2n1(ε/2,t), where n1(ε, t) is the function

used in Lemma 3.1.
4Here we again use the assumption that n ≥ n0(ε, t). Specifically, it is enough to take n0(ε, t) = (m0(δ, t))logm0(δ,t),

where δ = ε/8c(t) and m0(δ, t) is the function in Lemma 4.3

11



Proof of Lemma 4.2: Set G0 = G and consider the following iterative process; if either |Gt| ≤ 4

or if Gt is a (δ, n)-expander the process returns Gt. Otherwise, set m = |Gt| and dt = d(Gt). Since

Gt is not a (δ, n)-expander, there must be some 0 ≤ d ≤ log logm− 1 and a set St ⊆ V (Gt) of size at

most m/22
d

violating (16). We can deduce via Claim 2.1 (with c = dt and γ = δ2d/ log n) that in this

case either d(G[V (Gt) \ St]) ≥ dt or d(G[St ∪N(St)]) ≥ (1 − δ2d/ log n)dt. In the former case we set

Gt+1 = G[V (Gt) \ St] and in the latter we set Gt+1 = G[St ∪N(St)]. For brevity, in what follows we

call the above two cases, Case 1 and Case 2. Let G′ be the graph returned at the end of the process.

We will now show that d(G′) ≥ (1 − 2δ)c. Note that this assertion implies that if |V (G′)| > 4 then

the definition of the process implies that G′ is a (δ, n)-expander and if |V (G′)| ≤ 4, then since δ < 1/4

one of G′ connected components, say G′′, is (trivially) a δ-expander satisfying d(G′′) ≥ (1− 2δ)c.

Recall that for each of the graphs Gt in the process dt = d(Gt) (so d0 = c). Note that at each

iteration either dt+1 ≥ dt (in Case 1) or dt+1 = γtdt for some γt > 0. Fix some 1 ≤ k ≤ log log n and

suppose r < r′ are such that Gr is the first graph in the process whose size is in the range [22
k−1

, 22
k
]

and Gr′ is the last such graph in the process. We wish to compute a lower bound on dr′+1/dr, that

is, a lower bound on the fraction of edge loss that can occur when “passing” through the interval

[22
k−1

, 22
k
]. Observe that if at some iteration r ≤ t ≤ r′ of the process, the graph Gt fails to be a

(δ, n)-expander at scale d, then either γt ≥ 1 (Case 1), or |Gt+1| ≤ |Gt|/22
d
. For each 0 ≤ d ≤ k let ad

be the number of times Case 2 occurred due to Gt failing to be a (δ, n)-expander at scale d. Then we

have

1 ≤ |Gr′+1| ≤ |Gr|/
k∏
d=0

2ad2
d ≤ 22

k
/

k∏
d=0

2ad2
d
,

implying that
k∑
d=0

ad2
d ≤ 2k . (17)

Now, if at some iteration r ≤ t ≤ r′ Case 2 happened due to the fact that Gt failed to be a (δ, n)-

expander at scale d, then (as noted above) we know that in this case

γt ≥ 1− δ2d/ log n . (18)

Using that ad was the number of times γt satisfied (18), we have that

dr′+1/dr =

r′∏
t=r

γt ≥
k∏
d=0

(
1− δ2d

log n

)ad
≥

(
1− δ

k∑
d=0

ad2
d

log n

)

≥
(

1− δ2k

log n

)
,

where the last inequality follows from (17). We have thus established that dt goes down by a factor

of at most 1 − δ2k/ log n when the process passes through the interval [22
k−1

, 22
k
]. Hence, altogether

dt can decrease by a factor of at most

log logn∏
k=1

(
1− δ2k

log n

)
≥ 1− δ

log n

log logn∑
k=1

2k ≥ 1− 2δ. (19)
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So when the process ends we indeed obtain a (δ, n)-expander Gt′ satisfying d(Gt′) ≥ c(1− 2δ).

As it turns out the proof of Lemma 4.3 can be obtained by repeating almost verbatim the proofs

of Claims 3.3, 3.5, 3.6 and 3.7, while replacing the notion of δ-expander with (δ, n)-expander, and

making some minor adaptations to the calculations. Hence we only state the appropriate variants of

these claims. The detailed proofs of these claims can be found in the appendix of the arxiv version of

this paper. The proof of Lemma 4.3 follows immediately from Claims 4.5, 4.6 and 4.7.

Claim 4.4 Suppose U and V are two vertex sets in an m-vertex graph G such that the following

condition holds for every integer 0 ≤ d ≤ log logm− 1; whenever |Bk(U)| ≤ m/22d we have

|N(Bk+1(U))| ≥ δ2d

10 log n
|Bk(U)| , (20)

and a similar condition holds with respect to V . Then there is a path connecting U to V of length at

most 20
δ log n(log log n).

Claim 4.5 The following holds for all δ > 0 integer t and large enough n ≥ n0(δ, t). If G is a

(δ, n)-expander on m vertices with 2logn/(log logn)
2 ≤ m ≤ n then one of the following holds;

1. G has t vertices v1, . . . , vt each of degree at least log4m.

2. Set γ = δ logm
5 logn . Then G contains t disjoint vertex sets S1, . . . , St such that G[Si] is a γ-expanding

ball, m1/5 ≤ |Si| ≤ m1/4 and every vertex in G[Si] has degree at most log4m.

Claim 4.6 The following holds for all δ > 0 integer t and large enough n ≥ n0(δ, t). If G is a (δ, n)-

expander on 2logn/(log logn)
2 ≤ m ≤ n vertices which has t vertices as in the first case of Claim 4.5

then it has a Kt-minor of order O( t
2

δ log n log log n).

Claim 4.7 The following holds for all δ > 0 integer t and large enough n ≥ n0(δ, t). If G is a (δ, n)-

expander on 2logn/(log logn)
2 ≤ m ≤ n vertices which has t sets as in the second case of Claim 4.5 then

it has a Kt-minor of order O( t
2

δ log n log log n).

5 Concluding Remarks and Open Problems

• Of course, the obvious open problem is to close the O(log log n) gap between the upper bound

of Theorem 1 and the simple lower bound mentioned in Section 1. It seems that we have pushed

our approach to the limit, and that in order to obtain a Kt-minor of order C(ε) log n some new

ideas are needed.

We note that the proof of [6] showing that (2t−2 + ε)n edges suffice to guarantee a Kt-minor of

order C(ε) log n proceeds by applying the well known argument showing that c(t) ≤ 2t−3. In

some sense, we are able to prove our bound already for d(G) ≥ c(t)+ ε since we do not implicitly

prove any bound on c(t) but instead rely on it as a black-box. Having said that, it might very

well be possible to use one of the proofs that give a tight bound on c(t) to improve our lower

bound.

13



• A natural variant of the problem studied here concerns topological Kt-minors. As noted in [6],

the method of [11] can probably be used to show that a graph with 4t
2
n edges has a topological

Kt-minor of order O(log n). However, it is known (see [3] and [4]) that there is a smallest

c′(t) = Θ(t2) such that any graph with c′(t)n edges has a topological Kt-minor. It thus seems

reasonable to conjecture that if G is an n-vertex graph with (c′(t) + ε)n edges then G must

contain a topological Kt-minor of order at most C(ε) log n. We suspect that the ideas and tools

in the present paper should allow one to prove (at least) a weaker version of this conjecture,

giving a topological Kt-minor of order at most C(ε) log n poly(log log n).

• Let us say that a graph G is ε-far from being Kt-minor free if one should remove from G at

least εn edges in order to turn G into a Kt-minor free graph. We conjecture that if G is ε-far

from being Kt-minor free then G has a Kt-minor of order C(ε) log n. At the moment, we are

unable to prove even a weaker result in which the Kt-minor is of order C(ε) log n poly(log log n).

One approach to proving such a result would be to prove a strengthened version of Lemma 1.2

stating that for any δ > 0, and large enough graph G one can remove from G at most δn edges

and thus obtain a graph G′ in which every connected component is a δ-expander. Note that

Lemma 3.2 together with the above variant of Lemma 1.2 would immediately resolve the above

conjecture (with the slightly weaker bound O(log n poly(log log n))). Finally, observe that any

graph with (c(t)+ε)n edges is by definition ε-far from being Kt-minor free, hence this conjecture

strengthens the problem raised in [6]. One can of course raise the same conjecture with respect

to topological minors.
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6 Missing Proofs from Section 4

Proof of Claim 4.4: It is clearly enough to show that |Bk(U)| > m/2 for some k ≤ 10
δ log n log logn.

So suppose m/22
d ≤ |Bk(U)| ≤ m/22d−1

. Then by (20) we either have |Bk+t(U)| > m/22
d−1

or

m/22
d−1 ≥ |Bk+t(U)| ≥ |Bk(U)|

(
1 +

δ2d−1

10 log n

)t
≥ m/22

d− δt2
d−1

10 logn . (21)

It is easy to check that the RHS of (21) is larger than the LHS when t ≥ 10
δ log n. In other words,

within at most 10
δ log n steps, the neighborhood around U jumps from size larger than m/22

d
to size

larger than m/22
d−1

. Since there are only log logm ≤ log logn intervals [m/22
d
,m/22

d−1
] we see that

|Bk(U)| > m/2 for some k ≤ 10
δ log n log logn.

Proof of Claim 4.5: If G has t vertices v1, . . . , vt each of degree larger than log4m then we have

the first case of the lemma. So suppose for the rest of the proof that G has at most t vertices of degree

larger than log4m. We need to show that we can pick sets S1, . . . , St satisfying the second condition

of the lemma. Let T be the set containing the vertices of degree larger than log4m. Let us also say

that a set S is nice if G[S] is a γ-expanding ball and m1/5 ≤ |S| ≤ m1/4. Note that a nice set in G \T
satisfies the second condition of the lemma.

It is clearly enough to show that for any set W ⊇ T of at most m1/3 vertices, we can find in G \W
a nice set S. Once we know this, we can simply iteratively pick the sets Si one after the other where

at iteration i we will pick Si from G \Wi with Wi = (
⋃
j<i Sj) ∪ T . Since |T |, |S1|, . . . , |Si−1| � m1/3

this set has size smaller than m1/3.

So suppose to the contrary that there is a W ⊇ T of size m1/3 such that G \W has no nice set S

and let G0 = G \W . As we assume that W ⊇ T , all the vertices in G0 have degree at most log4m.

So pick a vertex v1 ∈ G0 and let Bk(v1) be the vertices at distance at most k from v1 in G0. Let k1
be the smallest integer such that |Bk1+1(v)| < |Bk1(v)|(1 + γ). We claim that |Bk1+1(v)| < m1/4. To

see this observe that the fact that all the vertices in G0 have degree at most log4m implies that for

every k ≤ k1 we have |Bk−1(v)| ≥ |Bk(v)|/ log4m so if |Bk1+1(v)| ≥ m1/4 then there must be a k′1,

such that m1/5 ≤ |Bk′1(v)| ≤ m1/4 and |Bi+1(v)| ≥ |Bi(v)|(1 + γ) for all 1 ≤ i ≤ k′1. But in this case

Bk′1(v) would be a nice set. So setting T1 = Bk1(v1) we have |T1| < m1/4 and |NG0(T1)| < γ|T1|.
Let G1 = G0 \ T1. Take now another vertex v2 ∈ G1 and repeat the above process. We will

eventually end up with a set T2 = Bk2(v2) of size smaller than m1/4 satisfying NG1 |T2| < γ|T2|. Let

G2 = G1 \ T2. We continue picking sets Ti ⊂ Gi−1 until the first time |
⋃
i Ti| >

√
m/2. Since each set

Ti is of size at most m1/4 ≤
√
m/2 this means that

√
m/2 ≤ |

⋃
i Ti| ≤

√
m. Now, the fact that each

of the sets Ti satisfies |NGi−1(Ti)| < γ|Ti| along with the facts that Gi = Gi−1 \ Ti and |
⋃
i Ti| ≤

√
m

implies that ∣∣∣∣∣NG0

(⋃
i

Ti

)∣∣∣∣∣ ≤∑
i

|NGi−1(Ti)| <
∑
i

γ|Ti| ≤ γ
√
m = δ

√
m logm/5 log n . (22)

Now recall that G was assumed to be a (δ, n)-expander and since
√
m/2 ≤ |∪Ti| ≤

√
m we must have
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(using d = log logm− 1 in (16))∣∣∣∣∣NG

(⋃
i

Ti

)∣∣∣∣∣ ≥ δ
∣∣∣∣∣⋃
i

Ti

∣∣∣∣∣ logm

2 log n
≥ δ
√
m logm/4 log n . (23)

Note that G0 was obtained from G by removing a set W of no more than m1/3 vertices and that by

our assumption m� log6 n . Hence, using (22) we have∣∣∣∣∣NG

(⋃
i

Ti

)∣∣∣∣∣ ≤ |W |+
∣∣∣∣∣NG0

(⋃
i

Ti

)∣∣∣∣∣ ≤ m1/3 + δ
√
m logm/5 log n < δ

√
m logm/4 log n ,

which contradicts (23).

Proof of Claim 4.6: Let v1, . . . , vt be the vertices satisfying the first assertion of Claim 3.5. We

will show that in this case G has a topological Kt-minor of the required order. To do this we show

that we can find
(
t
2

)
paths Pi,j , where each path connects vi to vj , has length at most 20

δ log n log log n

and is internally disjoint from all other paths. Our plan is to successively find these paths by invoking

Claim 4.4. All we need to do is show that for any vi, vj and any set W of size at most log2 n the sets

{vi}, {vj} satisfy (20) with respect to the graph G \W . Once we establish this fact, we will be able

successively pick the paths Pi,j via Claim 4.4 where at each iteration we will take W to consist of the

vertices vt, t 6= i, j, together with the internal vertices of the paths Pi′,j′ we have already picked.

We turn to show that {vi} satisfies (20) in the graph G′ = G \W (the proof for {vj} is identical).

We first recall the assumption of the lemma that vi has degree log4m in G. Since we assume that

|W | ≤ log2 n and logm ≥ log1−o(1) n we have

NG′(vi) ≥ NG(vi)− |W | ≥ log4m− log2 n ≥ 1

2
log4m .

Hence, for all k ≥ 1

|Bk(vi)| ≥ |B1(vi)| ≥
1

2
log4m� log3 n . (24)

Suppose now that |Bk(vi)| ≤ m/22
d
. Since we assume that G is a (δ, n)-expander we deduce that

|NG′(Bk(vi))| ≥ |NG(Bk(vi))| − |W | ≥
δ2d

log n
|Bk(vi)| − log2 n

≥ δ2d

2 log n
|Bk(vi)| ,

where the last inequality follows from (24) and the assumptions that n ≥ n0(δ, t). We thus get that G′

satisfies (20) with U = {vi} and V = {vj} so we can indeed find a path connecting vi to vj of length

at most 20
δ log n log logn.
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Proof of Claim 4.7: Let S1, . . . , St be the sets satisfying the second condition of Claim 4.5. Recall

that in this case each set Si is a γ-expanding ball around a vertex vi in the induced subgraph G[Si].

Also recall that m1/5 ≤ |Si| ≤ m1/4 and that all the vertices of G[Si] have degree at most log4m.

This means that there is some ki, such that the ball around vi in the graph G[Si] satisfies log4m ≤
|Bki(vi)| ≤ log8m. For every 1 ≤ i ≤ t set Ci = Bki(vi) and note that Ci is also a γ-expanding ball in

G[Si] around the same center vi.

We will shortly show that one can find
(
t
2

)
internally vertex disjoint paths Pi,j , where each Pi,j

connects Ci to Cj , has length at most 20
δ log n log logn and avoids all the sets C`, ` 6= i, j. But let us

first observe why this will conclude the proof. For each 1 ≤ i 6= j ≤ t let Qi,j be some path connecting

vi to the unique vertex of Pi,j that belongs to Ci. For each 1 ≤ i ≤ t set Vi = ∪jQi,j . Then each set

Vi is connected in G and the paths Pi,j are internally vertex disjoint and avoid the sets V`, ` 6= i, j so

contracting the sets Vi indeed gives us a Kt-minor in G. As to the order of this minor, note that since

Ci is a γ-expanding-ball (with γ = δ logm/5 log n) of size at most log8m its radius is bounded by

log1+γ |Ci| ≤
2 log(log8m)

γ
≤ 80 log n log logm

δ logm
,

so each of the paths Qi,j is of length o(log n) (here we rely on the lemma’s assumption that log1−o(1) n ≤
logm ≤ log n). Hence the total size of the sets Vi is smaller than log n. Thus, once we show how to

find the above mentioned paths Pi,j with lengths bounded by 20
δ log n log log n we obtain a Kt-minor

of order at most

log n+
20t2

δ
log n log logn = O

( t2
δ

log n log logn
)
.

Our plan is to show that one can simply iteratively pick the paths Pi,j by successive applications of

Claim 4.4. To this end, we need to show that after picking some of the paths, we can still find in the

remaining graph another path. Since each of the paths is of length at most 20
δ log n log logn� log2 n,

it is enough to show that for any set of vertices W of size at most log2 n, that is disjoint from each of

the sets C1, . . . , Ct, and such that for any i 6= j, the sets Ci and Cj satisfy (20) with respect to the

graph

G′ = G \ (W ∪
⋃
` 6=i,j

C`) . (25)

Once we know this, we will iteratively pick the paths Pi,j , where at each iteration we will take W to

be the union of the internal vertices of the paths we have already picked. To establish (20) we will

need to consider two “regimes” of growth; the first is when Ci grows within the set Si, and the second,

when it grows out of Si.

Let us first make a simple (but crucial) observation about the sets Ci. Recall that Si = Bk′i(vi)

in G[Si] for some vertex vi and k′i, that |Si| ≥ m1/5 and that each vertex in Si has degree at most

log4m. This means that k′i ≥ logm/20 log logm. We also recall that |Ci| ≤ log8m and since Si is a

γ-expanding ball with γ ≥ δ logm/5 log n this means that in the induced subgraph G[Si] we have that

Ci = Bki(vi) for some

ki ≤
2 log(log8m)

γ
≤ 80 log n log logm

δ logm
≤ (log logm)4 ,
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where the second inequality relies on the lemma’s assumption that logm ≥ log1−o(1) n. Combining

the above facts about ki and k′i we get that setting ri = logm/30 log logm we have in the graph G[Si]

Bri(Ci) ⊆ Si . (26)

We now turn to show that Ci satisfies (20) with respect to G′ defined in (25). Since Si is a γ-

expanding ball we get from (12) that |NG[Si](Ci)| ≥ δ|Ci| logm/5 log n. Recall now that Si is disjoint

from
⋃
r 6=i,j Cr, and that (26) implies that NG[Si](Ci) ⊆ Si. Hence

|NG′(Ci)| ≥ |NG[Si](Ci)| − |W | ≥ δ|Ci| logm/5 log n− log2 n

≥ δ|Ci| logm/10 log n ,

where the last inequality uses the fact that |Ci| ≥ log4m and the assumption logm ≥ log1−o(1) n. In

other words, we have in G′

|B1(Ci)| ≥
(

1 +
δ logm

10 log n

)
|Ci| . (27)

Recalling (26) we can continue inductively and get that for all k ≤ ri we have

|NG′(Bk(Ci))| ≥ |NG[Si](Bk(Ci))| − |W | ≥ δ|Bk(Ci)| logm/5 log n− log2 n

≥ δ|Bk(Ci)| logm/10 log n , (28)

where in the last inequality we again used the facts that |Bk(Ci)| ≥ |Ci| ≥ log4m and that logm ≥
log1−o(1) n. We get that Ci satisfies (20) for all k ≤ ri. To see this, note that by (26) Bk(Ci) ⊂
Bri(Ci) ⊆ Si implying that |Bk(Ci)| �

√
m. This means that in (20) the relevant d is log logm − 1,

implying that we should show that |NG′(Bk(Ci))| ≥ δ|Bk(Ci)| logm/20 log n as we indeed derive in

(28). ¿From (28) we also have

|Bri(Ci)| ≥ |Ci|
(

1 +
δ logm

10 log n

)ri
≥
(

1 +
δ logm

10 log n

) logm
30 log logm

≥ log11m , (29)

where the last inequality uses the the assumption that logm ≥ log1−o(1) n.

Consider now some k > ri and suppose |Bk(Ci)| ≤ m/22
d
. Then since G is assumed to be a

(δ, n)-expander we have

|NG′(Bk(Ci))| ≥ |NG(Bk(Ci))| − |W | −
∑
`

|C`| ≥ δ2d|Bk(Ci)|/ log n− log9m

≥ δ2d|Bk(Ci)|/2 log n ,

where the last inequality follows by combining the assumption that logm ≥ log1−o(1) n with (29) which

tells us that for any k ≥ ri we have |Bk(Ci)| ≥ |Bri(Ci)| ≥ log11m. So Ci satisfies (20) for all d.
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