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Abstract

We study graph properties which are testable for bounded degree graphs in time independent of the
input size. Our goal is to distinguish between graphs having a predetermined graph property and graphs
that are far from every graph having that property. It is believed that almost all, even very simple graph
properties require a large complexity to be tested for arbitrary (bounded degree) graphs. Therefore in this
paper we focus our attention on testing graph properties for special classes of graphs. We call a graph
family non-expanding if every graph in this family has a weak expansion (its expansion is O(1/ log2 n),
where n is the graph size). A graph family is hereditary if it is closed under vertex removal. Similarly,
a graph property is hereditary if it is closed under vertex removal. We call a graph property Π to be
testable for a graph family F if for every graph G ∈ F , in time independent of the size of G we can
distinguish between the case when G satis�es property Π and when it is far from every graph satisfying
property Π. In this paper we prove that

in the bounded degree graph model, any hereditary property is testable if the input graph
belongs to a hereditary and non-expanding family of graphs.

As an application, our result implies that, for example, any hereditary property (e.g., k-colorability,
H-freeness, etc.) is testable in the bounded degree graph model for planar graphs, graphs with bounded
genus, interval graphs, etc. No such results have been known before, and prior to our work, very few
graph properties have been known to be testable for general graph classes in the bounded degree graph
model.
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1 Introduction
The area of Property Testing deals with the problem of distinguishing between two cases: that an input object
(for example, a graph, a function, or a point set) satis�es a certain predetermined property (for example,
being bipartite, monotone, or in convex position) or is �far� from satisfying the property. Loosely speaking,
an object is ε-far from having a property Π, if it differs in an ε-fraction of its description from any object
having the property Π. For example, when the object is a (dense) graph represented by an adjacency matrix
and the property is bipartiteness, then a graph is ε-far from bipartite if one has to delete more than ε n2 edges
to make it bipartite.

Given oracle access to the object, many objects and properties are known to have randomized property
testing algorithms whose time complexity is sublinear in the input description size; often, we can even
achieve running time completely independent of the input size. In particular, sublinear-time property testing
algorithms have been considered for graphs and hypergraphs, functions, point sets, formal languages, and
many other structures (for the references, see the excellent surveys [14, 16, 17, 23, 29]). After a series of
results for speci�c problems, recently much attention has been devoted to study a more general question:
which properties can be tested in time independent of the input size. This question has been especially
extensively investigated for properties of dense graphs represented by an adjacency matrix. It turned out
that property testing in dense graphs is closely related to Szemerédi's regularity lemma. Very recently, this
relation has been made explicit by showing that any property is testable if and only if it can be reduced to
testing the property of satisfying a �nite number of Szemerédi-partitions (see [2]). Furthermore, it has been
shown that a property is testable with one-sided error if and only if it is either hereditary or it is close (in
some well-de�ned sense) to a hereditary property (see [6] and [11, 26]).

While property testing in dense graphs is relatively well-understood, surprisingly little is known about
property testing in sparse graphs. Properties of sparse graphs are traditionally studied in the model of
bounded degree graphs introduced by Goldreich and Ron [21]. In this model, the input graph G is repre-
sented by its adjacency list and the vertex degrees are bounded by a constant d independent of the number
of vertices of G (denoted by n). A testing algorithm has a constant-time access to any entry in the adjacency
list by making a query to the ith neighbor of a given vertex v, and the number of accesses to the adjacency
list is the query complexity of the tester. A property testing algorithm is an algorithm that for a given graph
G determines if it satis�es a predetermined property Π or it is ε-far from property Π; a graph G is ε-far
from property Π if one has to modify more than ε d n edges in G to obtain a graph having property Π. These
results, imply that in the adjacency matrix model, essentially any �natural� graph property can be tested with
a constant number of queries.

Unlike the adjacency matrix model, in the bounded degree graph model only a few, very simple graph
properties (like connectivity) are known to be testable in constant time [21] and the main research focused
on designing property testers with sublinear query complexity (like, O(

√
n) tester for bipartiteness [21]).

Even more, it has been demonstrated that unlike in the adjacency matrix model, in the bounded degree model
many basic properties have a non-constant query complexity. For example, acyclicity in directed graphs has
Ω(n1/3) query complexity [9], the property of being bipartite has query complexity Ω(

√
n) [21], and the

query complexity of testing 3-colorability is Ω(n) [10]. In fact, it is believed that very few properties can be
tested in the bounded degree model with o(

√
n) or even with o(n) query complexity.

In this paper, we take a new approach and we study property testing in the bounded degree model
under the assumption that the input graph belongs to a certain (natural) family of graphs. The goal of this
investigation is to identify natural families of graphs, such as planar graphs, for which many properties
can be ef�ciently under the assumption that the input graph belongs to the family, even though the testing
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problem may be very hard in the general case.
For the rest of this paper, we say that a graph property is testable if it can be tested in time independent

of the size of the input graph. A family of graphs is called non-expanding if it does not contain graphs
with expansion larger than 1/ log2 n; (this is informally equivalent to the families of graphs with some good
separator properties). A family of graphs is called hereditary if it is closed under vertex removal. Similarly,
a graph property is called hereditary if it is closed under vertex removal. We show the following result:

In the bounded degree graph model, any hereditary property is testable
if the input graph belongs to a hereditary and non-expanding family of graphs.

The reader is referred to Theorem 1 for the precise statement of our main result. Hereditary graph prop-
erties have been extensively investigated in combinatorics, graph theory, and theoretical computer science
(see also the recent results about testability of hereditary graph properties in the dense graph model [6]). The
class of hereditary graph properties contains also trivially all monotone graphs properties (properties closed
under removal of edges and vertices). Many interesting graph properties are hereditary, for example, being
acyclic, stable (independent set), planar, perfect, bipartite, k-colorable, chordal, perfect, interval, permuta-
tion, having no induced subgraph H , etc. (see also [16, 28]). Our result implies that these properties can
be tested (in the bounded degree graph model) when the input graph belongs to a family of graphs which
is hereditary and non-expanding. Examples of natural hereditary non-expanding families are planar graphs,
graphs with bounded genus, graphs with forbidden minors, unit disk graphs, interval graphs, (planar) geo-
metric intersection graphs, etc. We are not aware of any prior results showing testability of these properties
for non-trivial classes of graphs.

2 Preliminaries
Let G = (V, E) be an undirected graph with n vertices and maximum degree at most d. Without loss of
generality, we assume that V = {1, . . . , n}. We write [n] := {1, . . . , n}. Given a subset S ⊆ V of vertices,
we use G|S = (S, E|S) to denote the subgraph induced by S, where E|S = {(u, v) ∈ E ∩ (S × S)}. We
assume that G is stored in the adjacency list model for bounded degree graphs with maximum degree d.
In this model, we have constant time access to a function fG : [n] × [d] → [n] ∪ {+}, such that fG(v, i)
denotes the ith neighbor of v or a special symbol + in the case that v has less than i neighbors.

De�nition 2.1 A graph G is ε-far from a property Π if one has to modify more than εdn entries in fG to
obtain a graph with property Π.

2.1 Testing a property in a graph family
In this paper, our main focus is on testing various graph properties for bounded degree graphs from certain
graph families (e.g., planar graphs or unit disk graphs).

An algorithm that is given n and has access to fG is called an ε-tester for a graph family F if it

(a) Accepts with probability at least 2
3 any graph G ∈ F that has property Π.

(b) Rejects with probability at least 2
3 any graph G ∈ F that is ε-far from Π.

If the ε-tester always accepts any graph G ∈ F that has property Π, then it is said to have one-sided error.
The ε-testers presented in this paper have one-sided error. They will in fact accept with probability 1 any
graph that satis�es Π (even if it does not belong to F).
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A property is called testable for a family F if for any �xed 0 < ε < 1 there is an ε-tester for F whose
total number of queries to the function fG is bounded from above by a function, which depends only on ε
and not on the size n of the input graph. Following [5], we de�ne a property Π to be uniformly testable if
there is an ε-tester for Π that receives ε as part of the input. A property Π is said to be non-uniformly testable
if for every �xed ε, 0 < ε < 1, there is an ε-tester that can distinguish between graphs that have property Π
from those ε-far from having Π (which may not work properly for other values of ε).

For a pair of disjoint vertex sets V1, V2 we denote by e(V1, V2) the number of edges connecting vertices
from V1 with vertices from V2. For each vertex v ∈ V , we denote its neighborhood by N (v) = {u ∈ V :
(v, u) ∈ E}. We generalize this notion to sets by de�ning N (S) =

⋃
v∈S N (v) \ S. Furthermore, we

let D(v, r) denote the set of vertices which have distance at most r from v, i.e., D(v, 0) = v, D(v, 1) =
{v} ∪ N (v), etc.

A graph G = (V, E) is called a λ-expander, if for all S ⊆ V with |S| ≤ n/2, we have |N (S)| ≥ λ|S|.
With this, we can now de�ne non-expanding graph families.

De�nition 2.2 A family of graphs F is called non-expanding if there exists a constant nF such that all
graphs in F of size at least nF are not (1/ log2 n)-expanders 1.

2.2 Hereditary and non-expanding graph families
A family F of graphs is called hereditary if it is closed under vertex removal. Similarly, a graph property is
called hereditary if it is closed under vertex removal 2.

There are many interesting classes of families of graphs that are hereditary and non-expanding. For
example, the family of planar graphs is trivially hereditary, and also the classical planar separator theorem
[25] implies immediately that it is non-expanding. Indeed, the planar separator theorem implies that every
planar graph with n vertices (for a suf�ciently large n) has a subset of vertices A, 1

3 n ≤ |A| ≤ 1
2 n, such

that |N (A)| ≤ O(
√

n). Therefore, every planar graph with n vertices (n ≥ n0 for some constant n0) is
not an O(1/

√
n)-expander, and hence the family of planar graphs is non-expanding. As the example of

planar graphs shows, if a family of graphs has a good separator then it is non-expanding. Therefore, all
graph families with good separator properties (for graphs of bounded degree) are non-expanding. Hence,
other families of graphs (of bounded degree) that are hereditary and non-expanding include, among others:
the class of graphs with bounded genus, graphs with forbidden minor, interval graphs, etc. For example,
the result for graphs of bounded genus and graphs with forbidden minor follow directly from the separator
theorem such graphs. And so, Gilbert et al. [15] proved that any graph on n vertices with genus g has a
separator of order O(

√
gn), and Alon et al. [4] showed a similar results for graphs with forbidden minors:

if G has no minor isomorphic to a given h-vertex graph H , then G has a separator of size O(h3/2n1/2).

3 Proof of the Main Result
In this section we prove our main result by showing that the following algorithm is an ε-tester for any
hereditary property Π and any hereditary non-expanding family of graphs F .

1The choice of the factor 1/ log2 n can be relaxed. In fact, using known bounds one can replace 1/ log2 n with
1/(log n log2 log n).

2There is, of course, no difference between a graph property and a family of graphs. We use the different terms in order to
distinguish between the property we want to test and the family of graphs to which the input is assumed to belong to.
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ε-TESTER(G,n,Π)
sample a set S of s1 vertices uniformly at random
for each v ∈ S do

Uv = D(v, s2)
U =

⋃
v∈S Uv

if G|U does not satisfy property Π then reject
else accept

Clearly, the number of queries to fG is upper bounded by 2 s1 ds2 , which for s1 and s2 being constants
independent of n, gives the number of queries to be independent of n. We will give the exact values for s1

and s2, which are independent of n but do depend on ε and Π, at the end of our analysis, in the proof of
Theorem 1.

Since Π is hereditary, we know that our algorithm accepts any graph that has property Π (even if it does
not belong toF). Thus, we only have to show that any graph that is ε-far from Π and belongs toF is rejected
with probability at least 2

3 .
We begin our analysis with the following lemma.

Lemma 3.1 LetF be any hereditary non-expanding family of graphs and let nF be the constant from De�ni-
tion 2.2. Let δ be an arbitrary positive parameter. If G = (V, E) ∈ F satis�es n = |V | ≥ max{2nF , 22/δ2}
then one can partition V into two sets V1 and V2, such that |V1|, |V2| ≥ n

4 and e(V1, V2) ≤ δ d n/ log1.5 n.

Proof : Since F is non-expanding, every graph G ∈ F on n ≥ nF vertices is not a 1/ log2 n-expander.
Therefore, there exists a set S ⊆ V of cardinality at most n

2 such that |N (S)| ≤ |S|/ log2 n. We �rst
observe that if |S| ≥ n

4 , then we can take V1 = S and V2 = V \ S. Indeed, since |N (S)| ≤ |S|/ log2 n,
there are at most dn/ log2 n edges between V1 and V2. Therefore, if in addition n > 22/δ2 , we can infer that

e(V1, V2) ≤ dn/ log2 n ≤ δ d n/ log1.5 n ,

as needed.
Assume then that |S| < n

4 and consider the graph G|V \S (the induced graph on V \ S). Since F is
hereditary, G|V \S ∈ F , and |V \S| > nF (recall that n > 2nF ), we can apply the same arguments as above
to conclude that there is a set S′ ⊆ (V \ S) of cardinality at most n

2 such that |N (S′)| ≤ 2|S′|/ log2 n. If
we have |S ∪ S′| ≥ n

4 then using the same arguments as above, we are done by setting V1 = S ∪ S′ and
V2 = V \V1. Otherwise, we can replace S by S ∪S′ and continue in the same manner. Eventually, we have
a set S ∪ S′ with more than n

4 vertices and |N (S ∪ S′)| ≤ 2 |S ∪ S′|/ log2 n. If we set V1 = S ∪ S′ and
V2 = V \ V1, then these sets will satisfy the condition in the lemma. 2

Let us call a connected component non-trivial if it has more than a single vertex. The following is a
corollary of Lemma 3.1.

Corollary 3.2 For every hereditary and non-expanding family of graphs F , there exists a positive constant
c = cF , such that one can remove from any graphs G ∈ F a set of at most ε d n/2 edges, such that

(i) Their removal partitions G into connected components C1, C2, . . . of size at most 2c/ε2 .

(ii) Each connected component Ci is an induced subgraph of G.
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(iii) No edge connects in G two non-trivial connected components Ci and Cj .

Proof : Let nF be the constant associated with F as in De�nition 2.2, let G be any graph in F , and let δ be
a parameter to be chosen later. We apply Lemma 3.1 to obtain two sets V1 and V2 with at most δ d n/ log1.5 n
edges connecting V1 and V2. Assume |V1| ≤ |V2| and let U∗ = N (V1). Since the number of edges between
V1 and V \ V1 is at most δ d n/ log1.5 n, we also have |U∗| ≤ δ d n/ log1.5 n. Remove from G all edges
incident to U∗. Since |U∗| ≤ δ d n/ log1.5 n and G has maximum degree at most d, we removed at most
δ d2 n/ log1.5 n edges from G. Next, let U1 = V1 and U2 = V2 \U∗. Observe that for δ ≤ log1.5 n/(4d) we
have n

4 ≤ |U1|, |U2| ≤ 3n
4 and that there is no edge in G between U1 and U2.

Then we recursively apply Lemma 3.1 on the induced subgraphs G|U1
and G|U2

; we proceed recursively
until we obtain a subgraph of size at most max{2nF , 22/δ2}. In this way, we removed some number of
edges from G and obtained a subgraph of G denoted H , on V (G) with connected components C1, . . . , Cq.
Observe that the sets U∗ obtained in the recursive calls will always result in trivial connected components,
because we removed all edges incident to the vertices in U∗. Let H1, . . . , Hk be non-trivial connected
components in our new graph. By de�nition, every Ci has size |Ci| ≤ max{2nF , 22/δ2}. Similarly, our
construction ensures that no edge is removed between any pair of vertices in a single Hi and that there is no
edge in G between any pair of graphs Hi and Hj . We now estimate the number of edges removed.

By Lemma 3.1, the number of edges removed from G is upper bounded by function Q(n) de�ned by
the following recurrence:

Q(n) =

{
0 if n ≤ max{2nF , 22/δ2}
δ d2 n/ log1.5 n + max 1

4
≤τ≤ 3

4
{Q(τ n) + Q((1− τ) n)} if n > max{2nF , 22/δ2} .

Since Q(n) = Θ(δ d2 n), we can conclude that the graph H is obtained from G by removal of at most
c′ δ d2 n edges, for some absolute positive constant c′. This yields the proof by setting δ = ε/(2dc′).
Finally, recall that all the connected components of H had size |Ci| ≤ max{2nF , 22/δ2} ≤ 2c/ε2 if we take
c = cF = 2 d c′ nF . 2

Let us explain the importance of the three properties of the resulting graph stated in Corollary 3.2.
Property (i) ensures that every connected component is small. Property (ii) ensures that if we have some in-
duced subgraph of a non-trivial connected component Hi then it is also an induced subgraph of G. Property
(iii) ensures that if we have a set of induced subgraphs Qi1 , Qi2 , . . . , Qi` of graphs Hi1 ,Hi2 , . . . , Hi` , then
these copies of the subgraphs do not intersect in H . Therefore, if we de�ne a graph Q̂ with ` connected
components, where the jth connected of Q̂ is isomorphic with Qij , then Q̂ is also an induced subgraph of
G.

3.1 Hereditary graph properties
It is well known (and easy to see) that any hereditary graph property Π can be characterized by a (possibly
in�nite) set of minimal forbidden induced subgraphs (see, e.g., [6, Section 4]). Let us denote by HΠ

forb a
minimal family of forbidden subgraphs for property Π. Notice that in general, HΠ

forb may be an in�nite
family of forbidden graphs. Observe that, for example, if Π is the property of being bipartite, then HΠ

forb

can be chosen to be the set of all odd cycles, and if Π is the property of being chordal, then HΠ
forb is the set

of all cycles of length at least 4.
For simplicity of presentation (but without loss of generality) we will assume that the graphs in HΠ

forb

contain no isolated vertices. The reason why we can make such an assumption is that every large enough
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bounded degree graph G will always have an arbitrary large induced subgraph that consists of isolated
vertices only. Therefore, in such cases, all large enough graphs will not satisfyHΠ

forb , and thus testingHΠ
forb

becomes trivial.
Next, let us consider an arbitrary graph G ∈ F that is ε-far from Π. By Corollary 3.2, we can remove

from G at most ε d n/2 edges to obtain a graph H on the same vertex set for which each connected compo-
nent has at most r = 2c/ε2 vertices. Furthermore, if H1, . . . ,Hk are the non-trivial connected components
of H , then there is no edge in G that connects any of these connected components and each Hi is an induced
subgraph of G. Since G is ε-far from Π, H is still ε/2-far from Π. Since all connected components in
H have size at most r (which is independent of n), H cannot contain as a subgraph any graph that has a
connected component with more than r vertices. Let Jr denote the family of all graphs whose connected
components have size at most r (notice that Jr is independent of G). We conclude that it suf�ces to consider
the subgraphs in HΠ

forb ∩ Jr.

Corollary 3.3 If G ∈ F is ε-far from Π, then H (de�ne above) contains as an induced subgraph a graph
from HΠ

forb ∩ Jr. The same holds if we remove from H any set of at most ε d n/2 edges. ut

Let us denote by c(r) the number of connected (unlabeled) graphs on a set of at most r vertices; clearly
c(r) ≤ 2(r

2). Let us enumerate all possible connected graphs with at most r vertices by G1, . . . , Gc(r). Then,
we can de�ne any graph G in HΠ

forb ∩ Jr as a c(r)-ary integer vector f = 〈f1, . . . , fc(r)〉, where fi denotes
the number of copies of graph Gi occurring as a connected component in G. In what follows, we call f a
characteristic vector of G (with respect to HΠ

forb and Jr).
Similarly, let us de�ne a c(r)-ary integer vector g〈H〉 = 〈g〈H〉1 , . . . , g

〈H〉
c(r)〉 with g

〈H〉
i being the number of

induced copies of graph Gi in H . Notice the fundamental difference between the ways of counting copies
of Gi in G and in H: all copies of graphs G1, . . . ,Gc(r) counted in the characteristic vector of G are disjoint
while the induced copies of these graphs counted in g〈H〉 can intersect.

Lemma 3.4 Let F be a �xed hereditary non-expanding family of graphs and let Π be a �xed hereditary
property. Suppose that G ∈ F is a graph of degree at most d that is ε-far from Π. Assume that we
apply Corollary 3.2 on G and obtain a subgraph of G denoted H with the property that all connected
components of H are of size at most r. Then, there exists a graph G ∈ HΠ

forb ∩ Jr with characteristic
vector f = 〈f1, . . . , fc(r)〉 such that for all 1 ≤ i ≤ c(r) it holds that if fi > 0 then g

〈H〉
i ≥ γ n, where

γ = ε · d/2r2 .

Proof : Let G1, . . . ,Gc(r) be all connected graphs of size at most r. We will �rst construct a graph H ′

by removing some edges from H so that for any graph Gi either H ′ contains no copy of Gi or it contains
at least γ n such copies. We proceed sequentially over the graphs G1, . . . , Gc(r). For each Gi we do the
following: if the number of induced copies in the current graph obtained from H is smaller than γ n, then
we remove all the edges of any connected component that contains Gi as an induced subgraph. Since we
perform at most c(r) iterations and in each iteration we remove at most

(
r
2

) · γ n edges, the total number of
edges removed is bounded by c(r) · (r

2

) · γn < ε d n/2. At the end of the process we obtain a graph H ′ with
the property that for any graph Gi either H ′ contains no copy of Gi or it contains at least γ n such copies.

Since G was assumed to be ε-far from Π, and H was obtained from G by removing at most ε d n/2
edges, we have that H is ε

2 -far from Π. Also, since H ′ is obtained from H by removing less than ε d n/2
edges, H ′ does not satisfy Π and hence it contains a graph G ∈ HΠ

forb ∩ Jr. Now, by the conclusion of the
previous paragraph, this means that if G has characteristic vector 〈f1, . . . , fc(r)〉 then for every i for which
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fi > 0 we must have that H ′ contains at least γ n copies of Gi. Finally, observe that from the de�nition of
the process of obtaining H ′ it follows that H must contain at least this many induced copies of Gi. Hence,
for every i for which fi > 0 we have g

〈H〉
i ≥ γ n. 2

3.2 Function ΨΠ

We now introduce a key notion that we will use to test a hereditary property Π. Note, that the discussion
below does not relate to the family of graphs F to which the input instance should belong. Given a family of
pairwise non-isomorphic connected graphs {G1, . . . , Gk} let m({G1, . . . ,Gk}) be the least integer m with
the property that the graph that contains m vertex disjoint copies of each of the graphs Gi does not satisfy
Π. If no such integer m exists, then we set m({G1, . . . , Gk}) = ∞. For an integer r, let Πr be the family
of all sets of pairwise non-isomorphic connected graphs {G1, . . . ,Gk} with the property that all the graphs
Gi are of size at most r and m({G1, . . . , Gk}) < ∞.

De�nition 3.5 For a �xed hereditary property Π we de�ne a function ΨΠ : N 7→ N as follows:

ΨΠ(r) = max
{G1,...,Gk}∈Πr

m({G1, . . . ,Gk}) .

In case Πr = ∅ we set ΨΠ(r) = 0.

Note that the above is well de�ned as for a �xed integer r the set Πr is �nite.

3.3 Proof of the main theorem
We now formally state and prove the main result of this paper.

Theorem 1 Let F be a hereditary and non-expanding family of graphs. Then every hereditary graph prop-
erty Π is non-uniformly testable for F with one-sided error. Furthermore, Π is uniformly testable with
one-sided error if ψΠ is computable (or if its approximation is computable, where the quality of the approx-
imation must be independent of the input graph size).

Proof : Suppose that G ∈ F is ε-far from Π and consider the subgraph H of G that is obtained via
Corollary 3.2. By Lemma 3.4, there is a graph G that does not satisfy Π with the property that all its
connected components Gi are of size at most r = 2c/ε2 and each of these connected component appears
as an induced subgraph of H at least γn times, where γ = εd/2r2 . Observe that since each connected
component of H is of size at most r, each of these connected components contains at most 2r copies of each
of the connected components Gi of G. Therefore, for each Gi we have that at least γn/2r of the connected
components of H contains an induced copy of Gi.

Consider now the set of distinct connected components of G, denoted {G1, . . . ,Gk}. Since G 6∈ Π we
have that m({G1, . . . ,Gk}) < ∞ (cf. Section 3.2). Now the de�nition of ΨΠ guarantees that the graph
obtained by taking ΨΠ(r) vertex disjoint copies of each of the graphs Gi does not satisfy Π. By the �rst
paragraph of the proof, a randomly chosen vertex belongs to a connected component of H which contains
a copy of Gi with probability at least γ/2r. Therefore, by Markov's inequality a randomly chosen sample
of size 10 · c(r) · 2r ·ΨΠ(r)/γ will, with probability at least 2/3, contain k ·Ψ(r) vertices {vi,j}1≤j≤ΨΠ(r)

1≤i≤k

that belong to distinct connected component of H , with the property that for every 1 ≤ j ≤ ΨΠ(r), the
connected component of H to which vi,j belongs, is an induced copy of Gi. In particular, the graph that is
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obtained by taking the disjoint union of the connected components to which the vertices vi,j belong does
not satisfy Π.

Finally, since G does not contain edges connecting vertices from distinct non-trivial connected compo-
nents of H , we get that any graph that is obtained by taking the union of non-trivial connected components
of H is also an induced subgraph of G. Therefore, with probability at least 2/3 the tester will reject G. Also,
from the above analysis one can see that we can set s2 = r = 2c/ε2 and s1 = 10 · c(r) · 2r ·ΨΠ(r)/γ. 2

3.4 Discussion
When do we need ΨΠ: Notice that the function ΨΠ, de�ned in Section 3.2 is not necessarily computable.
However, we only need this de�nition in order to obtain a general result on all hereditary properties. Ob-
serve, for example, that for any hereditary property Π that is closed under disjoint union3 we have that
ΨΠ(r) = 1. Therefore, in these cases we have a trivial function Ψ. Furthermore, notice that any natural
hereditary property, such as those discussed throughout the paper, is closed under disjoint union, therefore
for such properties we get uniform testers (for any hereditary family of graphs F).

When does Π have a uniform tester: The proof of Theorem 1 shows that when the function ΨΠ is com-
putable then one can design a one-sided error uniform tester for Π. Using arguments similar to those used
in [8], it can be shown that if the tester is allowed to use the size of the input in order to make its decisions
then all hereditary properties have a uniform tester with constant query complexity but with running time
that depends on n. Following [8], let us de�ne an oblivious tester as one that has no access to the size of
the input when making its decisions. Given ε, an oblivious tester computes a number q = Q(ε), and then
asks an oracle for D(v, q) for all the vertices v ∈ S, where S is a random subset of vertices of V (G) of size
q (recall that D(v, q) is the neighborhood of v of radius q). Using the answers to these queries the tester
should either accept or reject the input. Observe that the algorithm we design in the proof of Theorem 1 is
oblivious. Therefore, if ΨΠ is computable, then Π has an oblivious one-sided error uniform tester.

Let us show that for any hereditary property Π, the computability of ΨΠ is not only suf�cient but also
necessary, if one wants to design an oblivious one-sided error tester for Π. Here is a sketch of the proof. It
is easy to see that an oblivious one-sided error tester for a hereditary property must accept the input if the
graph that is spanned by

⋃
v∈S D(v, q) satis�es the property 4. Suppose then that Π can be tested with query

complexity Q(ε). We claim that in this case ΨΠ(r) ≤ Q(1/2r2
) and since Q is assumed to be computable,

then so does ΨΠ. Indeed, for any {G1, . . . ,Gk} ∈ Πr and for any positive integer d, consider a graph
consisting of d disjoint copies of each graph Gi. Let us think of this graph as consisting of d clusters Cj ,
where each cluster Cj contains one copy of each of graphs G1, . . . , Gk. This graph has degree bounded by r

and we claim that for all large enough d, it is 1/2r2-far from Π. Let us denote by n the number of vertices of
the graph and by m the number of vertices in each cluster Ci, and observe that m ≤ r2(r

2). Therefore, after
adding/removing at most n

4m edges, we will still have n
2m clusters Cj which have not changed. Therefore,

as m({G1, . . . ,Gk}) < ∞ for large enough d, the new graph still does not satisfy Π. We thus conclude that
for large enough d, the graph is at least 1/(4mr)-far from satisfying Π (and 1/(4mr) ≤ 1/2r2). However,
since the algorithm must �nd a graph that does not satisfy Π, it must ask at least m({G1, . . . ,Gk}) queries in

3That is, if G1 = (V1, E1) and G2 = (V2, E2) satisfy the property, then so does G3 = (V1 ∪ V2, E1 ∪ E2).
4Suppose the tester rejects an input even though

S
v∈S D(v, q) satis�es Π. In that case if we were to execute the tester on the

graph that is de�ned as the disjoint union of {D(v, q) : v ∈ S} it would have a non-zero probability of rejecting this graph even
though it satis�es the property.
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order to succeed on such graphs. Therefore, m({G1, . . . ,Gk}) ≤ Q(1/2r2
) for any set {G1, . . . ,Gk} ∈ Πr

and by the de�nition of ΨΠ this means that ΨΠ ≤ Q(1/2r2
) as needed.

4 Conclusions
In this paper we made a �rst attempt to give general testability results for graphs belonging to restricted
families of graphs. We showed that all hereditary graph properties are (non-uniformly) testable, if the input
graph comes from a family of graphs that is hereditary and non-expanding. Some interesting open questions
include.

• Which properties can be tested for expander graphs? Which properties can be tested in O(
√

n) time
for expander graphs?

• Which properties can be tested for non-expanding families of graphs when only the average degree of
the graph is bounded?

• Which properties can be tested for directed graphs in sublinear time (in particular, when we can see a
directed edge 〈u, v〉 only from vertex u)?
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