
A TIGHT BOUND FOR TESTING PARTITION PROPERTIES

Abstract. A partition property of order k asks if a graph can be partitioned into k vertex sets of
prescribed sizes so that the densities between any pair of sets falls within a prescribed range. This
family of properties has been extensively studied in various areas of research ranging from theoretical
computer science to statistical physics. Our main result is that every partition property of order k
is testable with query complexity poly(k/ε). We thus obtain an exponential improvement (in k)

over the (1/ε)O(k) bound obtained by Goldreich, Goldwasser and Ron in their seminal FOCS 1996
paper. We further prove that our bound is tight in the sense that it cannot be made sub-polynomial
in either k or ε.

Besides the intrinsic interest in obtaining a tight bound for the above well studied family of
properties, our improved bound has several algorithmic implications, stemming from the fact that it
remains polynomial even when testing partition properties of order k = poly(1/ε).

1. Introduction

1.1. Background and previous results. Property testers are fast randomized algorithms that can
distinguish between objects satisfying some predetermined property P and those that are ε-far from
satisfying P . In most cases being ε-far means that an ε-proportion of the object’s representation
needs to be changed in order to obtain a new object satisfying P . Hence, testing for P is a relaxed
version of the classical decision problem which asks to decide whether an object satisfies P . While
questions of this nature have been implicitly studied for many years in various areas of mathematics,
the first explicit studies with a computational motivation where conducted by Blum, Luby and
Rubinfeld [BLR93] and by Rubinfeld and Sudan [RS96]. In this paper we study properties of graphs
in the so called adjacency matrix model (which is also sometimes referred to as the dense graph
model). This is arguably one of the most well studied models in the area of property testing. For
the sake of brevity, we refer the reader to [Gol17, BY22] for more background and references on
property testing and graph property testing in particular.

We now introduce the precise definitions regarding testing graph properties in the adjacency
matrix model. A graph property P is simply a family of graphs closed under isomorphism. A
graph G on n vertices is ε-far from P if one should add/delete at least εn2 edges to turn G into a
graph satisfying P . If G is not ε-far from P then it is ε-close to P . A tester for P is a randomized
algorithm that given ε > 0 distinguishes with high probability (say, 2/3) between graphs satisfying
P and those that are ε-far from P . We assume the algorithm can randomly sample a set S of
vertices from V (G) and then ask an oracle for G[S], which is the graph induced by G on S. The
query complexity of a tester is the size of the set S it samples1. If P has a tester whose query
complexity depends only on ε (and is independent of n) then P is called testable.

Property testing in the adjacency matrix model (as describe above) was first introduced by
Goldreich, Goldwasser and Ron [GGR98] in the seminal paper which lay the groundwork for the
area of combinatorial property testing. The main result of [GGR98] was that a general family of
so-called partition properties are all testable. Roughly speaking, a partition property asks if the
vertex set of an input graph can be partitioned into a certain numbers of sets, of certain sizes, so
that the number of edges between these sets fall within certain ranges. The precise definition reads
as follows.

1It is more common to measure the query complexity of a tester using the number of edge queries it makes. By a
theorem of Goldreich and Trevisan [GT03, Theorem 2], these two measures of query complexity are quadratically
related. Since such gaps will not matter to us in this work, we opt to work with the measure we defined above.
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2 A TIGHT BOUND FOR TESTING PARTITION PROPERTIES

Definition 1.1 (Partition Properties). A partition property of order k is given by a set of parameters
Φ := {αLB

i , αUB
i }ki=1 ∪ {dLB

ij , d
UB
ij }ki≤j=1 in [0, 1]. The graph property PΦ is defined as the set of all

n-vertex graphs G having a partition V (G) = {V1, . . . , Vk} satisfying the following inequalities.

⌊αLB
i · n⌋ ≤ |Vi| ≤ ⌈αUB

i · n⌉ ∀i ∈ [k]; (1)

⌊dLB
ij · n2⌋ ≤ e(Vi, Vj) ≤

⌈
dUB
ij · n2

⌉
∀1 ≤ i ≤ j ≤ k. (2)

Remark 1.2. We used floor/ceiling in (1) and (2) just to make sure that the property is non-empty
for all n. Since these technicalities are immaterial for large n, we will drop these floor/ceiling signs
from this point on.

It is easy to see that many well studied graph properties such as k-colorability, Max-Cut,
Max-Bisection and Max-Clique can all be described in the above framework.

We should also point that partition properties have been extensively studied (under different
names) in various other areas such as machine learning, statistical physics and network analysis.
Perhaps the most notable one is the so called Stochastic Block Model (sometimes called Planted
Partition Model) in which the input is a random graph G generated according to some predetermined
edge densities as in Definition 1.1, and the goal is to reconstruct the partition of V (G) which witnesses
this fact (observe that the fundamental hidden clique problem is just a special case). We refer
the reader to the extensive surveys [Abb18, LW19] for more background and references regarding
various aspects of this problem in various areas of research.

The main result of Goldreich, Goldwasser and Ron proved in [GGR98] was that every partition

property Φ of order k, is testable with query complexity (1/ε)O(k). Following [GGR98], partition
properties have been extensively studied in various papers. For example, Alon et al. [AFdlVKK03]
studied testing of Constrained Satisfaction Problems (CSPs), which, in the setting of graphs2, are
essentially equivalent to partition properties with k = 2 and no constraints on the sizes of V1, V2.
Their main result was an improved bound for k = 2 compared to the one given by [GGR98] (e.g.
for testing Max-Cut). Their result was later improved by Rudelson and Vershynin [RV07]. More
general CSPs were studied by Andersson and Engebretsen [AE02], Czumaj and Sohler [CS05] and
Alon and Shapira [AS02], but they all correspond to very special types of partition properties, for
example, only allowing 0/1 constrains on the edge densities dLB

ij , d
UB
ij and not allowing any constraints

on the sizes of V1, . . . , Vk (i.e. restricting to the case where all αLB
i = 0 and all αUB

i = 1).

1.2. Our new results. Given the above discussion it is natural to ask if the (1/ε)O(k) bound of
[GGR98] can be improved. Our main result in this paper gives the first improved bound for testing
general partition properties, showing that the dependence on k can be improved from exponential
to polynomial.

Theorem 1.3. Every partition property of order k is testable with query complexity poly(k/ε).

Obviously the improved bound in Theorem 1.3 manifests itself for large k. For example, by
Theorem 1.3, even partition properties of order k = poly(1/ε) are testable with query complexity

poly(1/ε), which is an exponential improvement over the 2poly(1/ε) bound supplied by [GGR98] for
this setting. As we elaborate in Subsection 1.3, there are some important applications of Theorem
1.3 that call for testing partition properties of order k that depends on ε.

2The result of [AFdlVKK03] also applies to special cases of partition properties of r-uniform hypergraphs.
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The above discussion naturally leads one to ask how tight is the dependence on k and ε in
Theorem 1.3. While it is easy to see3 that the dependence on ε cannot be made sub-polynomial,
determining the dependence on k is more subtle. Although it might seem “obvious” that a tester
of every (non-trivial) partition property of order k should have query complexity Ω(k), there are
actually natural families of partition properties whose query complexity is only poly(ε−1, log k).
Indeed, a recent result of Fiat and Ron [FR21] states that every partition property of order k in which
all edge density parameters dLB

ij , d
UB
ij are 0/1 and where all αLB

i = 0 and all αUB
i = 1 (namely, where

there is no restriction on the sizes of the sets Vi) is testable with query complexity poly(ε−1, log k).
Having such an efficient bound for all partition properties would have been very useful for the study
of graph estimation algorithms, as discussed in Subsection 1.3. Our next theorem rules out such an
extension of the result of [FR21] to arbitrary partition properties, thus showing that in Theorem
1.3 the dependence on k should indeed be polynomial.

Theorem 1.4. For every k there is a partition property PΦ of order k so that every 0.0001-tester
of PΦ has query complexity Ω(

√
k).

While the above discussion revolved around algorithmic statements, we can deduce from the
tools we develop in this paper a purely combinatorial/probabilitic statement which might be of
independent interest. Here, and in what follows, an equipartition of a graph into sets V1, . . . , Vk is a
partition where ||Vi| − |Vj || ≤ 1 for all i, j. We also use d(A,B) to denote the edge density between
two disjoint vertex sets A,B, that is, the number of edges connecting A,B divided by |A| · |B|.
What the next theorem says is that a small sample of vertices Q from a graph G has the following
property with high probability: G has an equipartition with a prescribed set of edge densities if and
only if G[Q] has such an equipartition (up to a small error).

Theorem 1.5. For every ε > 0, δ > 0, and every integers k > 0, there is an integer q = q1.5(ε, k, δ) =
poly(ε, k, log 1

δ ) > 0 satisfying the following. Let Q be a set of q vertices taken uniformly at random
from a graph G of size n = |V (G)| ≥ q. Then, with probability at least 1− δ, the following holds.

(1) For every equipartition {Qi}ki=1 of G[Q], there is an equipartition {Vi}ki=1 of G satisfying

d(Vi, Vj) = d(Qi, Qj)± ε (3)

for every 1 ≤ i ≤ j ≤ k.
(2) For every equipartition {Vi}ki=1 of G, there is an equipartition {Qi}ki=1 of G[Q] satisfying

d(Qi, Qj) = d(Vi, Vj)± ε (4)

for every 1 ≤ i ≤ j ≤ k.

1.3. Applications of Theorem 1.3. Besides the intrinsic interest in obtaining a tight bound for
testing the family of partition properties, our improved bound in Theorem 1.3 has some important
algorithmic applications, stemming from the fact that our bound is polynomial in k. A property
is estimable (or tolerantly testable) if for every ε > 0 there is an algorithm with constant query
complexity (the constant may depend on ε) that approximates an object’s distance to satisfying
P within ε. This notion, which is at least as strong as testability, was introduced by Parnas, Ron
and Rubinfeld [PRR06], and has been extensively studied in various settings. The most important
question in this area asks about the relation between the hardness of testing a property and the
hardness of estimating it. One of the central results in the area of graph property testing is the
Fischer-Newman theorem [FN07] which states that every testable graph property P is also estimable.

3Indeed, consider the property of having no edges (i.e. being the empty graph), which is a partition property of
order k = 1. Then one clearly needs a sample of size Ω(1/ε) in order to distinguish between the empty graph (which
belongs to the property) and the complete bipartite graph with parts of sizes εn and (1− ε)n (which is ε-far from the
property).
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The proof in [FN07] relied on variants of Szemerédi’s regularity lemma [Sze78, AFKS00] and thus
supplied a very weak (tower-type) transformation from testing to estimating P . Several recent works
[FR21, GKS23, HKL+20, HKL+21] studied the very natural problem of designing a more efficient
transformation with a polynomial loss in the query complexity. All the above works relied on reducing
the task of estimating G’s distance to satisfying P , to the task of testing if G satisfies certain partition
properties. Now, the key point is that in the above papers [FR21, GKS23, HKL+20, HKL+21], the
partition properties are such that their order k depends on ε. For example, the partitions used
in [GKS23, HKL+20, HKL+21] are of order k = 2poly(1/ε), and so the results obtained in all these

papers rely crucially on the poly(k/ε) bound given by Theorem 1.3 (using the (1/ε)O(k) bound
of [GGR98] would have resulted in an exponential loss in the above papers). We expect that in
addition to [GKS23, HKL+20, HKL+21], our main result will be instrumental in future studies
related to testing and estimation of graph properties.

1.4. Proof and paper overview. The proof of Theorem 1.3 has two main steps. The first one,
given by Lemma 3.2, deals entirely with collections of vertex sets, that is, it has nothing to do with
graphs/edge-sets. Given a collection of vertex sets S1, . . . , St ⊆ V , it is natural to look at all t× k
intersection sizes between S1, . . . , St and some partition of V into k sets (relative to the size of V ).
What Lemma 3.2 states is that up to a small error, the possible intersection sizes one can obtain
by partitioning V , is the same as those achievable by partitioning a small randomly selected set of
vertices from V . The proof of this lemma relies on casting the problem as as a linear optimization
problem and using the hyperplane separation theorem (i.e. Farkas’s Lemma) to show that if V has
no partition with certain parameters, then there is a single linear inequality witnessing this fact.
One can then use a large deviation inequality to show that this linear inequality is also not satisfied
by the sample, and therefore it also lacks a partition with the same parameters. The second main
step in the proof, given by Lemma 3.6, states that in every graph, there is a small collection of sets
S1, . . . , St, so that for every A,B, knowing4 the intersection sizes of A,B with S1, . . . , St determines,
up to a small error, the number of edges between A,B. The proof of this lemma relies on the so
called Weak Regularity Lemma of Frieze and Kannan [FK99].

We should stress that here we rely on the Matrix Form of the Frieze–Kannan lemma, which
involves a decomposition of a matrix into poly(1/ε) many matrices. One can very easily prove
variants of the lemmas we prove here from the Graph Form of the Frieze–Kannan lemma (see
[FK96]), but this version of the lemma has bounds that are exponential in ε, so they fall short of
giving Theorem 1.3. In a nutshell, the graph form of the Frieze–Kannan lemma follows from the
matrix form by taking the Venn diagram of the sets in the matrix decomposition (see [FK99]). The
reason why working with the graph partition is much easier is that the sets in the partition are
disjoint. What Lemma 3.2 thus enables us is to overcome the difficulties that arise when working
with the overlapping sets of the matrix decomposition. The proof of Theorem 1.3 is given in
Section 3. In this section we also prove Theorem 1.5.

Finally, the proof of Theorem 1.4 is given in Section 4. The partition property that satisfies the
assertion of Theorem 1.4 is that of being a blowup5 of a graph K on k vertices. The graph K is
chosen randomly thus making sure that it has certain pseudo-random properties that enable the
deduction of Theorem 1.4 from Yao’s min-max principle [Yao77]. The main (implicit) idea is to
encode the task of testing graph isomorphism into the task of testing if a graph is a blowup of K.

4Goldreich asked in Subsection 8.3.2 of [Gol17] “why are general partition properties easily testable ?”. We think that
our new proof of the result of [GGR98] supplies a very succinct answer. The main structural explanation is that in every
graph G there are t = poly(1/ε) sets S1, . . . , St so that the densities between the sets of every partition V1, . . . , Vk of
V (G) are determined solely by the pairwise intersection sizes of V1, . . . , Vk and S1, . . . , St (this is Lemma 3.6 described
above). Given this, one only needs Lemma 3.2 (described above) in order to turn this structural explanation into a
poly(k/ε) sampling algorithm.
5A blowup of a k-vertex graph K is the n vertex graph obtained by replacing every vertex of K with a set of n/k
vertices, and every edge with a complete bipartite graph.
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2. Preliminaries

In this section we state three results that we will use in Sections 3 and 4. Given a graph
G = (V,E), whenever there is no risk of confusion, we will also use G to denote the adjacency matrix
of G — i.e. the matrix M ∈ {0, 1}V×V , where M(x, y) = 1 if xy ∈ E and M(x, y) = 0 otherwise.

Given two sets (not necessarily disjoint) S, T ⊆ V and a symmetric matrix M ∈ RV×V , we
write M(S, T ) =

∑
x∈S,y∈T M(x, y). For any given (not necessarily disjoint) subsets S, T ⊆ V , we

denote by KS,T the matrix M ∈ RV×V for which M(x, y) = 1 if x ∈ S and y ∈ T and M(x, y) = 0
otherwise. We also denote the matrix KS,S simply by KS .

The (normalized) cut norm of a matrix M ∈ RV×V is defined as

∥M∥□ =
1

|V |2
max
S,T⊆V

|M(S, T )|.

We stress that M is allowed to have negative entries. Intuitively, a matrix of small cut norm is
pseudo random. We also set ∥M∥∞ as the maximum of the absolute values of the entries of M . The
following is the matrix-form of the Frieze-Kannan Weak Regularity Lemma. It states that every
matrix can be written as a sum of few simple (rank 1) matrices and a pseudo random matrix.

Lemma 2.1 (Matrix Decomposition [FK99, Theorem 1]). For every ε > 0, there is an integer
T = T2.1(ε) = poly(ε−1) for which the following holds. Given a matrix M ∈ [0, 1]V×V , there is an
integer t ≤ T , sets Xr, Yr ⊆ V and real numbers dr (for all r ∈ [t]), such that

M =

t∑
r=1

dr ·KXr,Yr +∆,

where ∆ ∈ RV×V satisfies ∥∆∥□ ≤ ε, and
∑t

r=1 d
2
r ≤ 1, □

The next result states that if the cut norm of a matrix ∆ is small, then so is the cut norm of the
submatrix induced by a randomly selected small subset of the rows/columns of ∆.

Lemma 2.2 ([BCL+08, Theorem 2.10]). For every γ > 0, there is q = q2.2(γ, δ) = poly(γ−1, δ−1)
for which the following holds. Let ∆ ∈ RV×V be a matrix satisfying ∥∆∥□ ≤ 1

2γ and ∥∆∥∞ = O(γ−1).

If Q ∈
(
V
q

)
is a set of q vertices chosen uniformly at random from V , then

∥∆|Q×Q∥□ ≤ γ,

with probability at least 1− δ. □

The following concentration result is a consequence of Azuma’s inequality for martingales.

Lemma 2.3 (McDiarmid’s inequality [McD89, Lemma 1.2]). Let Z1, . . . , Zk be independent random
variables, where each Zi takes values in some finite Ωi. Suppose there is C > 0 and a function
f : Ω1 × · · · × Ωk → R for which |f(x)− f(y)| ≤ C whenever x = (x1, . . . , xk) and y = (y1, . . . , yk)
differ only in one coordinate. Then, for any λ > 0,

P(|f(Z)−E(f(Z))| ≥ λ) ≤ 2 exp{−λ2/2kC2}. □

3. Proof of Theorem 1.3

Most of this section is devoted to proving the following key lemma, which relates partitions of a
graph G and the partitions of a typical sample of G.
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Lemma 3.1. For every ζ > 0, δ > 0 and every integer k > 0, there is q = q3.1(ζ, k, δ) =

poly(ζ, k, log 1
δ ) satisfying the following. Let Q ∈U

(
V
q

)
be a set of q vertices taken uniformly at

random from a graph G of size n = |V (G)| ≥ q. Then, with probability at least 1 − δ, for every
partition {Qi}ki=1 of G[Q], there is a partition {Vi}ki=1 of G satisfying

(1)
1

n
|Vi| =

1

q
|Qi| ± ζ for every 1 ≤ i ≤ k;

(2)
1

n2
e(Vi, Vj) =

1

q2
e(Qi, Qj)± ζ for every 1 ≤ i ≤ j ≤ k.

Moreover, for every partition {Vi}ki=1 of G, there is a partition {Qi}ki=1 of G[Q] satisfying the two
constraints above.

Let us first deduce Theorem 1.3 from the above Lemma 3.1.

Proof of Theorem 1.3. Let ζ = 1
4ε/k

2 and consider a tester T that, given an input graph G =

(V,E), with |V | = n, works as follows. The tester T samples a set Q ∈U

(
V
q

)
of size q =

max{q3.1(ζ, k, 13), 8k
2/ζ} = poly(ε−1, k) and accepts if and only if G[Q] has a partition {Qi}ki=1

satisfying the following inequalities.

αLB
i − ζ ≤ 1

q
|Qi| ≤ αUB

i + ζ ∀1 ≤ i ≤ k; (5)

dLB
ij − ζ ≤ 1

n2
e(Qi, Qj) ≤ dUB

ij + ζ. ∀1 ≤ i ≤ j ≤ k. (6)

Hereafter, we will assume the assertions of Lemma 3.1 holds, which happens with probability at
least 2

3 .
First it is straightforward to see that if G ∈PΦ, then G is accepted. Indeed, it follows from the

very definition of PΦ combined with Lemma 3.1, that G[Q] must satisfy ineq. (5) and (6).
Next, assume G is ε-far from PΦ. Suppose, by contradiction, that T accepts G. Then, by

Lemma 3.1 and ineq. (5) and (6), G must have a partition {V ′
i }ki=1 satisfying

αLB
i − 2ζ ≤ 1

n
|V ′

i | ≤ αUB
i + 2ζ ∀i ∈ [k];

dLB
ij − 2ζ ≤ 1

n2
e(V ′

i , V
′
j ) ≤ dUB

ij + 2ζ. ∀1 ≤ i ≤ j ≤ k.

We start by (arbitrarily) rearranging up to ζn vertices from each V ′
i (∀i) in order to get a partition

{Vi}ki=1 satisfying ineq. (1). Since this rearranging can change each e(V ′
i , V

′
j ) by an additive factor

of at most (2ζn)n, the partition {Vi}ki=1 now satisfies

dLB
ij − 4ζ ≤ 1

n2
e(Vi, Vj) ≤ dUB

ij + 4ζ. ∀1 ≤ i ≤ j ≤ k.

Hence, by adding/deleting up to 4ζn2 edges between each pair (Vi, Vj) (∀i, j), we get a graph that
also satisfies ineq. (2) and, therefore, is in PΦ. Our choice of ζ then implies that G is not ε-far from
PΦ, which contradicts the hypothesis that G was ε-far from PΦ. Therefore, T rejects graphs ε-far
from PΦ (with probability at least 2

3). □

We next show how to deduce Theorem 1.5 from Lemma 3.1.

Proof of Theorem 1.5. Set ζ = min{ε/(2k2), ε/(8k)} and q = q3.1(ζ, k, δ). Let Q ∈
(
V
q

)
be a set of

q vertices chosen uniformly at random.
We will first prove item (1) from Theorem 1.5. By Lemma 3.1, with probability at least 1− δ, for

every equipartition {Qi}ki=1 of G[Q] there is a partition {Wi}ki=1 of G satisfying

(1)
1

n
|Wi| =

1

q
|Qi| ± ε/8k =

1

k
± ε/8k.
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(2)
1

n2
e(Wi,Wj) =

1

q2
e(Qi, Qj)± ε/2k2.

Let {Vi}ki=1 be an equipartition of G obtained from {Wi}ki=1 after arbitrarily redistributing up to
1
8ε(n/k) vertices from each class Wi. Since,

|e(Vi, Vj)− e(Wi,Wj)| ≤
εn

8k
max{|Vi|, |Wi|}+

εn

8k
max{|Vj |, |Wj |} ≤ εn

4k
(
n

k
+

εn

8k
) ≤ εn2

2k2
,

we must have

d(Vi, Vj) =
k2 e(Vi, Vj)

n2
=

k2 e(Wi,Wj)

n2
± 1

2
ε =

k2 e(Qi, Qj)

n2
± k2

(
1

2
ε/k2

)
± 1

2
ε = d(Qi, Qj)± ε,

as required by assertion (1).
The argument for assertion (2) of the lemma is symmetric. Indeed, by Lemma 3.1, for every

equipartition {Vi}ki=1, there is an partition {Qi}ki=1 of G[Q] satisfying

(1)
1

q
|Wi| =

1

n
|Vi| ± ε/8k =

1

k
± ε/8k.

(2)
1

q2
e(Wi,Wj) =

1

n2
e(Vi, Vj)± ε/2k2.

By the first item above, one can get an equipartition {Qi} of G[Q] by arbitrarily redistributing up to
1
8ε(q/k) vertices from each class Wi; similarly as before, we have that |e(Qi, Qj)− e(Wi,Wj)| ≤ εq2

2k2
.

Hence,

d(Qi, Qj) =
k2 e(Qi, Qj)

q2
=

k2 e(Wi,Wj)

n2
± 1

2
ε =

k2 e(Vi, Vj)

n2
± k2

(
1

2
ε/k2

)
± 1

2
ε = d(Vi, Vj)± ε,

as required by assertion (2). □

The remainder of this section is devoted to proving Lemma 3.1. Let V be a ground set of size n
and let {Sr}tr=1 be a family of subsets of V . For any partition {Ui}ki=1 of a subset U ⊆ V , we refer

to the following collection of intersection (relative) sizes {α(i)
r }i∈[k]r∈[t], where α

(i)
r = |Ui ∩ Sr|/|U |, as

the intersection profile of {Ui}ki=1 on {Sr}tr=1.
Our strategy to prove Lemma 3.1 consists of basically two parts. First, we show in Section 3.1

that given V and {Sr}tr=1 as above and a typical sample (of constant size) Q of V , there is a
correspondence between the partitions of V and the partitions of Q, which essentially preserves the
intersection profile on {Sr}tr=1. Then, we show that, given a graph G = (V,E), there is a specific
family {Sr}tr=1 on which the intersection profile is revealing, in the sense that, just from knowing the

values of {α(i)
r }i∈[k]r∈[t], one can provide a good estimate for (up to an additive error) for the number of

edges e(A,B) between any two sets A,B ⊆ V .

3.1. Intersection profile of a sample. Our main goal in this subsection is to prove Lemma 3.2
below. We stress that this entire subsection deals solely with a vertex set V and a collection
S1, . . . , St of subsets of V , and it has nothing to do with edge sets of graphs.

Lemma 3.2. For every η > 0 and any positive integers k, t and a, there is q = q3.2(η, k, t) ≤
32⌈a/η2 + 2kt/(η3)⌉ satisfying the following. Let S1, . . . , St be subsets of vertices of set V and let
Q be a subset of V chosen uniformly at random. Then, with probability at least 1− e−a, for every
partition {Qi}ki=1 of Q, there is a partition {Vi}ki=1 of V such that

1

n
|Vi ∩ Sr| =

1

q
|Qi ∩ Sr| ± η (7)

The following key lemma guarantees that if V has no partition with an intersection profile on

{Sr}tr=1 close to some given values {α(i)
r }, then a typical sample Q ⊆ V has no such partition as

well.
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Lemma 3.3. Let t and k be positive integers and η > 0. Let {Sr}tr=1 be sets of vertices of a

ground set V of size |V | ≥ 2tk/(η2). Suppose there are numbers {α(i)
r }i∈[k],r∈[t] in [0, 1] for which

no partition {Vi}ki=1 of V satisfies

∀r ∈ [t],∀i ∈ [k] :
|Sr ∩ Vi|

n
= α(i)

r ± 3η. (8)

Then, with probability at least 1− e−qη2/2, a set Q ∈
(
V
q

)
of q elements chosen uniformly at random

has no partition {Qi}ki=1 satisfying

∀r ∈ [t],∀i ∈ [k] :
|Sr ∩Qi|

q
= α(i)

r ± η (9)

Proof. The general strategy to prove this lemma will be as follows: we first write the constraints
given by Eq. (8) (regarding the intersection profile of {Vi}ki=1) as a system of linear inequalities,
which, by hypothesis, has no solution. Hence, by a variant of Farka’s lemma, we show there is
a linear combination of such inequalities that witnesses the infeasibility of the system. We then
show that a typical sample “inherits” a similar linear combination, which by its turn witnesses the
infeasability of a system of inequalities related to (9).

Suppose V has no partition satisfying Eq. (8) and consider the following system SV of linear

inequalities (on nk variables x
(i)
j , i ∈ [k], j ∈ [n]).

System of inequalities SV

∀r ∈ [t],∀i ∈ [k] : (α(i)
r − 2η)n ≤

∑
j∈Sr

x
(i)
j ≤ (α(i)

r + 2η)n (Ir,i)

∀j ∈ [n] : x
(1)
j ≥ 0, . . . , x

(k)
j ≥ 0,

k∑
i=1

x
(i)
j = 1 (Pj)

Note: we named the inequalities related with the intersection constraints as (Ir,i) and the ones related with

{x(i)
j } specifying a partition as (Pj).

Claim 3.4. The system SV has no solution.

Proof. Indeed, suppose there was a solution {x(i)j }i∈[k]j∈[n] for SV . Then, consider a partition {Vi}ki=1

of V obtained by setting, independently for every vertex j ∈ [n], the part Vi that contains j according

to the distribution given by {x(i)j }i∈[k].
Let r ∈ [t] and i ∈ [k] be fixed. The cardinality |Sr ∩ Vi| can be written as the sum

∑
j∈Sr

1j∈Vi .
Since

E(|Sr ∩ Vi|) =
∑
j∈Sr

E(1j∈Vi) =
∑
j∈Sr

x
(i)
j = n(α(i)

r ± 2η),

and the indicator variables 1j∈Vi are all independent, we get by Lemma 2.3 that

P(||Sr ∩ Vi| − nα(i)
r | > 3ηn) ≤ 2 exp

{
− η2n2

2|Sr|

}
≤ 2e−tk.

Therefore, the probability that {Vi}ki=1 violates Eq. (8) for some r ∈ [t] and i ∈ [k] is at most
tk2e−tk < 1. Hence, we proved that with positive probability, the partition {Vi}ki=1 satisfies Eq. (8)
for every r ∈ [t] and i ∈ [k], which contradicts the hypothesis of the lemma. This completes the
proof of the claim. ■
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We continue with the proof of the lemma. Let Q ∈U

(
V
q

)
be a set of q vertices chosen uniformly

at random over V . Consider the following system of inequalities on qk variables {y(i)j }i∈[k]j∈Q .

System of inequalities SQ

∀r ∈ [t], ∀i ∈ [k] : (α(i)
r − η)q ≤

∑
j∈Sr

y
(i)
j ≤ (α(i)

r + η)q (I ′r,i)

∀j ∈ [q] : y
(1)
j ≥ 0, . . . , y

(k)
j ≥ 0,

k∑
i=1

y
(i)
j = 1 (Pj)

Notice that if Q has an equipartition {Qi}ki=1 satisfying Eq. (9), then one can produce a solution

to SQ by setting y
(i)
j = 1 if j ∈ Qi, and y

(i)
j = 0 otherwise. Hence, in order to prove the lemma, it

suffices to upper bound the probability that SQ has a solution by e−qη2/2.
Next, we will show that if SV has no solution, then there is a linear combination of the constraints⋃
Ir,i for which there is no solution x satisfying

⋃
Pj . More formally, let A ∈ R2tk×nk and b ∈ R2tk

be such that the constraints
⋃
Ir,i can all be writen as Ax ≤ b. In this context, we will denote by

L(r, i) and U(r, i) the indices of [2tk] associated, respectively, with the lower and the upper bound
of Ir,i. Moreover we also set P = {x ∈ Rnk : x satisfies

⋃
j∈[n] Pj} as the set of all x satisfying every

partition constraint.

Claim 3.5. If SV has no solution, then there is a vector w ∈ R2tk, with w ≥ 0, such that if x ∈ P ,
then (wTA)x > wT b;

Proof. In what follows, for every ℓ ∈ [2tk] we denote by eℓ the vector with entries ℓ equal to
1 and all other entries equal to 0. If SV has no solution, then the sets {Ax : x ∈ P} ⊂ R2tk

and {b′ : b′ ≤ b} ⊂ R2tk must have no intersection. Since the first set is compact, for it is the
image of a compact set under a linear transformation, and the second set is closed there must be
a hyperplane that strictly separates them (see e.g. [BT97, Hyperplane Separation Theorem]). In
other words, there must be w ∈ R2tk such that,

wT (Ax) > wT b ≥ wT b′, for every x ∈ P and b′ ≤ b. (10)

Since, for every ℓ ∈ [2tk], the second inequality above must hold for b′ := b − eℓ ≤ b, it follows
that wT b ≥ wT b′ = wT b − uℓ, that is, wℓ ≥ 0. Thus, we proved that there is w ≥ 0 for which
(wTA)x > wT b for every x ∈ P . This completes the proof of the claim. ■

We are now ready to complete the proof of the lemma. Since SV has no solution, there is w ∈ R2tk

as in Claim 3.5. It is not difficult to see that one can assume, without loss of generality, that for
every (r, i) ∈ [t]× [k] either wℓ = 0 or wℓ′ = 0, where ℓ = L(r, i) and ℓ′ = U(r, i). Thus, in order to

make the notation easier, let w
(i)
r := wℓ′ , if wℓ = 0; or w

(i)
r = −wℓ if wℓ′ = 0, where ℓ = L(r, i) and

ℓ′ = U(r, i). Let

λ
(i)
j :=

∑
r:j∈Sr

w(i)
r

for every i ∈ [k] and j ∈ [n] and let

λ0 := wT b =

t∑
r=1

k∑
i=1

(w(i)
r α(i)

r + 2|w(i)
r |η)n
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It follows from Claim 3.5 that the inequality

(wTA)x =
n∑

j=1

k∑
i=1

λ
(i)
j x

(i)
j ≤ λ0 = wT b has no solution satisfying x ∈ P .

But this happens if and only if
n∑

j=1

min
i∈[k]

λ
(i)
j > λ0, (11)

since
∑n

j=1

∑k
i=1 λ

(i)
j x

(i)
j is minimized over {x(i)j } ∈ P by simply setting (∀j ∈ [n]) x

(i)
j = 1 for some

i = argmini∈[k] λ
(i)
j and x

(i)
j = 0 otherwise. We have thus arrived at a single equation (Eq. (11))

that witnesses SV has no solution.

Now, suppose there is a solution {y(i)j } to SQ. By taking a w
(i)
r -linear combination of the

inequalities I ′r,i, we get∑
i∈Q

k∑
i=1

λ
(i)
j y

(i)
j ≤

t∑
r=1

k∑
i=1

(w(i)
r α(i)

r + |w(i)
r |η)q

=

t∑
r=1

k∑
i=1

(w(i)
r α(i)

r + 2|w(i)
r |η − |w(i)

r |η)q

= λ0
q

n
−

t∑
r=1

k∑
i=1

|w(i)
r |ηq.

By putting M =
∑t

r=1

∑k
i=1 |w

(i)
r |, it follows that∑

i∈Q

k∑
i=1

λ
(i)
j y

(i)
j ≤ λ0

q

n
−Mηq,

which implies, similarly as before, by the (Pj) constraints on y
(i)
j , that Q must satisfy∑

j∈Q
min
i∈[k]

λ
(i)
j ≤ q

n
λ0 −Mηq. (12)

Define Yj = mini∈[k] λ
(i)
j for every j ∈ [n]. Then the expectation of

∑
j∈Q Yj is

E
(∑

j∈Q
Yj

)
= E

( n∑
j=1

Yj1j∈Q

)
=

q

n

n∑
j=1

Yj >
q

n
λ0 ,

where the last inequality follows from Eq. (11). Even though Q is chosen without replacement, it
is well known that the hypergeometric distribution is at least as concentrated as the respective
binomial distribution, we can use Lemma 2.3, (together with the fact that Yj ≤ M for every j ∈ Q)
to obtain that

P

∑
j∈Q

min
i∈[k]

λ
(i)
j ≤ q

n
λ0 −Mηq

 ≤ P

 q∑
j=1

Yj ≤ E
(∑

j∈Q
Yj

)
−Mηq


≤ exp

{
−2(Mηq)2

q(2M)2

}
= e−qη2/2.
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Hence, with probability at least 1− e−qη2/2 the sample Q is unable to satisfy Eq. (12). In that case,
there cannot be a solution to SQ, as required. □

Proof of Lemma 3.2. Consider the following collection of intersection profiles of integer multiples of
η/4.

N = {(α(i)
r )i∈[k],r∈t : α

(i)
r = u(i)r η/4, for some integer 0 ≤ u(i)r ≤ 4/η }.

We have |N | ≤ (1 + 4/η)kt ≤ e2kt/η For each element of N , apply Lemma 3.3 for the family
{S1, . . . , St} with error parameter η/4. With probability at least

1− |N |e−qη2/32 ≥ 1− e2kt/η · e−a−2kt/η = 1− e−a

over the choice of Q, the assertion of Lemma 3.3 holds simultaneously for every element of N .

Let {Qi}ki=1 be any partition of Q. From the very definition of N there must be (α
(i)
r ) ∈ N for

which

∀i ∈ [k],∀r ∈ [t] :
1

q
|Qi ∩ Sr| = α(i)

r ± η/4.

By Lemma 3.3, there must be a partition of {Vi}ki=1 of V such that

∀i ∈ [k], ∀r ∈ [t] :
1

n
|Vi ∩ Sr| = α(i)

r ± 3η/4 =
1

q
|Qi ∩ Sr| ± η,

as desired. □

3.2. A family on which the intersection profile is revealing. The final piece we need for
proving Lemma 3.1 is the following lemma. It roughly asserts that for every graph G, there is a
family {Sr}tr=1 of subsets of V (G) for which one can estimate the number of edges e(A,B) between
any two sets A,B ⊆ V (G) by just computing the intersections |A ∩ Sr| and |B ∩ Sr|. Moreover, it
asserts that a typical sample of G must also satisfy this statement (with respect to the same sets
{Sr}tr=1).

Lemma 3.6. For every γ > 0 and δ > 0, there are integers T = T3.6(γ) = poly(γ−1) and
q = q3.6(γ, δ) = poly( 1γ ,

1
δ ) satisfying the following. For every graph G = (V,E), with |V | ≥ q, there

are sets S1, . . . , St ⊂ V (G) and real numbers d1, . . . , dt (with t ≤ T ) for which

e(A,B) =
t∑

i=1

di · |A ∩ Si||B ∩ Si| ± γn2 (13)

for every A,B ⊆ V . Moreover, if Q ∈
(
V
q

)
is a subset of q vertices chosen uniformly at random,

then with probability at least 1− δ,

e(A,B) =
t∑

i=1

di · |A ∩ Si||B ∩ Si| ± γq2 (14)

for every A,B ⊆ Q.

Proof. By a slight abuse of notation, we will also denote by G ∈ {0, 1}V×V be the adjacency matrix
of the graph G. We will also denote the matrix G|Q×Q simply by G[Q].

Let ζ = 1
2γ. By Lemma 2.1, there is an integer t′ = O(ε−4), sets X1, . . . Xt′ and Y1, . . . Yt′ and a

matrix ∆′ ∈ RV×V for which

G =

t∑
r=1

d′j ·KXj ,Yj +∆′,

with ∥∆′∥□ ≤ ζ and |d′j | ≤ 1 for every 1 ≤ j ≤ r. Without loss of generality (by writing multiple

times the same component of the decomposition), we can and will assume |d′j | ≤ 1. Moreover, since
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for any set X,Y ⊆ V ,

KX,Y +KY,X = KX∪Y,X∪Y −KX\Y,X\Y −KY \X,Y \X +KX∩Y,X∩Y ,

we can write

G =
1

2
(G+GT ) =

t∑
i=1

diKSi +∆, (15)

by setting t = 4t′, ∆ = 1
2(∆

′ +∆′T ) and d4j = d4j+3 = 1
2d

′
j , d4j+1 = d4j+2 = 1

2d
′
j , S4j = Xj ∪ Yj ,

S4j+1 = Xj \ Yj , S4j+2 = Yj \ Xj , S4j+3 = Xj ∩ Yj (for every 1 ≤ j ≤ r). Note that ∥∆∥□ ≤
∥∆′∥□ ≤ ζ.

Equation (13) follows from Eq. (15) since, for every A,B ⊆ V ,

e(A,B) = G(A,B) =
t∑

i=1

diKSi(A,B) + ∆(A,B) =
t∑

i=1

di · |A ∩ Si||B ∩ Si| ± γn2.

Moreover, we set q = q2.2(γ, δ) and let Q ∈
(
V
q

)
be a set of q vertices chosen uniformly at random

from G. By Lemma 2.2, ∥∆[Q]∥□ ≤ 1
2γ, with probability at least δ. Hence, Eq. (14) follows easily

from

G[Q] =
t∑

i=1

di ·KSi∩Q +∆[Q] □

3.3. Proof of Lemma 3.1. We are ready to deduce Lemma 3.1 from Lemma 3.2 and Lemma 3.6.
Put

γ =
1

3
ζ, T = T3.6(γ), η = ζ/(3

√
T ), q = max{100kT log

1

δ
/η3, q3.6(γ,

1

2
δ).}

and let Q ∈
(
V
q

)
be chosen uniformly at random as in the lemma.

We start by proving the main direction of the lemma, in which we are given a partition {Qi}ki=1

of Q and we need to produce a partition {Vi}ki=1 of V satisfying assertions (1) and (2).
Let {dr}tr=1 be real numbers and {Sr}tr=1 be the sets of vertices of G satisfying Eq. (13) from

Lemma 3.6.
With probability at least 1− 1

2δ, the set Q, taken uniformly at random, satisfies Eq. (14) from

Lemma 3.6. With probability at least 1− 1
2δ−

1
2δ = 1−δ, Q also satisfies the assertion of Lemma 3.2

with respect to the following sets of vertices: {Sr}ti=1 ∪ {V (G)}. In particular, since {Qi}ki=1 of Q,
there exists a partition {Vi}ki=1 of G for which

|Vi|
n

=
|Qi|
q

± η =
|Qi|
q

± ζ, (16)

for every 1 ≤ i ≤ k — which already sets assertion (1) from the lemma — and

|Vi ∩ Sr|
n

=
|Qi ∩ Sr|

q
± η, (17)

for every 1 ≤ r ≤ t and 1 ≤ i ≤ k.
For every 1 ≤ i, j ≤ k, we have

1

n2
e(Vi, Vj)± γ

(13)
=

t∑
r=1

dr ·
|Sr ∩ Vi|

n
· |Sr ∩ Vj |

n

(17)
=

t∑
r=1

dr ·
|Sr ∩Qi| ± ηq

q
· |Sr ∩Qj | ± ηq

q
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=
1

q2

t∑
r=1

(
dr · |Sr ∩Qi| · |Sr ∩Qj | ± 3|dr|ηq2

)
(14)
=

1

q2
e(Qi, Qj)±

(
γ + 3η

t∑
r=1

|dr|
)

Recall that Lemma 2.1 asserts that
∑t

r=1 d
2
r ≤ 1. Applying Cauchy-Schwarz, we get that

1

n2
e(Vi, Vj) =

1

q2
e(Qi, Qj)± (2γ + 3η

√
t) =

1

q2
e(Qi, Qj)± 3γ.

Hence, by our choice of γ, we get that 1
n2 e(Vi, Vj) =

1
q2
e(Qi, Qj)± ζ, which concludes the proof of

the main direction of assertion (2).
The “moreover” part of the lemma follows from a standard application of concentration results.

Indeed, given a partition {Vi}ki=1 of G, one can simply set Qi = Vi ∩Q for every i ∈ [k]. Since, for
every i ∈ [k], E(|Qi|/q) = |Vi|/n and the choice of each vertex of Q can change |Qi|/q by at most
1/q, we get from Lemma 2.3 that

P(|Qi|/q − |Vi|/n| ≥ ζ) ≤ 2 exp{−(ζq)2/2}. (18)

Moreover, for every i, j ∈ [k], since E(e(Qi, Qj)/q
2) = E(e(Vi, Vj)/n

2) and the choice of each vertex
of Q can change e(Qi, Qj)/q

2 by at most 1/q, we get from Lemma 2.3 that

P(| e(Qi, Qj)/q
2 − e(Vi, Vj)|/n2| ≥ ζ) ≤ 2 exp{−(ζq)2/2}. (19)

Note that in both these applications of Lemma 2.3 we used the fact that the respective distribution
are at least as concentrated as if Q was a multiset chosen with replacement. By equations (18)
and (19) above, we can upper bound the probability that any of the assertions (1) and (2) are not
satisfied by 4k2 exp{−(ζq)2/2} ≤ 2

3 , by the choice of q.

4. Proof of Theorem 1.4

Given a graph K on k vertices, we define Φ(K) to be the set of parameters as in Definition 1.1
satisfying αLB

i = αUB
i = 1/k (∀i ∈ [k]) and dLB

ij = dUB
ij = 1 for every ij ∈ E(K) and dLB

ij = dUB
ij = 0 for

every ij /∈ E(K). In particular, if G ∈PΦ(K) (and |V (G)| is divisible by k) then G is isomorphic to
the n/k-blow-up of K.

The following definition is key to the proof of Theorem 1.4. We remind the reader that if
X ⊆ V (G) then we use G[X] to denote the induced subgraph of G on X.

Definition 4.1 (Nice graphs). We say that a graph K = (V,E) on k vertices is nice if for every
subset X of k/2 vertices of V and every subset Y ⊆ V \ X of k/10 vertices, the graph K[Y ] is
1

800 -far from being an induced subgraph of K[X].

Claim 4.2. For every large enough k, there is a k-vertex nice graph.

Proof. We claim that for large enough k, the uniform random graph G(k, 1/2) is nice with high
probability. Indeed, suppose the vertex set of G(k, 1/2) is V and fix X ⊆ V of size k/2, Y ⊆ V \X
of size k/10 and an injective mapping f : Y 7→ X (f is a “supposed” isomorphism between Y and a
subgraph of X). Observe that for every pair u, v ∈ Y , the probability that precisely one of the pairs

(u, v), (f(u), f(v)) is an edge is 1/2. Hence, the expected number of such pairs is 1
2

(|Y |
2

)
≥ k2/400.

Furthermore, since for distinct pairs the above events are independent, we have by Lemma 2.3 that

the probability that the number of such pairs is smaller than (say) k2/800 is e−Ω(k2). Finally, since

the number of choices of X,Y, f is at most 2k · 2k · kk = 2O(k log k) we infer by the union bound that
with high probability G(k, 1/2) is nice. □
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In what follows, given a graph H on h vertices. we denote by H(n) the n
h -blow-up of H and we

call the corresponding independent sets (of size n
h ) the clusters of H(n). Note that a graph G on n

vertices is in PΦ(K) if and only if G is isomorphic to K(n).

Claim 4.3. The following holds for all large enough k. Let K = (V,E) be a nice graph on k
vertices and K ′ = K[X] be the graph induced by a subset X ⊆ V of size |X| = k/2. Then, K ′(n) is
0.0001-far from PΦ(K).

Proof. Suppose wlog that V = [k] and X = [k/2]. Let {Uj}k/2j=1 be the clusters of K ′(n), each of

size 2n/k. Suppose, by contradiction, that K ′(n) is 0.0001-close to PΦ(K). Then, there must be

a partition {Vi}ki=1 of K ′(n) such that, by performing a set ∆ ⊆
(
V
2

)
of at most 0.0001n2 edge

modifications, one gets a graph satisfying d(Vi, Vj) = 1 if K(i, j) = 1 and d(Vi, Vj) = 0 if K(i, j) = 0.
For every 1 ≤ j ≤ k/2 and every k/2 + 1 ≤ i ≤ k, let ci,j := |Vi ∩ Uj |/|Uj | ≤ 1 and observe that for
every k/2 + 1 ≤ i ≤ k we have ci,1 + · · ·+ ci,k/2 = 1/2.

For every 1 ≤ j ≤ k/2, let yj be a vertex chosen uniformly at random from the cluster Uj . Set

U := {yj}k/2j=1 and Y := {k/2 + 1 ≤ i ≤ k : |U ∩ Vi| ≥ 1}. For each fixed k/2 + 1 ≤ i ≤ k, the
probability that none of the vertices y1, . . . , yk/2 belongs to Vi is

(1− ci,1) · · · (1− ci,k/2) ≤ e−(ci,1+···+ci,k/2) = e−0.5 < 3/4.

By linearity of expectation, this means that E(|Y |) ≥ 1
8k, and since the outcome of each yj can

change |Y | by at most 1, we have by Lemma 2.3, that the probability that |Y | < k/10 is at most

3/4 (for large k). Furthermore, since ∆ < 0.0001n2, the expected number of pairs of ∆ within
(
U
2

)
is

at most 0.0001k2

8 < k2/1000. Hence, by Lemma 2.3, the probability that this number is larger than

k2/800 is smaller than 1/4 — note that this implies that K[Y ] is 1
800 -close to a subgraph of K[X]

with probability at least 3/4. Indeed, this subgraph is the one spanned by the vertex set X ′ ⊆ X
defined as follows: for each i ∈ Y put in X ′ precisely one of the 1 ≤ j ≤ k/2 satisfying yj ∈ Vi. We
infer that, with probability at least 1/2, the set Y has size at least k/10 and K[Y ] is 1

800 -close to a
subgraph of K[X]. Therefore, X and Y contradict the assumption that K is nice. □

Proof of Theorem 1.4: Let k be large enough so that Claim 4.3 holds and suppose K is a nice graph
on k vertices. We claim that every 0.0001-tester for PΦ(K) has query complexity at least Ω(

√
k).

By Yao’s min-max principal it is enough to show that, for every large enough n, there are two
distributions D1 and D2 of n-vertex graphs, so that graphs in D1 belong to PΦ(K) while those in
D2 are 0.0001-far from PΦ(K), and such that any deterministic algorithm with query complexity

o(
√
k) has negligible probability of distinguishing between D1 and D2. The distribution D1 contains

a random permutation of the vertices of K(n) (which belongs to PΦ(K)). The distribution D2

is defined as follows: we first pick a random subset X ⊆ V (K) of size k/2 and then return a
random permutation of the vertices of K ′(n), where K ′ = K[X]. By Claim 4.3, every graph in
D2 is 0.0001-far from PΦ(K). Finally, it is easy to see that any deterministic algorithm with query

complexity q = o(
√
k) cannot distinguish between D1 and D2 with constant positive probability

since in both cases what it sees is just a random subgraph of K on q vertices. Indeed, by taking
q = o(

√
k) we guarantee that the algorithm does not pick more than one vertex from the same

cluster of either K ′(n) or K(n), that is, that in both cases it gets q distinct vertices of K. The fact
that in D1 it sees a random subset of K of size q follows from the fact that we randomly permute
the vertices of K(n). The fact that the same holds also for D2 follows from the simple observation
that a uniformly random subset of size q of a uniformly random subset of K of size k/2 is also a
uniformly random subset of K of size q. □
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