Problem 1. G is an (n,d,λ)-graph if G is an n-vertex d-regular graph satisfying the following property: if $S \subseteq V(G)$ is of size αn then
\[
|e(S) - \frac{1}{2} d\alpha^2 n| \leq \frac{1}{2} \lambda \alpha (1 - \alpha) n.
\]
Show that there are absolute constants $\beta, \delta > 0$ and d_0 so that the following holds for all $d \geq d_0$ and $n \geq n_0(d)$: if G is an $(n,d,\delta d)$-graph then every 2-coloring of G contains a monochromatic path of length βn.

Problem 2. We’ve seen that if every $U \subset V(G)$, $|U| \leq u$ satisfies $|N(U)| \geq 2|U|$, then G contains P_{3u-1}. Prove that under the same assumption we can actually find a cycle of length at least $3u$.

Problem 3. Show that for every ϵ there is $C = C(\epsilon)$ so that if G has ϵn^2 edges and no independent set of size $n/2^{\sqrt{\log n}}$ then G contains a K_4.

Problem 4. Show that if H is an r-degenerate bipartite graph then $ex(n,H) \leq cn^2 - \frac{1}{r}$.

Problem 5. Show that if G is a bipartite graph with m edges and no isolated vertices then $r(G) \leq 2^{O(\sqrt{m})}$.