Topics in Extremal Combinatorics (0366.4996) - Spring '15

Instructor: Asaf Shapira

Home Assignment 3

Due date: 11/05/15

Please submit organized and well written solutions!

Problem 1. \(G \) is an \((n,d,\lambda)\)-graph if \(G \) is an \(n \)-vertex \(d \)-regular graph satisfying the following property: if \(S \subseteq V(G) \) is of size \(\alpha n \) then
\[
\left| e(S) - \frac{1}{2} d\alpha^2 n \right| \leq \frac{1}{2} \lambda \alpha (1 - \alpha) n .
\]
Show that there are absolute constants \(\beta, \delta > 0 \) and \(d_0 \) so that the following holds for all \(d \geq d_0 \) and \(n \geq n_0(d) \): if \(G \) is an \((n,d,\delta d)\)-graph then every 2-coloring of \(G \) contains a monochromatic path of length \(\beta n \).

Problem 2. We’ve seen that if every \(U \subset V(G) \), \(|U| \leq u \) satisfies \(|N(U)| \geq 2|U| \), then \(G \) contains \(P_{3u-1} \). Prove that under the same assumption we can actually find a cycle of length at least \(3u \).

Problem 3. Show that for every \(\epsilon \) there is \(C = C(\epsilon) \) so that if \(G \) has \(\epsilon n^2 \) edges and no independent set of size \(n / 2^{C \sqrt{\log n}} \) then \(G \) contains a \(K_4 \).

Problem 4. Show that if \(H \) is an \(r \)-degenerate bipartite graph then \(ex(n,H) \leq cn^{2 - \frac{1}{8r}} \).

Problem 5. Show that if \(G \) is a bipartite graph with \(m \) edges and no isolated vertices then \(r(G) \leq 2^{O(\sqrt{m})} \).