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Abstract

We consider the following Turán-type problem: given a fixed tournament H, what is the

least integer t = t(n,H) so that adding t edges to any n-vertex tournament, results in a digraph

containing a copy of H. Similarly, what is the least integer t = t(Tn, H) so that adding t edges

to the n-vertex transitive tournament, results in a digraph containing a copy of H. Besides

proving several results on these problems, our main contributions are the following:

• Pach and Tardos conjectured that if M is an acyclic 0/1 matrix, then any n × n matrix

with n(log n)O(1) entries equal to 1 contains the pattern M . We show that this conjecture

is equivalent to the assertion that t(Tn, H) = n(log n)O(1) if and only if H belongs to a

certain (natural) family of tournaments.

• We propose an approach for determining if t(n,H) = n(log n)O(1). This approach combines

expansion in sparse graphs, together with certain structural characterizations of H-free

tournaments.

Our result opens the door for using structural graph theoretic tools in order to settle the

Pach-Tardos conjecture.

1 Introduction

Turán-type problems are among the most basic and most well studied problems in extremal com-

binatorics. In the setting of graphs, Turán’s problem asks, given a fixed graph H and an integer n,

what is the least integer m = ex(n,H), so that every n-vertex graph with at least m edges contains

a copy of H. Turán’s classical theorem [16] solved the problem when H is a complete graph. Since

then, Turán-type problems have been extensively studied in numerous settings. In this paper, we

propose to study a natural Turán-type problem in the setting of tournaments. While part of our

motivation was a recent surge in the study of tournaments, our main motivation was a surprising

connection between this new problem and a classical Turán-type problem is the setting of matrices.
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1.1 A Turán-type problem for tournaments

A tournament G = (V,E) is a digraph such that for every pair of distinct vertices u, v, the edge

set E contains exactly one edge with ends {u, v}. In other words, either (u, v) ∈ E or (v, u) ∈ E
is present, but not both. If G = (V,E) is a tournament, we say that X ⊆ V is transitive if the

sub-tournament G[X] induced on X has no directed cycle. We denote by Tn the (unique) transitive

tournament on n vertices. A pair {u, v} in a digraph is bidirectional if both (u, v) and (v, u) are

edges. Notice that if we add t new edges to a tournament, the resulting digraph has t bidirectional

pairs, or, equivalently, t cycles of length 2. Tournaments having some bidirectional edges are known

in the literature as semi-complete digraphs.

Let H be any given tournament. We say that a digraph is H-free if it contains no copy of H as

a subgraph. Clearly, if G is the complete digraph1 on n ≥ |V (H)| vertices, then G is not H-free.

On the other hand, if H is any non-transitive tournament, then any transitive tournament is H-

free. If we take any tournament G on n ≥ |V (H)| vertices and start adding edges to G (thereby

obtaining a semi-complete digraph) we will, at some point, obtain a digraph which is not H-free.

This motivates the following problems.

Problem 1 Given a tournament H and an integer n, determine the smallest integer t = t(n,H)

so that adding t edges to any n-vertex tournament G, results in a digraph containing a copy of H.

Problem 2 Given a tournament H and an integer n, determine the smallest integer t = t(Tn, H)

so that adding t edges to Tn results in a digraph containing a copy of H.

Notice that t(n,H) is the minimum integer such that any semi-complete digraph with at least(
n
2

)
+ t(n,H) edges has a copy of H. We always assume that n ≥ |V (H)| (as otherwise t(n,H)

and t(Tn, H) are undefined). Observe also that t(Tn, H) ≤ t(n,H) for every H and that for any

non-transitive tournament H we have t(n,H) ≥ n/2 as one can make bidirectional the edges of

a matching in Tn without introducing a cycle of length 3. We will be mainly interested in the

asymptotic behaviors of t(n,H) and t(Tn, H) for a fixed H and n→∞.

1.2 Some preliminary observations and a conjecture

As it turns, similar to the case of Turán’s problem for graphs, there are certain conditions under

which Problems 1 and 2 are quite easy to answer. We devote this subsection to these cases, deferring

the more interesting cases to the following ones. We start by recalling the notion of a coloring of

a tournament, which was introduced in [2]. For a positive integer k, a k-coloring of a tournament

G = (V,E) is a partition of V into k parts, where each part induces a transitive sub-tournament.

The chromatic number χ(G) of a tournament G is the minimum k such that G admits a k-coloring.

By definition, χ(G) = 1 if and only if G is transitive.

It is not difficult to determine t(n,H) and t(Tn, H) asymptotically whenever χ(H) ≥ 3. It

turns out that when χ(H) = r ≥ 3, both t(n,H) and t(Tn, H) are very close to the Turán number

1The complete digraph on n vertices is the digraph containing all possible 2
(
n
2

)
edges.
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of (undirected) graphs with chromatic number r. Recall that for an undirected graph U , we take

ex(n,U) to be the smallest integer so that every n-vertex graph with at least ex(n,U) edges has

a copy of H. The well-known Erdős-Stone-Simonovits Theorem [6] asserts that if χ(U) = r, then

ex(n,U) = (1− 1
r−1 + on(1))

(
n
2

)
. A similar value holds for t(n,H) and t(Tn, H).

Proposition 1.1 Let H be a tournament with χ(H) = r. Then(
1− 1

r − 1

)(
n

2

)
≤ t(Tn, H) ≤ t(n,H) =

(
1− 1

r − 1
+ on(1)

)(
n

2

)
.

Proposition 1.1 leaves open the asymptotic values of t(n,H) and t(Tn, H) whenever χ(H) = 2.

Therefore, all remaining results in this paper have to do with the case χ(H) = 2.

Our next observation is that, similar to the case of undirected graphs, whenever χ(H) = 2, we

have t(n,H) < n2−c for some c > 0. To state this result we will need the following definition: for a

2-chromatic tournament H, let s(H) denote the smallest integer such that there is a 2-coloring of

H with a color class of size s.

Proposition 1.2 If χ(H) ≤ 2, then t(n,H) = O(n2−1/2s(H)−1
). In particular, if s(H) = 1, then

t(n,H) = O(n).

As we will see later, one can obtain significantly stronger bounds for certain tournaments H.

Now that we know that either t(n,H) = Θ(n2) or t(n,H) = O(n2−c), it is natural to ask when

do we have t(n,H) = Ω(n1+c) for some c = c(H) > 0. To this end, we need to introduce an

important definition.

Definition 1.3 (Tournament Forest) A tournament H is said to be a tournament forest if it is

possible to partition its vertex set into two transitive sets2 L,R so that if we define an undirected

bipartite graph U on the vertex sets L and R by connecting ` ∈ L to r ∈ R if and only if H has an

edge pointing from r to `, then U is a forest.

The next proposition supplies a sufficient condition for H to satisfy t(n,H) ≥ Ω(n1+c).

Proposition 1.4 If H is not a forest, then there is c = c(H) > 0 so that

t(n,H) ≥ t(Tn, H) ≥ Ω(n1+c) .

Moreover, for every ε > 0, there is a tournament H with χ(H) = 2 satisfying t(Tn, H) = Ω(n2−ε).

Recapping, Propositions 1.1, 1.2 and 1.4 imply that if χ(H) > 2, then t(n,H) = Θ(n2) and

if χ(H) = 2 and H is not a forest, then n1+c′ ≤ t(n,H) ≤ n2−c. In other words, up to now the

situation is similar to the case of Turán’s problem for undirected graphs. The only tournaments

not covered by the above results are thus the tournament forests. We conjecture that the following

result holds.
2Note that this means that if H is a tournament forest, then χ(H) ≤ 2.
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Conjecture 1 If H is a tournament forest, then t(Tn, H) = n(log n)O(1).

Note that for an undirected graph U satisfying χ(U) ≤ 2, then as for the growth rate of the

Turán function we either have ex(n,U) = O(n) or ex(n,U) = Ω(n1+c). More precisely, ex(n,U) =

O(n) whenever U is a forest, and ex(n,U) = Ω(n1+c) otherwise. We will see later that there

are tournament forests satisfying t(Tn, H) = ω(n log n), and hence assuming Conjecture 1 we get

that there are tournaments satisfying t(Tn, H) = n(log n)Θ(1). We will also see that as opposed

to the case of graphs, it is probably quite hard to tell if all tournament forests satisfy t(Tn, H) =

n(log n)O(1).

1.3 The Pach-Tardos Conjecture

We now turn to discuss the first main result of this paper, which establishes a surprising relation

between Conjecture 1 and a conjecture of Pach and Tardos [13]. To this end, we need to recall

another famous Turán-type problem, this time involving 0/1 matrices. Given two 0/1 matrices M

and A, where M is k × k and A is n × n, we say that A contains the pattern M , if A has k rows

r1 < r2 < · · · < rk and k columns c1 < c2 · · · < ck so that Aci,rj = 1 whenever Mi,j = 1. The

corresponding Turán problem then asks what is the least integer m = ex(n,M) so that every n×n
matrix A with m entries equal to 1 contains the pattern M . This problem was first introduced by

Füredi and Hajnal [7], who showed that certain extremal problems can be reduced to the study of

ex(n,M). This problem received a lot of attention in the past two decades, due to its relation to

many other problems. Perhaps the most famous result in this area is due to Marcus and Tardos

[12] who proved that if M is a permutation matrix, then ex(n,M) = O(n), thus establishing the

famous Stanley-Wilf conjecture. The study of ex(n,M) has also found some surprising applications

in theoretical computer science [14].

If one thinks of M and A as being the adjacency matrices of two ordered bipartite graphs,

then A contains M if and only if the ordered graph defined by A contains an ordered copy of the

ordered graph defined by M . Note that with this interpretation in mind, if M is a permutation

matrix, then it defines an ordered bipartite graph which forms a matching. Let us then say that

that a 0/1 matrix is a forest, if the bipartite graph it defines is a forest. In an attempt to unify

several results concerning the matrix Turán problem mentioned above, Pach and Tardos raised the

following conjecture.

Conjecture 2 (Pach-Tardos [13]) If the matrix M is a forest then ex(n,M) = n(log n)O(1).

We obtain the following.

Theorem 1 Conjectures 1 and 2 are equivalent.

Note that Conjecture 2 is concerned with 0/1 matrices or equivalently ordered/labeled bipartite

graphs. These are inherently different from “usual” graphs in which we do not think of the vertices

as having labels. The importance of Theorem 1 thus lies in showing that Conjecture 2 is actually

equivalent to a problem involving unlabeled/unordered digraphs. Hence, one can now try to apply

standard graph theoretic tools in order to resolve it. We elaborate on this in the next subsection.
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1.4 A tournament approach for the Pach-Tardos Conjecture

We now describe an approach for resolving Conjecture 2 which relies heavily on both structural

and extremal graph theoretic tools. Let us say that a (usual undirected) graph U = (V,E) is a

d-expander if for every S ⊆ V of size 1 ≤ |S| ≤ |V |/2 there are at least d|S| edges connecting S to

V \S. Let us say that a semi-complete digraph G = (V,E) is a d-expander if the undirected graph

U = (V,E′) in which (i, j) ∈ E′ if and only if {i, j} is a bidirectional edge in G, is a d-expander.

Given a semi-complete digraph F let DF be the distribution obtained by independently and

uniformly picking, for each bidirectional edge {i, j} of F , either the edge (i, j) or the edge (j, i).

Note that DF is a distribution over tournaments.

Definition 1.5 (Sparse Family) A family of tournaments Q is sparse if there is a constant b so

that the following holds for every n-vertex semi-complete digraph F which is a b logb n-expander:

PG∼DF [G ∈ Q] < 1/2 . (1)

Given a tournament G = (V,E), a homogeneous set of G is a subset X ⊆ V such that for all

v ∈ V \ X, either (v, x) ∈ E for all x ∈ X or (x, v) ∈ E for all x ∈ X. A homogeneous set X is

nontrivial if 1 < |X| < |V |, otherwise it is trivial. A tournament is prime if all of its homogeneous

sets are trivial. Prime tournaments form an important subclass of tournaments. For example,

Alon, Pach and Solymosi [1] have shown that the famous Erdős-Hajnal conjecture is equivalent to

the analogous conjecture for prime tournaments. For other related recent results see [11, 3] and

their references.

Theorem 2 If the family of H-free prime tournaments is sparse, then t(n,H) = n(log n)O(1).

We thus see that if every tournament forest H has the property that the family of H-free prime

tournaments is sparse, then Conjecture 1 holds. Observe that the approach of Theorem 2 would

actually yield a near linear bound for t(n,H) and not only for t(Tn, H). In particular, Theorems 1

and 2 have the following corollary, summarizing our approach to the Pach-Tardos Conjecture.

Corollary 1.6 If for every tournament forest H the family of H-free prime tournaments is sparse,

then Conjecture 2 holds.

Informally speaking, what the above corollary shows is that in order to resolve Conjecture 2 it

is enough to understand the structure of prime H-free tournaments when H is a forest. We note

that understanding the structure of H-free tournaments for arbitrary H is most like hopeless, so

it is important that one needs to only consider the case of H being a forest and the H-free graph

being prime.

It is natural to ask at this point if there are non-trivial tournaments H for which one can

provably show that the family of H-free prime tournaments is sparse. Indeed, there are several such

tournaments. See for example [9, 11] which characterize the family of H-free prime tournaments

for certain H (all of which can be shown to be sparse). We focus on one of them in particular,
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as for this particular tournament, the upper bound we obtain using Theorem 2 is better than any

other bound we can achieve using other results in this paper.

Consider the tournament U5 defined as follows. Let T5 be the transitive tournament on

{1, 2, 3, 4, 5} in which (i, j) is an edge whenever i < j. Then U5 is the tournament obtained

from T5 by reversing the direction of the edges (2, 5) and (1, 4). For an odd integer n we de-

fine Cn to be the tournament on vertices {1, . . . , n} in which (i, j) is an edge if and only if

j− i (mod n) ∈ {1, . . . , (n− 1)/2}. We note that U5 has several interesting properties, as shown in

[2, 11]. Liu has recently obtained the following structural result.

Theorem 3 (Liu [11]) If G = (V,E) is a prime tournament that is U5-free, then G satisfies one

of the following:

1. G is isomorphic to Cn for some odd n.

2. V can be partitioned into 3 sets V1, V2, V3 so that for every 1 ≤ i < j ≤ 3 the tournament

G[Vi ∪ Vj ] is transitive.

Let Q5 be the family of tournaments that satisfy either condition 1 or 2 of Theorem 3. We

further prove the following.

Theorem 4 Q5 is a sparse family. Hence, t(n,U5) = n(log n)O(1).

1.5 Further results regarding t(n,H) and t(Tn, H)

As a step towards Conjecture 1, it is natural to look for sufficient conditions that would guarantee

that t(Tn, H) is indeed of order n(log n)O(1). In this subsection we describe several cases in which

we can verify this conjecture, but we would first like to raise the following interesting problem.

Problem 3 Is it true that for any H we have t(n,H) ∼ t(Tn, H) ?

Recall that we trivially have t(Tn, H) ≤ t(n,H) thus the problem lies in proving the other

direction. As of now, we do not have any example ruling out even the possibility that t(n,H) =

t(Tn, H) for all n sufficiently large.

For a given linear order of the vertices of tournament H = (V,E), we say that (i, j) is a back

edge if j appears before i in the order. The set of back edges of a given ordering of H forms a back-

edge graph which one can view as an undirected graph. The minimum feedback edge set number

of a tournament H, denoted by β(H) is the smallest number of edges in a back-edge graph of H.

Observe that if β(H) ≥ |V (H)|, then any back-edge graph has a cycle. We say that a tournament is

a weak forest if it has an acyclic back-edge graph. Notice that weak forest tournaments are trivially

2-chromatic. Observe that every tournament forest (as defined in Definition 1.3) is also a weak

forest since we can take the order which puts all vertices of L before all vertices of R. We note

however, that being a forest is a stronger requirement. For example, consider the tournament ∆k

having k strongly connected components, each of which is a 3-cycle C3. It is not hard to see that

this tournament is a weak forest but not a forest for all k ≥ 3.
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So for which tournaments can we (unconditionally) show that t(Tn, H) = n(log n)O(1)? Note

that Proposition 1.2 shows that this is the case when s(H) = 1. Observe that s(H) = 1 if and only

if H is a weak forest that has a back-edge graph consisting of a star and some isolated vertices. For

this reason we call such tournaments star tournaments. Observe that star tournaments are actually

tournament forests as one may take the root of the star as the side L and the remaining vertices as

the side R. We now turn to show that there are other cases in which we can prove linear bounds.

The following result shows that if a tournament has a back-edge graph that is very small, then

indeed t(Tn, H) is linear.

Theorem 5 Any tournament H with β(H) ≤ 2 satisfies t(Tn, H) = O(n).

We note that Theorem 5 cannot be extended to hold whenever β(H) ≤ 3. Indeed the tournament

∆3 mentioned earlier satisfies β(∆3) = 3 and one can check that it is not a forest, so Proposition

1.4 implies that t(Tn,∆3) > n1+c.

Let us end with two more observation. Recall that Proposition 1.2 implies that t(n,H) =

n(log n)O(1) whenever H is a star tournament. Theorem 5 shows that t(Tn, H) = n(log n)O(1) also

for certain tournaments forests that are not stars. To see that there are also non-star tournaments

satisfying the stronger condition t(n,H) = n(log n)O(1) observe that that the tournament U5 defined

in the previous subsection is not a star tournament. Hence, Theorem 4 shows that there are

non-star tournaments for which t(n,H) is close to linear. Second, as we mentioned at the end

of Subsection 1.2, the study of t(n,H) and t(Tn, H) when H is a forest appears much harder

than the corresponding problem for graphs. In particular, while for undirected graphs we have

ex(n,H) = O(n) whenever H is a forest, the following result shows that this is not the case for

tournaments.

Theorem 6 There are forest tournaments satisfying t(Tn, H) = ω(n log n).

1.6 Paper organization

In Section 2 we prove the preliminary observations given in Propositions 1.1, 1.2 and 1.4. While

the proofs are quite routine, we also prove in the same section more refined versions of these results

which apply more ideas. The first main result of this paper, stated in Theorems 1, is proved in

Section 3. While one direction of this equivalence is simple, the other direction requires a somewhat

delicate reduction. In the same section we prove Theorem 6. The second main result of this paper,

stated in Theorem 2, is proved in Section 4. The proof relies on a fact that was recently used in

several papers in extremal graph theory, which states that graph of large enough average degree

contain subgraphs with good expansion properties. In the same section we also prove Theorem 4.

Finally, in Section 5 we prove Theorem 5.

2 When H is not a forest

In this section we prove Propositions 1.1, 1.2 and 1.4. In what follows, when we refer to the

transitive tournament Tn, we will assume, unless otherwise stated, that its vertices are {1, . . . , n}
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and i < j implies that (i, j) is an edge. We will frequently use the following well known fact

(sometimes attributed to [15] and [4])

Theorem 7 Every tournament on 2h−1 vertices contains a copy of Th.

Proof (of Proposition 1.1): Let H be a tournament with h vertices and with χ(H) = r ≥ 3. We

first prove that t(Tn, H) ≥ r−2
r−1

(
n
2

)
. Consider the Turán graph T (n, r−1), that is the complete (r−1)-

partite graph with n vertices and with each color class of size bn/rc or dn/re. Add bidirectional

edges to Tn such that the undirected graph induced by the bidirectional edges is isomorphic to

T (n, r − 1). Observe that the resulting semi-complete digraph has chromatic number r − 1 since

each color class still induces a transitive set. Hence, it does not contain H as the latter has

χ(H) = r. We have added |E(T (n, r − 1))| edges to Tn without introducing a copy of H. Since

|E(T (n, r − 1))| ≥ r−2
r−1

(
n
2

)
we have that t(Tn, H) ≥ r−2

r−1

(
n
2

)
.

We next prove that t(n,H) ≤
(
r−2
r−1 + on(1)

) (
n
2

)
. Let the color classes of an r-coloring of

H be H1, . . . ,Hr where |Hi| = hi and notice that hi ≤ h − r + 1. Let U be the complete r-

partite graph with 2h−r vertices in each vertex class. By the Erdős-Stone Theorem [6], ex(n,U) =(
r−2
r−1 + on(1)

) (
n
2

)
. Given a tournament G, if we add to it ex(n,U) edges, the subgraph on the

bidirectional edges contains a copy of U . Now consider the set Ui of vertices of G induced by the

i’th color class of such a copy of U . It is a sub-tournament of G on 2h−r ≥ 2hi−1 vertices. By

Theorem 7, Ui contains a subset Wi which induces a copy of Thi . Mapping Hi (which induces a copy

of Thi in H) to Wi and orienting all edges between Wi and Wj (recall that they are all bidirectional

now) as they are oriented between Hi and Hj in H, we obtain that G together with its ex(n,U)

bidirectional edges contains a copy of H. Hence, t(n,H) ≤ ex(n,U) and the result follows.

We now turn to the proof of Proposition 1.2. Recall that for a 2-chromatic tournament H, we

used s(H) to denote the smallest integer such that there is a 2-coloring of H with a color class of

size s. The other color class has h − s ≥ s vertices. Denote the color classes of H by H1 and H2

where |H1| = s and |H2| = h− s.

Proof (of Proposition 1.2): The proof is similar to the proof of the upper bound in Proposition

1.1. Consider the complete bipartite undirected graph U = K2s−1,2h−s−1 . By the Kövári-Sós-Turán

Theorem [8], ex(n,U) = O(n2−1/2s−1
). If we take any tournament G and add to it ex(n,U) edges,

the undirected graph formed by the bidirectional edges contains a copy of U . Now consider the set

A of vertices of G induced by the color class of such a copy of U whose size is 2s−1 and the set B

induced by the color class of such a copy of U whose size is 2h−s−1. By Theorem 7, A contains a

subset A′ which induces a copy of Ts and B contains a subset B′ which induces a copy of Th−s.

Mapping H1 (which induces a copy of Ts in H) to A′, and mapping H2 (which induces a copy of

Th−s in H) to B′, and orienting all edges between A′ and B′ (recall that they are all bidirectional

now) as they are oriented between H1 and H2 in H, we obtain that G together with its ex(n,U)

bidirectional edges contains a copy of H. Hence, t(n,H) ≤ ex(n,U) and the result follows.

For certain tournaments with χ(H) ≤ 2 one can actually prove a much stronger bound than the

one stated in Proposition 1.2. To this end we need to recall an interesting notion defined by Berger
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et al. [2]. They say that a tournament H a hero if there is a constant cH so that any tournament

T satisfying χ(T ) > cH contains a copy of H. The main result of [2] is a precise characterization

of heroes. This characterization implies that all heroes have χ(H) ≤ 2 and hence heroes form a

particular interesting sub-family of 2-chromatic tournaments.

Theorem 8 If H is a hero with s = s(H), then t(n,H) = O(n2−1/s) .

Proof Set U = Ks,h−s. By the Kövári-Sós-Turán Theorem [8], ex(n,U) = O(n2−1/s). Given a

tournament G, if G is not H-free, then t(G,H) = 03. So assume that G is H-free. Since H is

a hero, we know that G is c-colorable, for some constant c = c(H). So let the color classes of G

be C1, . . . , Cc. Now add to G a set of c2 · ex(n,U) bidirectional edges. Now, if some Ci contains

ex(n,U) bidirectional edges, then we are done. This is because Ci will then have a bidirectional

copy of U . Since Ci is transitive in G, the first class of such a copy induces in G a transitive Ts and

the second class induces a transitive Th−s. Since all edges between these classes are bidirectional,

we obtain a copy of H in G[Ci] after adding the bidirectional edges. If some pair (Ci, Cj) contains

ex(n,U) bidirectional edges between Ci and Cj , then we are done. This is because (Ci, Cj) will

have a copy of U where, without loss of generality, the first class of this copy is in Ci and the

second class is in Cj . Since Ci is transitive in G, the first class of such a copy induces in G a

transitive Ts and the second class induces a transitive Th−s. Since all edges between these classes

are bidirectional, we obtain a copy of H in G[Ci ∪ Cj ] after adding the bidirectional edges. Now,

since there are only
(
c
2

)
pairs (Ci, Cj) and only c classes Ci and we have at least (

(
c
2

)
+ c)ex(n,U)

bidirectional edges, we must either have one of the two possibilities above occurring. We have

shown that t(G,H) ≤ c2 · ex(n,U) so t(n,H) ≤ O(n2−1/s), as claimed.

We now turn to the proof of Proposition 1.4. We will actually prove the following more precise

statement.

Proposition 2.1 Let H be a tournament with h vertices. If H is not a forest, then: t(Tn, H) =

Ω(n1+ 4
3h−ε ) where ε = 4 if h ≡ 0 mod 4, ε = 7 if h ≡ 1 mod 4, ε = 6 if h ≡ 2 mod 4, ε = 9 if

h ≡ 3 mod 4. Moreover, for every ε > 0, there exists k and a tournament H with a back-edge graph

consisting of a matching of size k which has t(Tn, H) = Ω(n2−ε).

Proof We start with the first part of the proposition for which we need the following result.

Lemma 2.2 For all k ≥ 2 there are balanced bipartite graphs with n vertices, with no cycles of

length at most 2k and with Ω(n1+ 2
3k−3+ε ) edges, where ε = 0 if k is odd and ε = 1 if k is even [10].

Suppose H has h vertices, χ(H) = 2, but H is not a forest tournament. In other words, in any

partition of V (H) into two transitive sets A and B, the set of edges going from B to A (viewed

as an undirected bipartite graph) contains a cycle. Now take Tn and let X be the first half of the

vertices (vertices 1, . . . , bn/2c) and Y be the remaining vertices. So all edges go from X to Y . Add

the maximum amount of bidirectional edges between X and Y while making sure that the set of

3t(G,H) is the least integer t such that adding t edges to G results in a digraph containing a copy of H.
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bidirectional edges (viewed as an undirected balanced bipartite graph with n vertices) has no cycle

of length h or smaller. Let G denote the obtained semi-complete digraph. We claim that G has no

copy of H. Indeed, suppose it had a copy of H and let A ⊂ X be the vertices of such a copy falling

in X and B ⊂ Y the vertices of the copy falling in Y . Then this partitions H into two transitive

sets A and B. But now, since H is not a forest, the set of edges of this copy of H going from B

to A must contain a cycle, and in particular, a cycle of length at most h. But by construction, the

bidirectional edges in G are the only edges that go from B to A and they do not contain a cycle of

length h or smaller, a contradiction. Using Lemma 2.2 with k = bh/2c we obtain that the number

of edges added to Tn to obtain G is Ω(n1+ 4
3h−ε ) where ε = 4 if h ≡ 0 mod 4, ε = 7 if h ≡ 1 mod 4,

ε = 6 if h ≡ 2 mod 4, ε = 9 if h ≡ 3 mod 4. Hence, t(Tn, H) is at least this large.

For the second part of the proposition, consider the tournament ∆k having k strongly connected

components, each of which is the 3-cycle C3. The components may be denoted by Z1, . . . , Zk where

each Zi induces a C3 on the vertices (ai, bi, ci) and all edges go from Zi to Zj when i < j. An

example of a back-edge graph of ∆k consisting of just a matching of size k is obtained by the

order a1, b1, c1, a2, b2, c2, . . . , ak, bk, ck where only the edges (ci, ai) for i = 1, . . . , k are back edges.

Observe that χ(∆k) = 2 by taking one color class to be, say, {a1, b1, a2, b2, . . . , ak, bk} and the other

class to be {c1, . . . , ck}. Nevertheless, it is not difficult to check that already ∆3 is not a tournament

forest. However, more can be said. Take any partition of the vertices of ∆k into two transitive sets

A and B. Then Zi, being a C3, must have at least one vertex in A and at least one vertex in B.

In particular, every element of B from Zi points t every element of A from Zj where j > i. Thus,

there are at least
(
k
2

)
edges pointing from B to A.

Given ε > 0, let t = d2/εe − 1. The well-known lower bound for complete bipartite Turán

numbers given in [5] asserts that for all n sufficiently large, there are bipartite graphs (with n/2

vertices in each side) with n2−2/(t+1) ≥ n2−ε edges that do not contain a copy of Kt,t. Let k be

the least integer such that
(
k
2

)
≥ 2(3k)2−1/t. By the Kövári-Sós-Turán Theorem [8], any bipartite

graph with 3k vertices and more than 2(3k)2−1/t edges contains a copy of Kt,t. Now use the same

construction and notation as in the proof of the first part of the proposition where now H = ∆k.

We obtain a semi-complete digraph G with at least n2−2/(t+1) ≥ n2−ε bidirectional edges where the

bidirectional edges in G are the only edges that go from B to A and they do not contain a Kt,t,

and hence there is no copy of ∆k. Thus, t(Tn,∆k) = Ω(n2−ε). This proves the second part of the

proposition.

3 Tournaments vs matrices

In this Section we prove Theorem 1. We start with the easy direction.

Lemma 3.1 Conjecture 2 implies Conjecture 1.

Proof Suppose H = (V,E) is a forest tournament and suppose it has a bipartition into two sets

L = {`1, . . . , `k1} and R = {r1, . . . , rk2} so that the edges pointing from R to L form a forest (as

10



in Definition 1.3). Let M denote the k1 × k2 matrix in which Mi,j = 1 if and only if H has an

edge pointing from rj to `i. Since H is a tournament forest, then the matrix M is a forest. Thus

if Conjecture 2 holds, then ex(n,M) = O(n(log n)p). We now show that if this is the case, then

t(Tn, H) = O(n(log n)p+1).

Suppose we add edges to Tn in such a way that for every integer m, the resulting digraph

does not contain two disjoint intervals of length m, with at least m(logm)p bidirectional edges

connecting them. Then in particular the number of bidirectional edges connecting {1, . . . , n/2} to

{n/2 + 1, . . . , n} is at most n(log n)p. Hence, if we let f(m) denote the largest possible number

of bidirectional edges within an interval of length m, we get that f(m) ≤ 2f(m/2) + m(logm)p

giving f(m) = O(m(logm)p+1). Hence, if G is a digraph resulting from adding O(n(log n)p+1)

edges to Tn, then we are guaranteed to have two intervals X,Y , with X preceding Y , of length

m each, with m(logm)p bidirectional edges between them. Suppose that X = {x1, . . . , xm} and

Y = {y1, . . . , ym} and define an m × m matrix A by setting Ai,j = 1 if and only if there is a

bidirectional edge connecting yj with xi. Then A contains at least m(logm)p+1 1’s and thus4

contains a copy of M . It is now easy to see that if this copy of M in A has rows i1 . . . , ik and

columns j1, . . . , jk, then the vertices xi1 , . . . , xik , yj1 , . . . , yjk span a copy of H in G. Hence if

Conjecture 2 holds, then so does Conjecture 1.

We now turn to prove that Conjecture 1 implies Conjecture 2, which will require some prepa-

ration. Suppose M is a k × k matrix with 0/1 entries. Note that in order to verify Conjecture 2 it

is enough to do so for matrices in which there is no all-zero row and no all-zero column. Indeed,

otherwise we can just add ones to such lines or columns while maintaining acyclicity. Denote by

M(i, j) the entry in row i and column j.

GivenM as above, letM∗ be the tournament defined on the vertex set {`1, . . . , `k, r1, . . . , rk} and

orient the edges as follows. If M(i, j) = 1, then we orient the edge from rj to `i. If M(i, j) = 0, then

we orient the edge from `i to rj . We also orient from `i to `j and from ri to rj for all 1 ≤ i < j ≤ k.

Notice that M∗ is a tournament forest since M is acyclic. Its left side is L = {`1, . . . , `k} and its

right side is R = {r1, . . . , rk} and the edges going from R to L form a forest. Furthermore, every

vertex of L has a vertex from R pointing to it and every vertex of R points to a vertex of L.

Given M∗, as above, let M∗p be the tournament defined as follows. Take p copies of L de-

noted L1 . . . , Lp where Ls = {`s,1, . . . , `s,k}, and p copies of R denote R1, . . . , Rp, where Rs =

{rs,1, . . . , rs,k}. For each 1 ≤ s ≤ p put a copy of M∗ on Ls∪Rs by identifying5 `s,i with `i and rs,j
with sj . Other than that, for every s < t orient all edges between Ls and Lt to point from Ls to

Lt, all edges between Rs and Rt to point from Rs to Rt, and all edges between Ls and Rt to point

from Ls to Rt. Note that M∗p is also a tournament forest with partition ∪ps=1Ls and ∪ps=1Rs.

Recall that ex(n,M) is the least integer m so that every n× n matrix A with m entries equal

to 1 contains the pattern matrix M .

4Although we defined the problem of bounding ex(n,M) only with respect to square k × k matrices, it is clear

that if Conjecture 2 holds for all forest k × k matrices then it holds also also for non-square matrices since we can

just add rows/columns of 0’s which have negligible effect on ex(n,M).
5That is, the map sending vertex `s,i of M∗k to vertex `i of M∗ and vertex rs,j of M∗k to vertex rj of M∗ should

be an isomorphism between M∗p [Ls ∪Rs] and M∗.
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Lemma 3.2 For every M there is p satisfying

ex(n,M) ≤ t(T2n,M
∗
p ) .

Proof Let A be an n× n matrix with ex(n,M)− 1 entries equal to 1 and which does not contain

the pattern M . Let T2n be the transitive tournament on {1, . . . , 2n}, and define a semi-complete

digraph G on these vertices by turning each pair (i, j + n) with 1 ≤ i ≤ n and 1 ≤ j ≤ n into a

bidirectional edge if and only if A(i, j) = 1. We will prove that G has no copy of M∗p for all large

enough p, and hence t(T2n,M
∗
p ) ≥ ex(n,M) as required.

Assume the contrary, and let a copy of M∗p in G be spanned by a set of vertices X. Recall that we

denote the vertices of M∗p by `s,i and rs,i with 1 ≤ s ≤ p and 1 ≤ i ≤ k, where Ls = {`s,1, . . . , `s,k}
and Rs = {rs,1, . . . , rs,k}. Let f : V (M∗p ) 7→ X be an isomorphism from M∗p to the copy of M∗p in

G[X]. For each 1 ≤ s ≤ p and 1 ≤ i ≤ l let `′s,i = f(`s,i) and r′s,i = f(rs,i). For every 1 ≤ s ≤ p

set L′s = {`′s,1, . . . , `′s,k} and R′s = {r′s,1, . . . , r′s,k}. Recalling the definition of M∗p this means that

for every 1 ≤ s ≤ p the map sending `′s,i to `i and r′s,i to ri is an isomorphism between a subgraph

of G[L′s ∪R′s] and M∗.

Suppose first that for some 1 ≤ s ≤ p all the vertices of L′s appear (in G) before6 those of

R′s. Recall that by its construction, G has no bidirectional edges within {1, . . . , n} and within

{n+ 1, . . . , 2n}. Hence, if L′s has a vertex in {n+ 1, . . . , 2n}, then this vertex has no edges pointing

to it from R′s. This contradicts our assumption that M has no zero rows. For a similar reason

R′s has no vertex in {1, . . . , n}, as otherwise this contradicts our assumption that M has no zero

columns. We see that L′s ⊆ {1, . . . , n} and R′s ⊆ {n+1, . . . , 2n}. Since L and R span transitive sets

in M∗ so should L′s and R′s. Since the only edges of G within the sets {1, . . . , n} and {n+1, . . . , 2n}
are those of T2n we get that the vertices of L′s and R′s appear in G in the following order

`′s,1 < · · · < `′s,k < r′s,1 < · · · < r′s,k .

As noted above sending `′s,i to `i and r′s,i to ri is an isomorphism between a digraph spanned by

L′s ∪ R′s and M∗. This means that whenever (ri, `j) is an edge of M∗ (or, equivalently, whenever

M(i, j) = 1) we must have a bidirectional edge between `′s,i and r′s,j . But by the construction of G

from A this means that we must have A[`′s,i, r
′
s,j−n] = 1. Hence the sub-matrix of A consisting of the

rows {`′s,1, . . . , `′s,k} and the columns {r′s,1−n, . . . , r′s,k−n} contains M as a pattern, contradicting

the assumption regarding A.

Suppose now that the condition in the previous paragraph does not hold. Then for every

1 ≤ s ≤ p we have two vertices r′s ∈ Rs and `′s ∈ Ls so that r′s appears before `′s. Choose vertex

m in G so that exactly p/2 of the above p vertices r′1, . . . , r
′
p appear before m. Let I ⊆ [p] be such

that s ∈ I if and only if r′s appears before m. Then for every s 6∈ I we know that `′s appears after

m. We have thus found a set X ′ of p/2 vertices {r′s : s ∈ I} and a set Y ′ of p/2 vertices {`s : s 6∈ I}
so that all vertices of X ′ appear in G before all vertices of Y ′. Since M∗ is a forest, the edges

of M∗k pointing from ∪ps=1Rs to ∪ps=1Ls form a forest. This means that for any pair of subsets

6Recall that the vertices of G are {1, . . . , n} so when we say “before” we refer to the natural order of the vertices.
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X ⊆ ∪ps=1Rs and Y ⊆ ∪ps=1Ls of size p/2 each, there are less than p edges pointing from X to Y .

Put differently, there are at least (p/2)2− p+ 1 edges pointing from Y to X. Since we assume that

f is an isomorphism between the a subgraph of G[X] and M∗p and X ′ ⊆ ∪ps=1R
′
s and Y ⊆ ∪ps=1L

′
s

this means that in G we must have at least (p/2)2− p+ 1 edges pointing from Y ′ to X ′. But since,

X ′ appears before Y ′ this means that we have at least (p/2)2−p+1 bidirectional edges between X ′

and Y ′. This implies that in the sub-matrix of A consisting of the p/2 rows Y ′ and the p/2 columns7

X ′−n we have at least (p/2)2− p+ 1 entries equal to 1. By the Kövari-Sos-Turán Theorem, every

(p/2)× (p/2) matrix with k(p/2)2−1/k entries equal to 1, contains a k × k sub-matrix all of whose

entries are 1. Hence, for any p satisfying (p/2)2 − p+ 1 > k(p/2)2−1/k, the matrix A will contain a

copy of M as a pattern, which again contradicts the assumption.

Proof (of Theorem 1): Follows from Lemmas 3.1 and 3.2 and the discussion preceding Lemma

3.2.

Proof (of Theorem 6): Consider the matrices in Figure 1. Füredi and Hajnal [7] showed that the

matrix M1 has ex(n,M1) = Θ(n log n). Lemma 3.2 thus proves that t(Tn, (M
∗
1 )p) = Ω(n log n) for p

sufficiently large (in fact, it suffices to take p = 40 in this case since a bipartite graph with 20 vertices

in each side and at least 400−39 = 361 edges contains aK3,3). Pettie [14] showed that the matrixM2

has ex(n,M2) = Ω(n log n log log n). Lemma 3.2 thus proves that t(Tn, (M
∗
2 )p) = Ω(n log n log logn)

for p sufficiently large (in fact, he proved that already the rectangular matrix M2 with the last row

deleted satisfied this lower bound).

M1 =

 • ••
•

 M2 =


• • •
• •

•
• •

•


Figure 1: The matrix M1 with ex(n,M1) = Θ(n log n) and the matrix M2 with ex(n,M2) =

Ω(n log n log log n). Bullets represent 1 and blanks represent 0.

4 Bounding t(n,H) using sparse families

The main result we prove in this section is Theorem 2 which reduced the problem of bounding

t(n,H) to finding “parse” characterizations” of prime H-free tournaments. We will end this section

with the proof of Theorem 4 showing that the tournament U5 has such a sparse family. We will

need the following two lemmas, whose statements use the notions introduced in Subsection 1.4.

Lemma 4.1 If U is an undirected n-vertex graph with bn(log n)b+1 edges, then U has an m-vertex

subgraph which is a b logbm-expander.

7Recall that the vertices of G are the integers {1, . . . , 2n} so by X ′ − n we mean the set of columns whose indices

are {x′ − n : x′ ∈ X ′}.
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Proof Consider the following process in which we iteratively construct a sequence of graphs

U0, U1, . . ., with the property that if Ui has mi vertices than it has at least bmi(logmi)
b+1 edges.

We start by setting U0 = U . Assuming we already defined Ui we do the following. If Ui is a

b logbmi-expander we stop. Otherwise we do the following; let X be a set of size x ≤ mi/2 having

less than bx logbmi edges connecting it to its complement (within Ui). If the graph spanned by X

has at least bx logb+1 x edges, then we set Ui+1 to be this graph. Otherwise, if the graph spanned

by the complement of X has at least b(mi − x)(log(mi − x))b+1 edges, then we set Ui+1 to be this

graph. We claim that it cannot be the case that both cases fail. Indeed, if this is the case, then

the total number of edges in Ui is at most

bx(log(mi/2))b+1 + b(mi − x) logb+1mi + bx logbmi < bmi logb+1mi

contradicting the assumption that Ui has at least bmi(logmi)
b+1 edges. Hence the above process

must eventually stop with the last graph Ui being an mi-vertex b logbmi-expander.

Lemma 4.2 If G = (V,E) is a semi-complete n-vertex digraph which is a 4 log n-expander, then

with probability at least 3/4 a tournament drawn from DG is not prime.

Proof Suppose T ∼ DG. Take any set X ⊆ V with x = |X| where 2 ≤ x ≤ n − 1. We will

prove that the probability that X is homogenous in T is at most (2n
(
n
x

)
)−1. We consider first the

case |X| ≤ n/2. Let K be the set of bidirectional edges of G connecting X and V \ X. Since G

is assumed to be a 4 log n-expander we know that |K| ≥ 4x log n. Consider some w ∈ V \X. We

say that w is Type-1 if there is at least one non-bidirectional edge connecting w and X (or, in

other words, not all x edges between w and X are bidirectional edges). Otherwise, w is Type-2.

Let Kw ⊂ K be the bidirectional edges incident with w. Now, if w is Type-1, there is some non-

bidirectional edge e connecting w and X, so in order for X to be homogenous in T , it must be the

case the for each bidirectional edge {w, i} ∈ Kw the orientation that was chosen for {w, i} must

agree with the (fixed) orientation of e. This occurs with probability (1/2)|Kw|. Suppose now that

w is Type-2. In this case, have that |Kw| = x ≥ 2. In a similar manner, we get that conditioning

on any orientation of one of the edges of Kw, the probability that all the other edges get the

same orientation is (1/2)|Kw|−1 ≤ (1/2)|Kw|/2. We see that in both cases, the probability that w

would have the property that all pairs w, j with j ∈ X with have the same orientation is at most

(1/2)|Kw|/2. So overall, the probability that X is homogenous is at most∏
w∈V \X

2−|Kw|/2 = 2−
1
2

∑
w∈V \X |Kw| = 2−

1
2
|K| ≤ 2−2x logn <

1

4n
(
n
x

) .
Notice that if |X| ≥ n/2, then the same argument holds replacing x with n− x and using the fact

that
(
n
x

)
=
(
n

n−x
)
. We have thus proved that the probability that T contains a homogenous set is

at most ∑
X⊂V , 2≤|X|≤n−1

1

4n
(
n
x

) ≤ 1

4
.
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Hence with probability at least 3/4, the tournament T is prime.

The proof of Theorem 2 now follows quite easily from the above lemmas.

Proof (of Theorem 2): Suppose Q is the family of H-free prime tournaments and Q is sparse,

and suppose b is the constant from Definition 1.5. Set t = max{b, 4}. We claim that t(n,H) ≤
tn(log n)t+1. To see this, take any n-vertex tournament and add tn(log n)t+1 edges to it. Let

G = (V,E) be the resulting semi-complete digraph. Suppose to the contrary that G is H-free.

Let U be the undirected graph on the same vertex set V in which (i, j) is an edge if and only if

{i, j} is a bidirectional edge in G. Then U contains tn(log n)t+1 edges, so we can use Lemma 4.1

in order to find an m-vertex subgraph U ′ of U which is a t logtm-expander. Suppose U ′ has vertex

set V ′ and let G′ = (V ′, E′) be the subgraph of G induced by V ′. Let us now pick a tournament

T ∼ DG′ . Since t ≥ 4, Lemma 4.2 tells us that the probability that T is prime is at most 1/4 and

the assumption that Q is sparse together with the fact that t ≥ b implies that the probability that

T ∈ Q is at most 1/2. Hence, with positive probability, T will be a prime and will not belong to

Q. But since G is assumed to be H-free, then so must be G′ and T . We have thus found an H-free

prime tournament T which does not belong to Q, contradicting the definition of Q.

We end this section with the proof that the family Q5 (defined in Subsection 1.4) is sparse.

Proof (of Theorem 4): SupposeG is a 10 log n-expander. Observe that for odd n, the tournament

Cn is (n−1)/2-regular. For a given vertex v, let db(v), din(v), dout(v) be the number of bidirectional

edges touching v, the number of edges pointing at v and the number of edges pointing from v.

Suppose that from k of the db(v) bidirectional edges touching v the edge pointing from v was

chosen, and from the other db(v)− k bidirectional edges, the edge pointing to v was chosen. Then

for v to have out-degree (n − 1)/2 we must have dout(v) + k = din(v) + db(v) − k. Thus, setting

d = db(v) and d′ = (din(v)+db(v)−dout(v))/2, the probability of this event is at most
(
d
d′

)
/2d. Since

G is a log n-expander, we have8 d ≥ log n, implying that this probability is O(1/
√

log n), implying

that the expected number of vertices of degree (n − 1)/2 is O(n/
√

log n) so the probability that

they will all have degree (n − 1)/2 is o(1). In particular, the probability that T ∼ DG will be

isomorphic to Cn is o(1).

We now show that the probability that T ∼ DG will satisfy the second condition of Theorem 3

is less than 1/3. Consider a given partition of n into three nonnegative integers x1, x2, x3 such that

x1 + x2 + x3 = n, x1 ≤ x2 ≤ x3 and a partition of V (G) into three sets V1, V2, V3 of sizes |Vi| = xi.

We estimate the probability that T ∼ DG will have the property that T [V1 ∪ V2], T [V1 ∪ V2], and

T [V2 ∪ V3] are transitive. Denote this property by P.

Assume first that x2 = 0. In this case x3 = n and T will have P if and only if T is transitive.

Since G is a 10 log n-expander, it has at least 5n log n bidirectional edges, hence the probability

that the direction of these edges will comply with any of the n! possible ordering of T ’s vertices is

at most n!2−5n logn � 1/n2.

Assume therefore that x2 ≥ 1. Then there are at least 10x2 log n bidirectional edges between V2

and V1∪V3, so there are at least 5x2 log n bidirectional edges between V2 and Vj for one of j = 1, 3.

8Note that here we are only using the fact that a in logn-expander, every vertex has degree at least logn.
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The probability that V2 ∪ Vj is transitive in T is at most(
x2 + xj
x2

)
2−5x2 logn <

(
n

x2

)
2−5x2 logn < 2−4x2 logn <

1

nx1+x2+2
.

The number of ways to choose sets V1, V2, V3 with the given sizes x1, x2, x3 is
(
n
x1

)(
n−x1
x2

)
< nx1+x2 .

Hence, for a given partition x1 + x2 + x3 = n, the probability that some partition of V (G) into

three sets will cause T to satisfy P is less than 1/n2. As there are less than n2/4 ways to make a

partition of n to x1 +x2 +x3, we get by the union bound that the probability that T ∼ DG satisfies

the second condition of Theorem 3 is at most 1/4 + 1/n2 < 1/3.

Altogether, the probability that T ∼ DG ∈ Q5 is less than 1/2, so Q5 is sparse.

5 Tournaments with at most two back edges

We prove Theorem 5. Suppose that H is a tournament with a back-edge graph consisting of two

edges. We may assume that both edges have no common endpoint as otherwise H is a star tour-

nament and we are done. Suppose therefore that the back edges are (a, b), (c, d) where a, b, c, d are

distinct. There are three possible configurations that need to be handled. The disjoint configu-

ration, where both a, b precede c, d (namely b < a < d < c), the intersecting configuration where

b < d < a < c and the containment configuration, where b < d < c < a. Lemmas 5.2, 5.3 and

5.4 handle each of these configurations. Before that we need to prove the following useful lemma.

Suppose G is an undirected ordered graph with vertices {1, . . . , n}. A subgraph G∗ of G is a t-gap

if any pair of vertices u, v of G∗ satisfy |u− v| ≥ t. Furthermore, vertices 1, . . . , t− 1 and vertices

n− t+ 2, . . . , n are not in G∗.

Lemma 5.1 Suppose that G is an undirected ordered graph with vertices {1, . . . , n} and with m

edges. Then G has a t-gap subgraph with at least (m− 3nt)/(et)2 edges.

Proof For i = t, . . . , n− t+ 1, vertex i is selected according to the following rule. If any one of the

vertices i−1, i−2, i−t+1 was selected, i is never selected. Otherwise, i is selected with probability

1/t. This guarantees that the set of selected vertices induce a t-gap subgraph. Now, suppose u

and v are vertices with v − u ≥ t where u ≥ t and v ≤ n − t + 1. Observe that u is selected with

probability at least (1− 1/t)t−1 · (1/t) ≥ 1/(et). Now, v is selected with probability at least 1/(et)

regardless of whether u is selected or not. Hence, both u and v are selected with probability at

least 1/(et)2 (this probability can be slightly improved with a somewhat more detailed analysis).

There are less than 3nt edges (u, v) that are incident with 1, . . . , t or with n− t+ 2, . . . , n or have

|u− v| < t. So, if G∗ is the subgraph of G induced by the set of chosen vertices, we have that the

expected number of edges of G∗ is at least (m− 3nt)/(et)2, as required.

Lemma 5.2 Suppose that H is a tournament on h vertices with an order having a back-edge graph

consisting of two edges in a disjoint configuration. Then t(Tn, H) ≤ 20h2n.

16



Proof Let Xh denote the undirected tree on the set of vertices {x1, . . . , xh} and whose edges are

(x1, xh−1), (x2, xh−1), . . . , (xh−2, xh−1), (xh−2, xh).

Consider Tn and the semi-complete digraph obtained after adding to it 2hn edges. The set of

bidirectional edges is an ordered undirected graph G on {1, . . . , n}. We claim that G either has

two edges (xj , xi), (x`, xk) with xi < xj < xk < x` or else it contains an ordered copy of Xh.

The claim is proved by induction on n where the case h < n holds trivially. We classify the

edges of G as follows. If both endpoints are in the first half of vertices (vertices 1, . . . , bn/2c), the

edge is called left. If both are in the second half of vertices, it is called right. Otherwise, it is called

crossing. Now, if there is some left edge and also some right edge, then we are done as the left

edge can play the role of (xj , xi) and the right edge can play the role of (x`, xk). Otherwise, if

there are 2hbn/2c left edges we are done by induction on Tbn/2c. Otherwise, if there are 2hdn/2e
right edges we are done by induction on Tdn/2e. So we are left with the case that there are at least

2hbn/2c ≥ (h− 1)n crossing edges. Hence, there is a subgraph G∗ of G consisting only of crossing

edges and with minimum degree at least h− 1. Consider the shortest edge of G∗, namely an edge

(u, v) where u ∈ {1, . . . , bn/2c} and v ∈ {bn/2c + 1, . . . , n} and v − u is as small as possible. Let

x1, . . . , xh−2 be h− 2 distinct neighbors of v in G∗ with x1 < x2 < · · · < xh−2 < u. Let xh be some

neighbor of u other than v and notice that xh > v since v − u is minimal. Setting u = xh−2 and

v = xh−1 we obtain that G∗, and therefore also G, contains an ordered copy of Xh.

Having proved this claim we now proceed to the proof of the statement of the lemma. So

consider Tn and the semi-complete digraph obtained after adding to it 20h2n edges. Let G be the

ordered graph on the vertices of Tn and the 20h2n bidirectional edges. By Lemma 5.1, G has an

h-gap subgraph G′ with a least (20h2n− 3hn)/(eh)2 ≥ 2n edges. Notice also that G′ has at most

n/h vertices. By the claim in the previous paragraph, G′ either has two edges (xj , xi), (x`, xk) with

xi < xj < xk < x` or else it contains an ordered copy of Xh. Consider now the tournament H with

vertex set {y1, . . . , yh} and with the order y1, . . . , yh having two back edges. Suppose these two

back edges are (yq, yp) and (ys, yr) where by the assumption on them being in disjoint configuration

we have p < q < r < s.

Consider first the case that G′ has two edges (xj , xi), (x`, xk) with xi < xj < xk < x`. Then we

can find a copy of H in Tn ∪G by assigning y1, . . . , yp−1 to p− 1 vertices smaller than xi, assigning

yp to xi, assigning yp+1, . . . , yq−1 to q− p− 1 vertices larger than xi and smaller than xj , assigning

yq to xj , assigning yq+1, . . . , yr−1 to r− q− 1 vertices larger than xj and smaller than xk, assigning

yr to xk, assigning yr+1, . . . , ys−1 to s− r− 1 vertices larger than xk and smaller than x`, assigning

ys to x`, and assigning ys+1, . . . , yh to h− s vertices larger than x`.

We may now assume that G′ has an ordered copy of Xh. Consider the order of H obtained by

placing yp after yr, hence the order y1, . . . , yp−1, yp+1, . . . , yr, yp, yr+1, . . . , yh. The back-edge graph

of this order is isomorphic to Xr−p+1, as yp now has back edges to yp+1, . . . , yq−1, yq+1, . . . , yr and

yr gets a back edge from ys. Since G′ has a copy of Xh and since r − p + 1 ≤ h we have in

particular that G′ has a copy of Xr−p+1. Since G′ is an h-gap, we can find a copy of H in Tn ∪G
realizing this order of H as follows: assigning y1, . . . , yp−1 to p− 1 vertices smaller than x1 (recall

that the vertices of Xr−p−1 are x1, . . . , xr−p+1), assigning yp+1, . . . , yq−1 to vertices x1, . . . , xq−p−1,
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assigning yq to a vertex larger than xq−p−1 and smaller than xq−p, assigning yq+1, . . . , yr to vertices

xq−p, . . . , xr−p−1, assigning yp to xr−p, assigning yr+1, . . . , ys−1 to vertices larger than xr−p and

smaller than xr−p+1, assigning ys to xr−p+1, and assigning ys+1, . . . , yh to h−s vertices larger than

xr−p+1.

Lemma 5.3 Suppose that H is a tournament on h vertices with an order having a back-edge graph

consisting of two edges in a containment configuration. Then t(Tn, H) ≤ 30hn.

Proof Consider Tn and the semi-complete digraph obtained after adding to it 3n + 1 edges. Let

G be the ordered graph on the vertices of Tn and the 3n+ 1 bidirectional edges. We claim that G

has two edges (x`, xi), (xk, xj) with xi < xj < xk < x`.

Let the forward degree of a vertex u of G, denoted by f(u), be the number of edges (u, v) with

v > u. Notice that
∑n

i=1 f(i) = 3n + 1. Let U be the set of vertices with f(u) > 0. For u ∈ U
let r(u) be the rightmost neighbor of u and let pred(u) be the predecessor of u in U (if u is the

first vertex of U , then pred(u) = φ and also define r(φ) = 0). Let u be the least vertex in U such

that r(u) ≤ r(pred(u)) + f(u) − 2. Notice that this initially does not occur as for the smallest

vertex in u ∈ U we have r(u) ≥ u + f(u). But also notice that u must exists, as otherwise we

would have for the maximal element v ∈ U that r(v) ≥
∑

u∈U (f(u) − 2) but this cannot happen

as r(v) ≤ n while
∑

u∈U (f(u) − 2) ≥ (3n + 1) − 2n > n. So, we indeed have some vertex u

such that r(u) ≤ r(pred(u)) + f(u) − 2. But if the rightmost neighbor of u is in location r(u),

then there is also a forward neighbor of u, say w, with w ≤ r(u) − (f(u) − 1). But then we have

pred(u) < u < w < r(pred(u)) so letting xi = pred(u), xj = u, xk = w and x` = r(pred(u)) the

claim follows.

Having proved this claim we now proceed to the proof of the statement of the lemma. So

consider Tn and the semi-complete digraph obtained after adding to it 30hn edges. Let G be the

ordered graph on the vertices of Tn and the 30hn bidirectional edges. By Lemma 5.1, G has an

h-gap subgraph G′ with a least (30hn − 3hn)/(eh)2 ≥ 3n/h + 1 edges. Notice also that G′ has

at most n/h vertices. By the claim in the previous paragraph, G′ has two edges (x`, xi), (xk, xj)

with xi < xj < xk < x`. Consider now the tournament H with vertex set {y1, . . . , yh} and with

the order y1, . . . , yh having two back edges. Suppose these two back edges are (ys, yp) and (yr, yq)

where by the assumption on them being in containment configuration we have p < q < r < s. We

can find a copy of H in Tn ∪G by assigning y1, . . . , yp−1 to p− 1 vertices smaller than xi, assigning

yp to xi, assigning yp+1, . . . , yq−1 to q− p− 1 vertices larger than xi and smaller than xj , assigning

yq to xj , assigning yq+1, . . . , yr−1 to r− q− 1 vertices larger than xj and smaller than xk, assigning

yr to xk, assigning yr+1, . . . , ys−1 to s− r− 1 vertices larger than xk and smaller than x`, assigning

ys to x`, and assigning ys+1, . . . , yh to h− s vertices larger than x`.

Lemma 5.4 Suppose that H is a tournament on h vertices with an order having a back-edge graph

consisting of two edges in an intersecting configuration. Then t(Tn, H) ≤ 20hn.

Proof Consider Tn and the semi-complete digraph obtained after adding to it 2n − 2 edges. Let

G be the ordered graph on the vertices of Tn and the 2n− 2 bidirectional edges. We claim that G
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has two edges (xk, xi), (x`, xj) with xi < xj < xk < x`. This immediately from the fact that the

maximum number of edges in an outer-planar graph with n vertices is 2n− 3.

Having proved this claim we now proceed to the proof of the statement of the lemma. So

consider Tn and the semi-complete digraph obtained after adding to it 20hn edges. Let G be the

ordered graph on the vertices of Tn and the 20hn bidirectional edges. By Lemma 5.1, G has an

h-gap subgraph G′ with a least (20hn − 3hn)/(eh)2 ≥ 2n/h − 2 edges. Notice also that G′ has

at most n/h vertices. By the claim in the previous paragraph, G′ has two edges (xk, xi), (x`, xj)

with xi < xj < xk < x`. Consider now the tournament H with vertex set {y1, . . . , yh} and with

the order y1, . . . , yh having two back edges. Suppose these two back edges are (yr, yp) and (ys, yq)

where by the assumption on them being in intersecting configuration we have p < q < r < s. We

can find a copy of H in Tn ∪G by using the same embedding as in Lemma 5.3.

The proof of Theorem 5 now follows immediately from Lemmas 5.2, 5.3 and 5.4.
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