Brownian motion - exercise sheet 2

Due on Wednesday, May 12th.
Notation:

- $\{B(t): t \in[0, \infty)\}$ is standard Brownian motion started at 0 .
- For $a \in \mathbb{R}$ we denote $T_{a}=\inf \{t \geq 0: B(t)=a\}$.

1. (a) Show that if $u(t, x)$ is a polynomial in t and x such that

$$
\frac{\partial u}{\partial t}+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

then $u(t, B(t))$ is a martingale with respect to the standard filtration.
(b) Conclude that $B(t)^{3}-3 t B(t)$ and $B(t)^{4}-6 t B(t)^{2}+3 t^{2}$ are martingales.
2. Let $a<0<b$ and set $T=\min \left\{T_{a}, T_{b}\right\}$. Compute $\mathbb{E} T^{2}$.
3. Show that there exists constants $C, c>0$ such that for Brownian motion started at 0 and all $n \geq 1$

$$
\frac{c}{\sqrt{n}} \leq \mathbf{P}\left(T_{-1} \geq n\right) \leq \frac{C}{\sqrt{n}}
$$

4. Let $\left\{X_{k}\right\}$ be a sequence of i.i.d. random variables with mean 0 and variance 1 and put $S_{n}=\sum_{k=1}^{n} X_{k}$. Define

$$
\tau_{n}=n^{-1} \cdot \min \left\{1 \leq k \leq n: S_{k}=\max _{j \leq n} S_{j}\right\}
$$

Prove that τ_{n} converges to the arcsine law.
What happens if we change the min to max in the definition of τ_{n} ?
5. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be harmonic, that is, twice continuously differentiable and $\Delta f=0$ (where $\Delta f=\sum_{i=1}^{d} \frac{\partial^{2} f}{\partial x_{i}^{2}}$), and let $B(t)$ be d-dimensional Brownian motion. Assume also that $\mathbb{E}_{x}|f(B(t))|<\infty$ for each $x \in \mathbb{R}^{d}$ and every $t \geq 0$.
(a) Show that $f(B(t))$ is a martingale.
(b) Consider $d=2$ and interpret \mathbb{R}^{2} as the complex plane. Show that for any $\lambda \in \mathbb{R}$ the process $\left\{e^{i \lambda B(t)}\right\}_{t \geq 0}$ is martingale, that is, its real and imaginary parts are martingales.
(c) In the setting of (b), assume that $B(t)$ starts at i and let T be the first time $B(t)$ visits the real axis. Show that $\mathbb{E} e^{i \lambda B(T)}=e^{-|\lambda|}$ and use Lévy's inversion formula (from Prob to Math) to find $B(T)$'s distribution.

