Brownian motion — exercise sheet 3

Due Wednesday, June 16th. Notation:

- $\{B(t) : t \in [0,\infty)\}$ is standard Brownian motion started at 0, in \mathbb{R} unless stated otherwise (as in questions 5 and 7).
- $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- 1. Let $h : [0, \infty) \to \mathbb{R}$ be a fixed continuous function. Show that $\int_0^t h(s) dB_s$ has normal distribution with mean 0 and variance $\int_0^t h(s)^2 ds$.
- 2. Let t > 0 be fixed. Find the distribution of $\int_0^t B(s) ds$.
- 3. Let $T \in (0, \infty)$ be fixed. Show that almost surely

$$\lim_{\beta \to \infty} \sup_{t \in [0,T]} e^{-\beta t} \int_0^t e^{\beta s} dB_s = 0.$$

- 4. Assume A(t) is a progressively measurable process (with respect to the Brownian filtration) in L^1 , that is, $\mathbb{E} \int_0^T |A_t| dt < \infty$ for some fixed T > 0. Show that the process $\int_0^t A(s) ds$ $(t \leq T)$ is a martingale if and only if A(t) = 0 almost surely, for Lebesgue almost every $t \in [0, T]$.
- 5. Suppose $f : \mathbb{D} \to f(\mathbb{D})$ is a conformal map with f(0) = 0 and Taylor expansion $f(z) = \sum_{k=1}^{\infty} a_k z^k$. Let B_t be standard Brownian motion in \mathbb{C} and $\tau = \inf\{t \ge 0 : B_t \notin f(\mathbb{D})\}$. Show that

$$\mathbb{E}_0 \tau = \frac{1}{2} \sum_{k=1}^{\infty} |a_k|^2$$

6. (a) Let $\Omega = \left\{ x + iy \in \mathbb{C} : -\frac{\pi}{4} < x < \frac{\pi}{4} \right\}$. Show that the map

$$f(z) = \tan^{-1}(z) = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} \dots$$

conformally maps \mathbb{D} onto Ω . [Hint: first map Ω into a half space using an exponential map, then into the disc using a Möbius map.]

Remark: You will get full marks for this exercise it even if you don't answer.

- (b) Derive that $\frac{\pi^2}{8} = 1 + 3^{-2} + 5^{-2} + \cdots$.
- (c) Conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \,.$$

7. Let Ω be a simply connected domain of area π and such that $0 \in \Omega$. Let $\tau = \inf\{t \ge 0 : B_t \notin \Omega\}$ where B_t is standard Brownian motion in \mathbb{C} . Show that $\mathbb{E}_0 \tau$ is maximized among all possible Ω 's at \mathbb{D} . (You may use Riemann's mapping theorem: there is a conformal map from \mathbb{D} onto Ω mapping 0 to 0).