Brownian motion - exercise sheet 3

Due Wednesday, June 16th. Notation:

- $\{B(t): t \in[0, \infty)\}$ is standard Brownian motion started at 0 , in \mathbb{R} unless stated otherwise (as in questions 5 and 7).
- $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

1. Let $h:[0, \infty) \rightarrow \mathbb{R}$ be a fixed continuous function. Show that $\int_{0}^{t} h(s) d B_{s}$ has normal distribution with mean 0 and variance $\int_{0}^{t} h(s)^{2} d s$.
2. Let $t>0$ be fixed. Find the distribution of $\int_{0}^{t} B(s) d s$.
3. Let $T \in(0, \infty)$ be fixed. Show that almost surely

$$
\lim _{\beta \rightarrow \infty} \sup _{t \in[0, T]} e^{-\beta t} \int_{0}^{t} e^{\beta s} d B_{s}=0
$$

4. Assume $A(t)$ is a progressively measurable process (with respect to the Brownian filtration) in L^{1}, that is, $\mathbb{E} \int_{0}^{T}\left|A_{t}\right| d t<\infty$ for some fixed $T>0$. Show that the process $\int_{0}^{t} A(s) d s(t \leq T)$ is a martingale if and only if $A(t)=0$ almost surely, for Lebesgue almost every $t \in[0, T]$.
5. Suppose $f: \mathbb{D} \rightarrow f(\mathbb{D})$ is a conformal map with $f(0)=0$ and Taylor expansion $f(z)=$ $\sum_{k=1}^{\infty} a_{k} z^{k}$. Let B_{t} be standard Brownian motion in \mathbb{C} and $\tau=\inf \left\{t \geq 0: B_{t} \notin f(\mathbb{D})\right\}$. Show that

$$
\mathbb{E}_{0} \tau=\frac{1}{2} \sum_{k=1}^{\infty}\left|a_{k}\right|^{2}
$$

6. (a) Let $\Omega=\left\{x+i y \in \mathbb{C}:-\frac{\pi}{4}<x<\frac{\pi}{4}\right\}$. Show that the map

$$
f(z)=\tan ^{-1}(z)=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\frac{z^{7}}{7} \ldots
$$

conformally maps \mathbb{D} onto Ω. [Hint: first map Ω into a half space using an exponential map, then into the disc using a Möbius map.]
Remark: You will get full marks for this exercsise it even if you don't answer.
(b) Derive that $\frac{\pi^{2}}{8}=1+3^{-2}+5^{-2}+\cdots$.
(c) Conclude that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

7. Let Ω be a simply connected domain of area π and such that $0 \in \Omega$. Let $\tau=\inf \{t \geq$ $\left.0: B_{t} \notin \Omega\right\}$ where B_{t} is standard Brownian motion in \mathbb{C}. Show that $\mathbb{E}_{0} \tau$ is maximized among all possible Ω 's at \mathbb{D}. (You may use Riemann's mapping theorem: there is a conformal map from \mathbb{D} onto Ω mapping 0 to 0).
