Complex analysis 2 Homework #1 Due date: March 25, 2019

 \mathbb{C} = complex plane; $\mathbb{D} = \{ z : |z| < 1 \}.$

- 1. Let $f : \mathbb{D} \to \mathbb{C}$ be a holomorphic function such that |f'(0)| = 1 and $|f'(z)| \leq 2$ for all $z \in \mathbb{D}$. Show that the image $f(\mathbb{D})$ contains a disc of radius $3 \sqrt{8}$. [Remark: points will be given if you can prove this with a constant less than $3 \sqrt{8}$]
- 2. Let \mathcal{F} be the family of holomorphic functions $\mathbb{D} \to \mathbb{C}$ that are one-to-one.
 - (a) Show that \mathcal{F} is not normal.
 - (b) Let \mathcal{F}_0 be all the functions of \mathcal{F} that omit the value 0 (that is, $f \in \mathcal{F}_0$ if and only if $f \in \mathcal{F}$ and $0 \notin f(\mathbb{D})$). Show that \mathcal{F}_0 is normal.
- 3. Let \mathcal{F}_1 be the family of holomorphic functions $\mathbb{D} \to \mathbb{C}$ that are one-to-one and f(0) = 0 and f'(0) = 1. Show that \mathcal{F}_1 is normal.
- 4. Show that there exists $\epsilon_0 > 0$ such that for every holomorphic $f : \mathbb{D} \to \mathbb{C}$ that is one-to-one, f(0) = 0 and f'(0) = 1 satisfies that the image $f(\mathbb{D})$ contains a ball of radius ϵ_0 .
- 5. Show that there exists $\epsilon_0 > 0$ such that for every holomorphic $f : \mathbb{D} \to \mathbb{C}$ with f'(0) = 1 satisfies that the image $f(\mathbb{D})$ contains a ball of radius ϵ_0 .