$$
\begin{gathered}
\text { Complex analysis } 2 \\
\text { Homework \#1 } \\
\text { Due date: March 25, } 2019 \\
\mathbb{C}=\text { complex plane; } \mathbb{D}=\{z:|z|<1\} .
\end{gathered}
$$

1. Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function such that $\left|f^{\prime}(0)\right|=1$ and $\left|f^{\prime}(z)\right| \leq 2$ for all $z \in \mathbb{D}$. Show that the image $f(\mathbb{D})$ contains a disc of radius $3-\sqrt{8}$. [Remark: points will be given if you can prove this with a constant less than $3-\sqrt{8}$]
2. Let \mathcal{F} be the family of holomorphic functions $\mathbb{D} \rightarrow \mathbb{C}$ that are one-to-one.
(a) Show that \mathcal{F} is not normal.
(b) Let \mathcal{F}_{0} be all the functions of \mathcal{F} that omit the value 0 (that is, $f \in \mathcal{F}_{0}$ if and only if $f \in \mathcal{F}$ and $0 \notin f(\mathbb{D})$). Show that \mathcal{F}_{0} is normal.
3. Let \mathcal{F}_{1} be the family of holomorphic functions $\mathbb{D} \rightarrow \mathbb{C}$ that are one-to-one and $f(0)=0$ and $f^{\prime}(0)=1$. Show that \mathcal{F}_{1} is normal.
4. Show that there exists $\epsilon_{0}>0$ such that for every holomorphic $f: \mathbb{D} \rightarrow \mathbb{C}$ that is one-to-one, $f(0)=0$ and $f^{\prime}(0)=1$ satisfies that the image $f(\mathbb{D})$ contains a ball of radius ϵ_{0}.
5. Show that there exists $\epsilon_{0}>0$ such that for every holomorphic $f: \mathbb{D} \rightarrow \mathbb{C}$ with $f^{\prime}(0)=1$ satisfies that the image $f(\mathbb{D})$ contains a ball of radius ϵ_{0}.
