Complex analysis 2

Homework \#2

Due date: Thursday in class, April 11th, 2019

$$
\mathbb{R}=\text { real numbers; } \mathbb{C}=\text { complex plane; } \mathbb{D}=\{z:|z|<1\}
$$

1. Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire and not a translation (i.e., it is not of the form $f(z)=a z+b$ for fixed $a, b \in \mathbb{C})$. Show that $f \circ f$ has a fixed point. I.e., show that there exists $z_{0} \in \mathbb{C}$ such that $f\left(f\left(z_{0}\right)\right)=z_{0}$.
2. Let $\Omega=\mathbb{D} \backslash\{0\}$. Show that there does not exists $h: \Omega \rightarrow \mathbb{R}$ such that h is harmonic in Ω and $\lim _{z \rightarrow 0} h(z)=0$ and $\lim _{z \rightarrow \partial \mathbb{D}} h(z)=1$.
3. Let $h: \Omega \rightarrow \mathbb{R}$ be a harmonic function. Assume that $|h(z)| \leq M$ for all $z \in \Omega$. Show that $|\nabla u(z)| \leq \frac{2 M}{\operatorname{dist}(z, \partial \Omega)}$ where $\operatorname{dist}(z, \partial \Omega)$ is the distance of z from $\partial \Omega$ and $|\nabla u(z)|$ is the norm of the gradient of u at z (that is, $\left.|\nabla u(z)|=\sqrt{u_{x}(z)^{2}+u_{y}(z)^{2}}\right)$.
4. Let $h: \partial \mathbb{D} \rightarrow \mathbb{R}$ be a continuous function and $u: \mathbb{D} \rightarrow \mathbb{R}$ defined by the Poisson formula

$$
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-|a|^{2}}{\left|e^{i t}-a\right|^{2}} h\left(e^{i t}\right) d t
$$

Show that $\lim _{a \rightarrow \xi} u(a)=h(\xi)$ for any $\xi \in \partial \mathbb{D}$.
5. Let $h: \partial \mathbb{D} \rightarrow \mathbb{R}$ be a continuous function and let $a \in \mathbb{D}$. For each point $e^{i \theta} \in \partial \mathbb{D}$, let $e^{i \theta^{*}}$ be the point in $\partial \mathbb{D}$ such that $a, e^{i \theta}, e^{i \theta *}$ lie on a straight line. Show that the harmonic extension $u: \mathbb{D} \rightarrow \mathbb{R}$ of h is given by

$$
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(e^{i \theta^{*}}\right) d \theta
$$

6. Suppose $u: \mathbb{D} \rightarrow \mathbb{R}$ is harmonic and $u(z) \geq 0$ for all $z \in \mathbb{D}$. Show that for any $z \in \mathbb{D}$

$$
\frac{1-|z|}{1+|z|} u(0) \leq u(z) \leq \frac{1+|z|}{1-|z|} u(0)
$$

7. Suppose that $u: \mathbb{D} \backslash\{0\} \rightarrow \mathbb{R}$ is harmonic and that $\lim _{z \rightarrow 0} u(z)$ is either $+\infty$ or $-\infty$. Show that u can be written as

$$
u(z)=\beta \ln |z|+u_{1}(z),
$$

where $\beta \neq 0$ is real, and $u_{1}: \mathbb{D} \rightarrow \mathbb{R}$ is harmonic in \mathbb{D}. [Hint: show that the residue of $u_{x}-i u_{y}$ is real]

