Complex analysis 2 Homework #3 Due date: Thursday in class, May 2nd, 2019

 \mathbb{Z} = integers; \mathbb{R} = real numbers; \mathbb{C} = complex plane; $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ extended complex plane

- 1. Assume that Ω and Ω_1 are domains in \mathbb{C} . Show that if $f\Omega \to \Omega_1$ is analytic and if v is subharmonic and continuous on Ω_1 , then $v \circ f$ is subharmonic on Ω . [Note that subharmonic functions are not necessarily differentiable]
- 2. Let $w \in \mathbb{C}$ be non-zero, and let $\mathbb{Z}w$ be the integer multiples of w. We set an equivalence relation on \mathbb{C} by putting $z_1 \sim z_2$ when $z_1 z_2 \in \mathbb{Z}w$. Let R be the set of congruence classes of \sim . Show that R is a Riemann surface that is conformally equivalent to the punctured plane $\mathbb{C} \setminus \{0\}$.
- 3. Show that if $f : R \to S$ is a nonconstant analytic map between two Riemann surfaces, then f is open, that is, for any open set $O \subset R$ the set f(O) is open in S.
- 4. Let $f : R \to \mathbb{C}$ be holomorphic and non-constant on a Riemann surface R. Show that |f| has no local maximum and no positive local minimum on R.
- 5. Suppose that $f : R \to S$ is a nonconstant analytic map between two Riemann surfaces.
 - (a) Show that if R is compact, then f(R) = S.
 - (b) Use (a) to prove the fundamental theorem of algebra.
- 6. Let X be compact Riemann surface and let $Y = X \setminus F$ for some finite set F. Show that any non-constant holomorphic map $f : Y \to \mathbb{C}$ has dense image.
- 7. Show that $f : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is holomorphic if and only if it is a rational function.
- 8. Let M, N be two Riemann surfaces and $f : M \to N$ non-constant holomorphic. Show that for any $x \in M$ there exists coordinate maps (U, z) in M and (V, w) in N such that $x \in U$ and $f(x) \in V$ and $F = w \circ f \circ z^{-1} : z(U) \to w(V)$ equals $F(z) = z^k$ for some $k \in \mathbb{N}$.