Complex analysis 2 Homework #4 Due date: Thursday in class, June 6th, 2019

$$\mathbb{Z}$$
 = integers; \mathbb{R} = real numbers; \mathbb{C} = complex plane;
 $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ extended complex plane

1. Let W be a Riemann surface and $b \in W$. Denote by $[\gamma]$ the equivalence class under homotopy of a curve $\gamma : [0,1] \to W$. Let W^* denote the collection of equivalence classes

$$W^* = \{ [\gamma] : \gamma \text{ is a curve in } W \text{ with } \gamma(0) = b \}.$$

If $c \in W$ let B be a small parametric disk in W centered at c and let γ be a curve from b to c. For any point $d \in B$, let σ_d be a curve in B from c to d. Let

$$B^* = \{ [\gamma \sigma_d] : d \in B \} \,,$$

where $\gamma \sigma_d$ is the concatenation of γ followed by σ_d . Denote by $\pi : W^* \to W$ the map $\pi([\gamma]) = \gamma(1)$ so that π is a one-to-one map of B^* onto B. The sets B^* , for every disk B and any γ from b to c, are declared to be open sets and form a basis for the topology of W^* .

Show that W^* is a simply connected Riemann surface that covers W. [W^* is called the *universal cover of* W]

- 2. Without using the uniformization theorem, show that if S is a simply connected Riemann surface that covers W, then S is conformally equivalent to W^* .
- 3. Show that if Green's function exist for a Riemann surface W_1 , and $W_2 \subset W_1$ is a subsurface of W_1 , then Green's function exist for W_2 and $g_{W_2} \leq g_{W_1}$. Give a natural definition for the word "subsurface" so that this statement holds.
- 4. Let W be a Riemann surface without a Green's function. Show any any positive harmonic function on W is constant.
- 5. Prove that Green's function with pole at p_0 exist on a Riemann surface W if and only if there exists a non-constant positive harmonic function on $W \setminus \{p_0\}$.